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Closeness Testing for Product Distributions

Last lecture, we proved that for two binary product distributions P and Q over {0, 1}n, testing
P = Q versus dTV (P,Q) > ε requires Ω(max{n3/4/ε,

√
n/ε2}) samples. Today, we give an algorithm

with sample complexity matching those bounds.
Suppose we are given binary product distributions P and Q. First, we can assume that pi, qi ≤

2/3 for each coordinate i. This is because we can take log(n) samples from both, and flip any
coordinates where 1s occur much more frequently than 0s. Now consider the case of pi and qi being
very small (≈ 0). We can use the fact that if dTV (P,Q) > ε, then since

||p− q||1 ≥ dTV (P,Q) ,

we have that
||p− q||22 > ε2/n .

This lends itself to the L2 closeness testing approach introduced at the beginning of the course.
Let Xi ∼ Poi(pim) and Yi ∼ Poi(qim) be samples from 2n independent Poisson distributions.

Define
Z =

∑
i

[(Xi − Yi)2 −Xi − Yi] .

Then
E[Z] = m2||p− q||22 ,

and

Var(Z) = O

(
m3
∑
i

[(pi − qi)2(pi + qi)] +m2
∑
i

(pi + qi)
2

)
= O(m2

√
E[Z] · ||p + q||22 +m2||p + q||22) .

If we have m >> n||p + q||2/ε2, then this algorithm would work as desired. However, ||p + q||2
could be as large as

√
n, making the algorithm non-optimal. What we then want to do is as follows;

for coordinates where |pi + qi| is small, we use the above algorithm. For coordinates where |pi + qi|
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is large, we will take a different approach, shown later. We will call coordinates of the former type
light coordinates, and coordinates of the latter type heavy.

Since we don’t know which coordinates are light and which are heavy, we take Poi(k) samples
from P and Q, for some k, and define light coordinates as those where the value of each sample in
that coordinate is 0. Note that

dTV (P,Q) <<
∑

light coords i

|pi − qi|+

√√√√ ∑
heavy coords i

(pi − qi)2
pi + qi

.

If ||p− q||1,light >> ε, then only n
√
n/k2/ε2 samples are required. If m = k, then m > n3/2/mε2,

or m > n3/4/ε samples are needed.
Now suppose instead that ∑

heavy coords i

(pi − qi)2

pi + qi
>> ε2 .

Let ai the total number of samples (from the 2·Poi(k) taken from P and Q) where the ith coordinate
is 1. We then have that ai ≈ k(pi + qi); stated differently, we have that ai ∼ Poi(k(pi + qi)). Let
H be the set of heavy coordinates. Define

Z ′ =
∑
i∈H

(Xi − Yi)2 −Xi − Yi
ai/k

.

Then

E[Z ′] =
∑
i∈H

(pi − qi)2

ai/k

≥
∑

i|pi+qi≥1/k

(pi − qi)2

pi + qi
.

Since the heavy coordinates are probably approximately those coordinates for which pi + qi ≥ 1/k,
this inequality holds. We also have that

Var(Z ′) = O

m3
∑
i∈H

(pi − qi)2(pi + qi)

(ai/k2)
+m2

∑
i∈[n]

(pi + qi)
2

(ai/k)2

 .

The first term is exactly mEXi,Yi
[Z ′], while the second is bounded above by m2n. Also note that

the latter term dominates, thus, to get E[Z ′] >>
√

Var(Z ′), it is roughly sufficient to have

E[Z ′] >>
√
m2n

m2ε2 >>
√
m2n

m >>
√
n/ε2 .

So, by using this tester on the heavy coordinates, and using the previous tester Z on the light
coordinates, we have a closeness testing algorithm using max{

√
n/ε2, n3/4/ε} samples, which is

optimal.
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Robust Statistics

In all of our algorithms so far, we have assumed that we are perfectly sampling from the distributions
in question. In practical applications, however, there’s often some degree of error in our sample
generator. Robust statistics deals with handling these errors.

The first point we make is that we assume we have some class C of hypothesis distributions,
which will be the ones our algorithms attempt to, e.g., learn or test closeness between. Our model
will be as follows; an ε fraction of samples are “bad,” where bad is defined in one of several ways:

• Additive error (the Huber model); a (1−ε) fraction of our samples are taken from the intended
distribution in C, and an ε fraction are taken from some other arbitrary distribution.

• General L1 error; for an intended distribution D ∈ C, our samples are taken from some D′ ∈ C
such that dTV (D,D′) < ε.

• Strong adversarial error; given N independent samples from D, an adversary is allowed to
change an arbitrary εN selection of them arbitrarily.

These models are arranged in terms of increasing difficulty, i.e. an algorithm which works in the
presence of strong adversarial error will still work in the presence of general L1 or additive error,
but the converse is not necessarily true.

For our first example of a problem in robust statistics, we shall look at the problem of learning
the mean of a Gaussian with the identity covariance matrix over Rn.

Learning a Gaussian Mean

Our class C here will be the set {N (µ, I)|µ ∈ Rn}. The goal is as follows: given some D ∈ D, learn
D to a total variation distance of at most ε. Note that it is impossible, in general, to learn D to
distance better than ε under general L1 errors. An information theoretic argument for that is as
follows. Let D′ be another Gaussian in C such that dTV (D,D′) = 2ε. Consider the distribution
1
2D + 1

2D
′. The best thing any algorithm can do is return N (µD+µD′

2 , I), as otherwise we could
arbitrarily relabel D and D′ such that the algorithm returned a distribution with total variation
distance larger than ε.

With this bound on the performance, we give a first attempt at an algorithm. Note that this
algorithm only works if we have restricted the set of possible mean vectors to some bounded region
in Rn; this is usually a reasonable assumption. In this case, we find an ε-cover of that bounded
region. Note that the mean vector of the true distribution has distance at most 2ε between it and
the nearest point in the cover. Also note that the size of this cover is poly(n/ε)n. If we then take a
random sample from the distribution, we note that it probably lies within a

√
n radius ball around

the true mean. Using this, we can conclude that the distribution is learnable to O(ε) error with
n log(n/ε)/ε2 samples. However, the algorithm achieving this takes exponential time.

A second approach would be to take the sample mean, as in the non-noisy case. Here, however,
a single corrupted sample can move the sample mean an arbitrary distance away from the true
mean. A different approach would be to take the coordinate-wise median. In the one-dimensional
case, this works; the median of our samples with errors, with high probability, is within an O(ε)
distance from the true mean. In the n-dimensional case, however, this error grows to O(ε

√
n).

We can fix this by looking at projections of our sample points, minus the candidate mean. If our
mean is correct, then projecting in any direction should result in a roughly equal number of points
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on either side of the plane normal to the projection vector. This gives rise to the Tukey median of
a set of points X,

µ̂T = arg min
µ̂

sup
v:||v||2=1

(|{x ∈ X : v · (x− µ̂) > 0}| − |{x ∈ X : v · (x− µ̂) < 0}|) .

We can prove that, with high probability, ||µ−µ̂T ||2 = O(ε) as follows; suppose that ||µ−µ̂T ||2 >> ε.
Then there must be some v ∈ Rn such that ||v||2 = 1 and |v · (µ̂T − µ)| >> ε. This then means
that

|{x ∈ X : v · (x− µ) > 0}| − |{x ∈ X : v · (x− µ) < 0}| >> ε ,

which occurs with low probability.
There is a problem with this approach; for arbitrary point-sets X, computing µ̂T is NP-hard.

Thus, even this simple problem of learning a Gaussian mean was considered difficult. Some recent
developments have occurred, however, which give algorithms for solving the problem with improved
performance.
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