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1 Last Lecture

In the last lecture, we covered upper bounds on the sample complexity of Ak-closeness testing. We
also gave tight bounds of Θ(n/ε2) for learning the mean of a Gaussian distribution over Rn with
the identity covariance matrix to error ε, and of Θ(

√
n/ε2) for testing whether the mean of a given

Gaussian, also with the identity covariance matrix, is equal to 0 or has L2-norm greater-than ε.

2 Learning the Covariance Matrix of a Gaussian

Upper Bound

Our upper bound is obtained by examining the sample covariance matrix. Namely, given a collection
of N samples over Rn, {x(i) ∼ N (0,Σ)}, the algorithm returns

Σ̂ =
1

N

N∑
i=1

x(i)(x(i))T .

For analyzing how large N must be, we can assume that Σ = I, the identity matrix; this is because
there is an affine transformation between N (0,Σ) and N (0, I). We know, from the previous class,
that

dTV (N (0, I),N (0,Σ)) = Θ(min(1, ||I− Σ||F )) ,

where ||·||F is the Frobenius norm. We also note that dTV (N (0, I),N (0, Σ̂)), treated as a distribution

over Σ̂, has an expected value of 0. So, we then estimate the variance of dTV (N (0, I),N (0, Σ̂)) as

||I− Σ̂||2F =
∑
i,j

[
1

N

N∑
k=1

(x
(k)
i x

(k)
j − δij)

]2
.

Each (i, j) term contributes 1/N to the sum, thus the variance in our estimator is approximately
n2/N . Thus, N = C(n2/ε2) samples are required, for some constant C.
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Lower Bound

For our lower bound, an outline of the proof is given. Consider the family of symmetric matrices
defined by Σij = Σji = δij ± cε

n , where c is some constant and plus or minus is chosen uniformly
and independently for each coordinate. Any algorithm which then wants to learn D = N (0,Σ) to
within ε must then be able to guess 2/3rds of the signs correctly.

For a given index (i, j) of Σ, and an arbitrary vector x, we have that changing the sign of ±cε/n
at Σij results in a multiplicative difference of approximately exp(±xixjε/n) in the pdf at x. This
follows from the fact that, for Σ ≈ I,

xTΣ−1x ≈ xT (2I− Σ)x .

Since ε/n << 1, we have that ±xixjε/n is very close to 0. Thus, using the linear approximation of
ex ≈ 1 +x near 0, we have that the information gain between Σ and x is approximately x2ix

2
jε

2/n2.

Also note that x2i and x2j are approximately 1, on average, so we can expect each sample x to give

ε2/n2 bits of information about Σ. We then need that Nε2/n2 >> 1, which gives the lower bound.1

3 Binary Product Distributions

A binary product distribution P over {0, 1}n is a distribution such that, given x ∼ P, xi is inde-
pendent of every xj for j 6= i. We can define P by p ∈ [0, 1]n, where pi = E[xi].

The first question we ask of such distributions is what metric do we use in comparing them?
The natural answer is the total variation distance. Since binary product distributions are discrete,
we have an explicit formula for this distance. Namely, given binary product distributions P and Q
with mean vectors p and q, we have that

dTV (P,Q) =
1

2

∑
x∈{0,1}n

∣∣∣∣∣
n∏
i=1

[pxi
i (1− pi)1−xi ]−

n∏
i=1

[qxi
i (1− qi)1−xi ]

∣∣∣∣∣ .
However, this usually isn’t that useful for our proofs. Instead, we want other bounds that are more
amenable to analysis. One such bound is

dTV (P,Q) ≤ ||p− q||1 .

However, this is not a great upper bound. A better one can be obtained as follows. Suppose X is a
random bit, and that Y = P if X = 0, otherwise Y = Q, where P and Q are both binary product
distributions. We then have that

dTV (P,Q)2 << I(X;Y ) .

Since each Yi is independent conditioned on X, we have that

I(X;Y ) ≤
∑
i

I(X;Yi)

= Θ

(∑
i

(pi − qi)2

(pi + qi)(2− pi − qi)

)
.

1As mentioned in class, a lot of details about this proof have been shoved under the rug.
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When we use one versus the other depends on how “unbalanced” the probability of each coordinate
is. If for every i, we have that pi and qi both lie in some constant range, say [1/10, 9/10], then
the denominators of the second bound are constants, and so dTV (P,Q) ≈ ||p − q||2. Otherwise,
dTV (P,Q) ≈ ||p− q||1.

Learning Binary Product Distributions

Upper Bound: For the upper bound, we use the natural algorithm of taking the vector of sample
means p̂. Note that each p̂i is a random variable with mean pi, and variance pi(1 − pi)/N , where
N is the number of samples. We can upper bound the squared total variation distance between P
and P̂, the distribution defined by p̂, by

dKL(P||P̂) =
∑
i

(p̂i − pi)2

pi(1− pi)
,

the Kullback-Leibler divergence. Note that in expectation, this is just
∑
i Var(p̂i)/(N · Var(p̂i)),

and so the expected squared error is n/N . Thus we just need N ≥ n/ε2.

Lower Bound: Consider the family of product distributions defined by pi = 1/2± cε/
√
n, where

plus or minus is chosen uniformly and independently at random for each coordinate. Then

I(X; Samples) ≤ N · I(X; A Sample)

≤ Nn · I(X; One coordinate of one sample)

= Nn · c
2ε2

n

= Nc2ε2 ,

which we require to be much larger than n. Thus, N ≥ n/ε2 is a matching lower bound.

Identity Testing for Product Distributions2

For this, we are given a binary product distribution Q, along with its mean vector q, and want to
determine if some unknown product distribution P is equal to Q, or has total variation distance
greater-than ε. First, we can suppose that qi ≤ 1/2 for each coordinate i; if this isn’t the case, then
replace qi with 1 − qi, and flip the ith bit of each sample from P. This leaves the total variation
distance unchanged.

Again, we use the KL distance bound, and want to see if∑
i

(pi − qi)2

qi(1− qi)
> ε2 .

Our approach for doing this is similar to how we derived χ2 testers in the discrete univariate case.
Namely, for each i ∈ [n], let Mi be sampled i.i.d. from Poi(m). Then, take M = maxi∈[n]{Mi}

2This and the closeness testing portion of the notes can all be found with further detail in section 4 of the Canonne
et al. paper on the course website, if further clarification is needed.
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samples x(1), . . . ,x(M) from P, and for each i record the number of times xi = 1 in the first Mi

samples as Xi. Note that M ∈ O(m) for m >> log n. Now define

Z =
∑
i

(Xi −mqi)2 −Xi

qi(1− qi)
.

We then have that

E[Z] = m2
∑
i

(pi − qi)2

qi(1− qi)
.

Furthermore, we can prove that

Var(Z) = O

(∑
i

m2p2i +m3pi(pi − qi)2

q2i

)
.

Together, these two can be used to derive a
√
n/ε2 sample upper bound. Note that a matching

lower bound can also be found.

Lower Bounds for Closeness Testing for Product Distributions

For the balanced case (i.e. pi, qi ∈ [c, 1− c] for some constant c and every i), we note that closeness
testing here is similar to closeness testing for Gaussians with diagonal covariance matrices. This
requires Ω(

√
n/ε2) samples.

In the unbalanced case, suppose an algorithm decides closeness with m samples, possibly de-
pending on ε and n. Let X be a uniform random bit. Define two product distributions P and Q
as follows. For each i ∈ [n], with 1/2 probability set pi = qi = 1/m. Otherwise, if X = 0, set
pi = qi = 1/n, and if X = 1, set pi = (1± ε)/n, and qi = (1∓ ε)/n. The intuition here is the same
as when proving the lower bound for closeness testing on discrete distributions. However, here we
can have many more noise bins (the ≈ n/2 coordinates where pi = qi = 1/m), since we are no
longer constrained to ||p||1 = 1.

Note that if X = 0, then P = Q. If X = 1, then with high probability dTV (P,Q) >> ε.
Consider the m samples from each distribution, p(1), . . . ,p(m) and q(1), . . . ,q(m). Note that

I(X; {p(j)}, {q(j)}) ≤ n · I

X;

m∑
j=1

p
(j)
1 ,

m∑
j=1

q
(j)
1


= n ·

∑
kp,kq≥0

(Pr(A1 = kp, B1 = kq|X = 0)− Pr(A1 = kp, B1 = kq|X = 1))2

Pr(A1 = kp, B1 = kq|X = 0) + Pr(A1 = kp, B1 = kq|X = 1)

where Ai =
∑m
j=1 p

(j)
i and Bi =

∑m
j=1 q

(j)
i . This sum can be shown to be equal to (mε/n)4; since

we require I(X; {p(j)}, {q(j)}) >> 1, we need n(mε/n)4 >> 1, which implies m >> n3/4/ε. Thus,
a lower bound on the sample complexity of max(

√
n/ε2, n3/4/ε) is obtained. Next class, we show

that this is sufficient for closeness testing.
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