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Abstract

This lecture introduces the basic set up of distribution learning and proves an upper
bound on the number of samples required for learning an unstructured distribution.

1 Setup

Say there is an unknown probability distribution p (perhaps known to satisfy extra proper-
ties). We take independent samples from p and would like to determine some information
about p.

The main parameters of this algorithm that we need to keep track of are:

• How many samples ? We want almost information theoretically optimal (within
constant factors)

• How efficient is the algorithm ? Ideally we want near linear in the number of
samples, but we also accept polynomial time algorithms.

• What is the probability of failure ? We require usually require only a 2
3

probability
of success, but this doesn’t matter very much. We can usually amplify the probability
of success to 1− δ with O(log(1/δ)) independent repetitions of the same algorithm.

Let us begin with the following example:

2 Learning Unstructured distribution

Let p be an arbitrary distribution on [n] = {1, 2, . . . , n}.

Objective: Learn p Note that this cannot be done exactly because there are infinitely
many such distributions but we are only given access to a finite number of samples. So we
revise ou objective as follows.
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Revise: Return another distribution q such that

dTV (p, q) =
1

2
|p− q|1 =

1

2

n∑
i=1

|pi − qi| < ε

Intuition: A nice way to think of Total Variation distance is the by the following coupling
inequality

Lemma 2.1. Let µ, ν be two probability measures. For any rvs X, Y whose marginals are
µ, ν we have

||µ− ν||TV ≤ Pr[X 6= Y ]

In fact X, Y can be constructed so that this is an equality.

3 Algorithm:

The algorithm is very simple. Take N independent samples and we take the empirical
distribution.

qi =
No of samples in the ith bin

N

4 Analysis:

Let Xi denote the number of samples from bin i. Then qi = Xi

N
.

The total variation distance is dTV (p, q) = 1
2

n∑
i=1

|pi − Xi

N
|.

Note that Xi ∼ Bin(pi, N) is a Bernoulli random variable. Thus,

E[Xi] = piN, V ar(Xi) = Npi(1− pi) < piN.

Thus, E[pi − Xi

N
] = 0 and

E
∣∣∣pi − Xi

N

∣∣∣2 = V ar
(
pi −

Xi

N

)
≤ pi
N
.

Now using linearity of expectation we have,

E
[∑

i

∣∣∣pi − Xi

N

∣∣∣2] ≤
∑
i

pi

N
=

1

N

This bounds E[||p − q||2] but since we use Cauchy Schwarz + Jensen to get a bound on
E[dTV (p, q)].

∑
i

E
[∣∣∣pi − Xi

N

∣∣∣]·1 ≤
√√√√∑

i

(
E
[∣∣∣pi − Xi

N

∣∣∣]2) · n∑
i=1

1 ≤

√√√√∑
i

E
[∣∣∣pi − Xi

N

∣∣∣2] · n∑
i=1

1 ≤
√
n

N
.
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Thus, we have E[dTV (p, q)] ≤
√

n
N

. Say if we choose N so that
√

n
N
≤ ε/3 then using

Markov inequality we have dTV (p, q) < ε with probability at least 2/3. Thus,

N = O(
n

ε2
)

is sufficient.
This proves the upper bound on the number of samples.

5 Lower bound

We need to prove that any algorithm that with prob 2/3 returns an ε−approximation of p
uses >> n

ε2
samples. We use information theory to prove this.

We use the adversary method. Let the adversary have a distribution D over all possible
p. The algorithm gets N samples from a random p ∈ D. We choose D wisely so that there is
not enough information for the Algorithm to give the correct answer consistently. We prove
this in the next Lecture.
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