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Abstract

How to computational efficiently find an approximation of p using ¢ € C that minimizes
the Ay, distance: |¢ — p|a,, where C is the family of distributions that are t-piecewise degree-d
polynomial(t-piecewise degree-d polynomial: the R can be split into t pieces, and each piece
the probability density function is a degree d polynomial)

1 Previous Lecture

We introduced the |g — p|a, distance between p and ¢, which is 3" |¢(I) — p(I)|. If those two
T

distributions have only a few crossings, then Ay distance can be a good standing of dry (total
variation distance). Ay distance can be measured in a small VC-dimension which means that we
can have a better bound in the number of samples to measure the distance. If we can split the
R into O(d(t + 1)) pieces and measure the Ay distance by catching the sign changes between p
and ¢, then Ay is the same as dr,,. If we cannot let p be exactly t-piecewise polynomial, we can
§ — approzimate p in error of O(§ + €) with time and sample complexity O(t(d + 1)/€?).

2 Algorithm

1. Take Samples

2. Compute the empirical distribution p

w

. Find ¢ t-piecewise degree-d that minimizes |q — p| 4,
4. If non-proper hypothesis g, return hypothesis not in C

The algorithm above could end up with the case of non-proper hypothesis, but we can round the
non-proper result to a proper result with a doubled error; however, there is not known algorithm
to do that efficiently.

This still leads to the question of how to perform step 3 efficiently.

3 Examples

3.1 Special Case: t=1

First we will look at the special case where ¢ = 1. We want to find degree-d polynomial ¢ on [0, 1]
such that for any partition of [0, 1] into intervals I, I, ..., I, > |¢(I;) —p(I;)| < e. We also assume
T

that p is close to p in A distance and there exists some p that is close to p in A, distance.
We can formulate this problem into a Linear Program. (Linear Program: A system of linear in-

equalities with some number of variables. Optimize the objective function with constraints like:
Vi - T > bi, WiKi_LP)

The good side of linear program is that we know: (Theorem) there exists a polynomial time algo-
rithm to find the solution; however, there might be infinite number of intervals (inequalities) that


https://en.wikipedia.org/wiki/Linear_programming

we need to consider for our LP, so we will end up with a horrible runtime.

It turns out that we do not actually need a list of equations for this algorithm to work. It is
sufficient to have a separation oracle(a special version of LP Lec_SO), which can be done in the
following:

e Given X return either

— X is a solution

— some constraint that X violates
In order to compute the Ay distance |p — g| 4, for some nice distribution p and ¢, we want to

1. partition intervals to break at where p(x) = ¢(z)[reduce to only finite number of end-
points|(There are d crossings in one interval, with ¢ piece),

M
2. find the best intervals that minimize > [p(I;) — ¢(I;)| using Dynamic Programming, where
j=1
I,, ends at x.

Then, we can get some optimal partitions of (I, Ia, ..., I,;,) through Dynamic Programming by
comparing on what is the best discrepancy between merging I; and I, and just I}, then we can
get the set of intervals that minimize the discrepancy. This dynamic programming also gives us
a Separation Oracle (if the partition at X will give you some Ay < ¢€) and we can apply Linear
Program to see if there is such a ¢ that Agdistance < ¢ and minimizes Ay

3.2 A more general case t>1

How to approximate (no exact solution to the minimum Agdistance)some distribution p where we
assume p = some t-piecewise degree-d polynomial There is no algorithm to minimize Ay, distance
but only to find good enough Ay distance approximation of p since we can always have a finer
partition (larger t) to minimize the Ay distance. We also need O(N log(%)) samples as we need to
take the union bound over % terms.

As above we split R into intervals Ji, Ja, ..., Jn, where P(J;) ~ 1, where k = 2t(d + 1). We can do
this if we have access to p or partition it approximate if we can access p

But we need to know how good this approximation is Let J,—p = J, U Jop1 U Jaqo... U Jp.
Suppose we have N samples, and our empirical distribution p has an error between p(J,—_p) =

p(Ja—p) £ w. Let w =vb—a+16.

For ¢ > 0 |q(Ja—b) — P(Ja—p)| < 81/(b —a+ 1) VYa < b where a-b does not cross a boundary for q.
lg(Ja—b) — (Jazp)| < 284/(b —a+ 1) (fix divider for the partition).

But how do we compute the |¢ — p|a, We partition the domain into %k intervals and round the
interval I;’s endpoints to some J;’s and this introduces O(e) error.
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Figure 1: round the interval’s endpoints where p > ¢ to intervals where p < ¢ so that we can end
up with introducing 2(p(Zerr — q(Ierr))), where p(Ie,) < 1, so for k intervals, we at introduce O(e)
error in total

After round all the endpoints, let Iy = J1_q,, 12 = Joy+1-ag, -5 [P—qla, < O(€)+Y_20\/a11 — a; <
O(e) + O(8)\/> aj1 — ajVk(Cauchy-Schwartz). Thus |p — g|a, < O(e + %)
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Since ¢ = /35 and we need to get % =€ — 0 = 5. By the equation &= = /35, we get
N=0(%).

With the fixed dividers, we need to find where ¢ needs to break at those dividers. Assume interval
boundaries are at the boundaries at the .J’s.

1. We can find if there is a single degree-d polynomial q works on some .J,_; using Linear
Program.

2. For each m,0 < m < t, what is the largest interval J;_,, such that can be done with
m-piecewise polynomial q (how big could the piece be for some piece m).
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