Preliminary

Dictionary
Let U be the universe set of strings, $|U| = N$ (very large). We want to build a dictionary data structure to map $W \subseteq U$ ($|W| = n \ll N$) to its relevant information. The dictionary supports a lookup operation which is given $x \in U$ determine if $x \in W$ (look up associated data).

Types of dictionaries

- A static dictionary only supports lookup once it is built.
- A dynamic dictionary should also supports insertion and deletion.

Hash Table
A hash table is a length m array with an associated hash function h so that x is stored in the $h(x)$-th element. Hash function h maps $x \in U$ to a arbitrary location of the hash table. Collision of hash function h happens when $h(x) = h(y), x \neq y, x, y \in W$.

Need a function that outputs “kind of randomly” to prevent adversarial examples causing serious collisions but the function has to have a the same output every time it is fed with the same input.

Hash family
Hash family is a collection of hash functions $h : U \rightarrow [m]$

k-wise independence hash family
Let $x_i \in W, y_i \in [m]$ and x_i are all distinct.

Fix x, y, and randomly choose h from the k-wise independence family.
\[Pr_h(h(x_1) = y_1 \land \ldots \land h(x_k) = y_k) = \frac{1}{m^k} \]

Note that k-wise independence imply (k-1)-wise independence.

2-wise independence hash family
\[Pr_h(\#(x \neq y) : x, y \in W, h(x) = h(y)) = O\left(\frac{n^2}{m}\right) \]

Dealing with collisions

Easy answer: Array of length \(m \) buckets, each bucket in the array stores a doubly linked list of \(x \in W \) s.t. \(h(x) \) the same value. Assume \(h \) is from 2-wise independence hash family.

The time to build this static dictionary requires \(O(n) \) time.

From the 2-wise independence assumption: \(Pr_h(h(x) = h(x')) = \frac{1}{m} \). The lookup time for a given \(x = O(1) + O(E[\# \ of \ x' \in W \ s.t. \ h(x) = h(x')] \Rightarrow E[time \ per \ lookup] = O(1 + \frac{n}{m}) \).

If \(m \gg n \). it has a constant expected time per lookup.

Dynamic

Analysis for insert/delete is the same as lookup. First perform a lookup find the linked list and insert/delete the element in \(O(1) \).

Problems

- In the worst case, what if \(h \) from the 2-independent family has all collisions send to the all choices have a bucket with \(\sqrt{n} \) element in it.
- Also possible with \(\frac{1}{n} \) probability (over the choice of \(h \)) that all elements collide in the same bucket.

Perfect Hashing (Static dictionary)

We want all lookups done in \(O(1) \) time, not the average case.

Easy case With a large enough \(m \). If \(m \geq 2\binom{n}{2} \approx n^2 \)

With \(E[\# \ pairs \ that \ collides] = \binom{n}{2}/m \leq \frac{1}{2} \), we can try \(\approx 2 \) hash functions and the chance of the pair collide in both hash function is small.

Idea find \(h \) that is twice as long, \(h : W \to [2n] \) without collisions

Even if \(h \) is uniform random (weaker assumption than k-wise independence), the probability of collision \(= 1(1 - \frac{1}{2n})(1 - \frac{3}{2n}) \ldots (1 - \frac{n-1}{2n}) \leq exp\left(\frac{n}{10}\right) \) is exponentially small
2-stage hash function

Generate the 1-st hash function \(h_o : U \to [m] \). In bucket i, stores the second stage hash function \(h_i : U \to [(\# \text{ elements in bucket } i)^2] \). If there is a few collisions in first hash function, we can choose a second-stage hash function on a smaller set of elements. To determine final hash function \(h(x) \) look in bucket \(h_{h_o(x)}(x) \) of the \(h_o(x) \)-th bucket.

Implementation

Pick \(h_o \)
hash all elements \(x \in W \)
compute \(c_i = (\# \text{ elements } x \in W : h_o(x) = i) \)
if \(\sum c_i^2 \gg n \) try again
else
allocate \(c_i^2 \) memory in the \(i \)-th array
for \(i = 1 \) to \(m \)
try \(h_i \)
hash all \(c_i \) elements
if collision try a new \(h_i \)

- \(\mathbb{E}[\text{build time}] = O(n) \)
- Lookup time worst case is \(O(1) \) which is the run time of two hash functions.
- memory usage \(O(m) + \sum c_i^2 = O(m) + O(n) + O\left(\frac{n^2}{m}\right) = O(n) \)

\[
Pr(h_o(x_1) = h_o(x_2) = i) = \begin{cases}
\frac{1}{m^2}, & \text{if } x_1 \neq x_2 \\
\frac{1}{m}, & \text{if } x_1 = x_2
\end{cases}
\]

\[
\mathbb{E}[\sum c_i^2] = \sum_i \sum_{x_1, x_2} Pr(h_o(x_1) = h_o(x_2) = i) = O(n) + O\left(\frac{n^2}{m}\right)
\]

\((O(n) \text{ from the cases of } x_1 = x_2, O\left(\frac{n^2}{m}\right) \text{ from the cases of } x_1 \neq x_2)\)