In previous lecture, we proved that using \(N = O(n/\epsilon^2) \) samples from an unstructured distribution \(P \) over \(n \) elements, we can output a distribution \(Q \) such that with constant probability, the total variational distance between \(P \) and \(Q \) is small i.e. \(d_{TV}(P,Q) \leq \epsilon \). In this lecture, we prove a matching lower bound showing that \(\Omega(n/\epsilon^2) \) samples are necessary for such an algorithm to succeed with constant probability.

2.1 Notation

\(H(P), H(PQ), H(P|Q) \) and \(I(P;Q) \) are the entropy, joint entropy, conditional entropy and mutual information of random variables \(P \) and \(Q \) respectively (see previous lecture for definitions).

2.2 Standard Theorems from Information Theory

Apart from the theorems discussed last lecture, we will also use the following standard theorems.

Theorem 2.1 (Shanon Coding Theorem (Informal)) To encode \(n \) i.i.d. copies of random variable \(P \), we need \(\approx n \cdot H(P) \) bits.

Informally, the following theorem says that for two random variables \(P \) and \(Q \), we can not increase their mutual information by running a deterministic function over them.

Theorem 2.2 (Information Processing Inequality) For any deterministic function \(f \),

\[
I(P;Q) \geq I(f(P);Q) \tag{2.1}
\]

Proof:

\[
I(P;Q) = I(Pf(P);Q) \tag{2.2}
\]
\[
= I(f(P);Q) + I(P;Q|f(P)) \tag{2.3}
\]
\[
\geq I(f(P);Q) \tag{2.4}
\]

Theorem 2.3 For random variables \(Y \) and \(X_1, \ldots, X_n \) such that \(X_i \) is independent of \(X_1, \ldots, X_{i-1} \) given \(Y \), we have that

\[
I(Y;X_1, X_2, \ldots, X_n) \leq \sum_{i=1}^{n} I(Y;X_i) \tag{2.5}
\]

Proof: For random variable \(A, B, C \) where \(A \) and \(B \) are independent given \(C \) i.e.

\[
I(A;B|C) = 0 \tag{2.6}
\]
we have
\[I(A; C) = I(A; BC) - I(A; B|C) = I(A; B) + I(A; C|B) \geq I(A; B) \quad (2.7) \]

Using this, we get
\[
I(Y; X_1, X_2, \ldots, X_n) = \sum_{i=1}^{n} I(Y; X_i | X_1, \ldots, X_{i-1}) \leq \sum_{i=1}^{n} I(Y; X_i) \quad (2.8)
\]

\[\leq \sum_{i=1}^{n} I(Y; X_i) \quad (2.9) \]

2.3 Lower Bound

We first formally state the lower bound:

Theorem 2.4 There exists a unstructured distribution \(P \) over \(2n \) elements such that any algorithm which returns a distribution \(Q \) such that \(d_{TV}(P, Q) < \epsilon \) requires \(\Omega(n/\epsilon^2) \) samples from \(P \).

Proof: Using Yao’s minimax principle, it is sufficient to show that there exists an ensemble of distributions \(D \) s.t. an adversary can choose a specific distribution \(P \in D \) and any algorithm (with knowledge of \(D \) but unaware of \(P \)) requires at least \(O(n/\epsilon^2) \) samples to output a distribution \(Q \) such that \(d_{TV}(P, Q) < \epsilon \) with constant probability.

For our ensemble of distributions, we consider \(n \) random variables \(\{X_i\}_{i=1}^{n} \), each \(X_i \in \{-1, 1\} \) and corresponding pairs of bins where the probabilities for the \(i^{th} \) bin are given by
\[
\left(\frac{1 + 6X_i \epsilon}{2n}, \frac{1 - 6X_i \epsilon}{2n} \right) \quad (2.10)
\]

Note that the probabilities are normalized.

Let \(Y_i \) be the estimate of \(X_i \). Each \(i \) for which \(X_i \neq Y_i \) contributes at least \(6\epsilon/2n \) to \(d_{TV}(P, Q) \). Therefore, if we have \(Q \) s.t. \(d_{TV}(P, Q) \leq \epsilon \), then \(X_i = Y_i \) on at least \(2/3 \) of the coordinates.

Let
\[
C = \begin{cases}
1 & d_{TV}(P, Q) < \epsilon \\
0 & \text{otherwise} \end{cases} \quad (2.11)
\]

We first recall that the mutual information between random variables \(X \) and \(Y \) is defined as \(H(X) - H(X|Y) \) and is denoted as \(I(X; Y) \).

The main idea is that when the algorithm succeeds (i.e. \(C = 1 \)), the value of \(Y \) gives us some information about \(X \). In particular, if the algorithm succeeds with constant probability (or we can reliably learn \(X \)) then \(I(X; Y) = \Omega(n) \). Also, we will show that \(I(X; Y) = O(N\epsilon^2) \), which would imply the lower bound.

More formally, we know
\[
I(X; Y) = I(X; C) + I(X; Y|C) \quad (2.12)
\]

\[\implies I(X; Y) \geq I(X; Y) - 1 \quad (2.13) \]

\[= H(X) - H(X|Y) - 1 \quad (2.14) \]
where the second last step follows from $I(X; C) \leq 1$ and $I(X; Y) \geq I(X; Y|C)$.

From Theorem 2.1, we get

$$H(X) \leq n \tag{2.15}$$

Also, we can write $H(X|YC)$ as

$$H(X|YC) = \Pr[C = 0]H((X|C = 0)|(Y|C = 0)) + \Pr[C = 1]H((X|C = 1)|(Y|C = 1)) \leq \Pr[C = 0]n + \Pr[C = 1]0.9n \tag{2.16}$$

Where the last line is because if $C = 1$ then X and Y agree on $2n/3$ bits. Hence the conditional entropy of X is at most $\log \left(\sum_{i=0}^{n/3} \binom{n}{i} \right)$.

Also, by Theorem 2.3,

$$I(X; S_1, \ldots, S_N) \leq \sum_{i=1}^{n} I(X; S_i) = N \cdot I(X; S) \tag{2.18}$$

We can think of this as X picks n biases for coins, S picks a random coin A and flips it to return t. Hence, we can write $I(X; S)$ as

$$I(X; S) = I(X; At) = I(X; A) + I(X; t|A) \leq \theta(\epsilon^2) \tag{2.19}$$

$$= I(X_A; t) \leq \theta(\epsilon^2) \tag{2.20}$$

where the last step follows from previous lecture. Substituting Equation (2.15), (2.17), (2.18) and (2.21) in Equation (2.14) gives (also using that Y is a deterministic function of $S_1; \ldots, S_n$)

$$N\theta(\epsilon^2) \geq NI(X; S) \geq \Pr[C = 1] \frac{n}{10} - 1 \tag{2.22}$$

Therefore, for constant probability of success, we need $N = \Omega(n/\epsilon^2)$. ■