Announcements

• HW 4 Due today
Today

• Dynamic Programming Introduction
Dynamic Programming (Ch 6)

• Background and past examples
• Longest Common Subsequence
• Knapsack
• Chain Matrix Multiplication
• All-Pairs Shortest Paths
• Independent Sets of Trees
• Travelling Salesman
Computing Fibonacci Numbers

Recall:

\[F_n = 1 \text{ if } n = 0 \text{ or } 1 \]
\[F_n = F_{n-1} + F_{n-2} \text{ otherwise} \]
Naïve Algorithm

Fib(n)

If n ≤ 1
 Return 1
Else
 Return Fib(n-1)+Fib(n-2)

Far too slow!
Improved Algorithm

Fib2(n)

Initialize A[0..n]
For k = 2 to n
Return A[n]

Tabulation of answers avoids runaway recursive calls.
Another Example

Something similar happens with our algorithm for shortest paths in DAGs.

This was based on the basic recursive formula

$$\text{dist}(w) = \min_{(v,w) \in E} \text{dist}(v) + \ell(v, w).$$

applied to vertices in topological order.
Example

dist(t) → dist(D) → dist(C) → dist(s) → dist(A) → dist(B) → dist(s)

dist(s) → dist(A) → dist(s) → dist(s) → dist(s) → dist(s) → dist(s)
Simplify by Tabulating

Instead of computing these values recursively, compute them one at a time, recording them. Then in the future, you only need to do table lookups.
Dynamic Programming

Our final general algorithmic technique:

1. Break problem into smaller subproblems.
2. Find recursive formula solving one subproblem in terms of simpler ones.
3. Tabulate answers and solve all subproblems.
Which of the following algorithms that we have covered so far involves a dynamic program?

A) Bellman-Ford
B) Optimal Caching
C) Computing SCCs
D) Closest Pair of Points
E) Karatsuba Multiplication

\[\text{dist}_k(w) = \min_{(v,w) \in E} \text{dist}_{k-1}(v) + \ell(v, w). \]
Subsequences

Given a sequence, say $ABCBA$, a subsequence is the sequence obtained by deleting some letters and leaving the rest in the same order.

For example, $ABCBA$ would have a subsequence $\underline{ABC}BA = ACB$.
Longest Common Subsequence

We say that a sequence is a **common subsequence** of two others, if it is a subsequence of both.

For example **ABC** is a common subsequence of **ADBCA** and **AABBC**.

Problem: Given two sequences compute the **longest common subsequence**. That is the subsequence with as many letters as possible.
Question: LCSS

What is the length of the longest common subsequence of ABCBA and ABACA?

A) 1
B) 2
C) 3
D) 4
E) 5

ABCA = ABCBA = ABACA
Case Analysis

How do we compute \(\text{LCSS}(A_1A_2...A_n, B_1B_2...B_m) \)?

Consider cases for the common subsequence:

1. It does not use \(A_n \).
2. It does not use \(B_m \).
3. It uses both \(A_n \) and \(B_m \) and these characters are the same.
Case 1

If the common subsequence does not use A_n, it is actually a common subsequence of

$$A_1 A_2 \ldots A_{n-1}, \text{ and } B_1 B_2 \ldots B_m$$

Therefore, in this case, the longest common subsequence would be

$$\text{LCSS}(A_1 A_2 \ldots A_{n-1}, B_1 B_2 \ldots B_m).$$
Case 2

If the common subsequence does not use B_m, it is actually a common subsequence of $A_1 A_2 ... A_n$, and $B_1 B_2 ... B_{m-1}$.

Therefore, in this case, the longest common subsequence would be $\text{LCSS}(A_1 A_2 ... A_n, B_1 B_2 ... B_{m-1})$.
Case 3

If a common subsequence uses both A_n and B_m...

- These characters must be the same.
- Such a subsequence is obtained by taking a common subsequence of:
 $A_1A_2...A_{n-1}$, and $B_1B_2...B_{m-1}$
 and adding a copy of $A_n = B_m$ to the end.
- The longest length of such a subsequence is
 $\text{LCSS}(A_1A_2...A_{n-1}, B_1B_2...B_{m-1})+1$.
Recursion

On the other hand, the longest common subsequence must come from one of these cases. In particular, it will always be the one that gives the biggest result.

\[\text{LCSS}(A_1 A_2 \ldots A_n, B_1 B_2 \ldots B_m) = \]
\[\max(\text{LCSS}(A_1 A_2 \ldots A_{n-1}, B_1 B_2 \ldots B_m), \]
\[\text{LCSS}(A_1 A_2 \ldots A_n, B_1 B_2 \ldots B_{m-1}), \]
\[[\text{LCSS}(A_1 A_2 \ldots A_{n-1}, B_1 B_2 \ldots B_{m-1}) + 1]) \]
[where the last option is only allowed if \(A_n = B_m \)]
Recursion

\[\text{LCSS}(A_1 \ldots n, B_1 \ldots m) \]

Key Point: Subproblem reuse
Only ever see \(\text{LCSS}(A_1 A_2 \ldots A_k, B_1 B_2 \ldots B_\ell) \)
Base Case

Our recursion also needs a base case.

In this case we have:

\[\text{LCSS}(\emptyset, B_1B_2\ldots B_m) = \text{LCSS}(A_1A_2\ldots A_n, \emptyset) = 0. \]
Algorithm

LCSS(A_1A_2...A_n,B_1B_2...B_m)

Initialize Array T[0...n,0...m]

\ \ T[i,j] will store LCSS(A_1A_2...A_i,B_1B_2...B_j)

For i = 0 to n
 For j = 0 to m
 If (i = 0) OR (j = 0)
 T[i,j] ← 0
 Else If A_i = B_j
 T[i,j] ← max(T[i-1,j],T[i,j-1],T[i-1,j-1]+1)
 Else
 T[i,j] ← max(T[i-1,j],T[i,j-1])

Return T[n,m]

O(1) iterations

O(nm) iterations
Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅</td>
<td></td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>ABC</td>
<td></td>
<td></td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>ABCB</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>ABCBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

String: ABCA
Proof of Correctness

Prove by induction that each value assigned to $T[i,j]$ is the correct value for $\text{LCSS}(A_1A_2\ldots A_i, B_1B_2\ldots B_j)$.

Base Case: When i or j is 0 we assign 0.

Inductive Step: Assuming that previous values are assigned correctly, $T[i,j]$ gets correct value because of recursion for LCSS and inductive hypothesis (and that we have previously filled in $T[i-1,j]$, $T[i,j-1]$ and $T[i-1,j-1]$).
Notes about DP

• General Correct Proof Outline:
 – Prove by induction that each table entry is filled out correctly
 – Use base-case and recursion

• Runtime of DP:
 – Usually
 [Number of subproblems]x[Time per subproblem]
More Notes about DP

• Finding Recursion
 – Often look at first or last choice and see what things look like without that choice

• Key point: Picking right subproblem
 – Enough information stored to allow recursion
 – Not too many