This homework is due on gradescope Friday February 5th at 11:59pm pacific time. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in \LaTeX is recommended though not required.

Question 1 (Public Transit on a Budget, 40 points). Lars is trying to get around town. He has various options for transportation with the possible routes represented by edges of a directed graph G. Each edge e has a positive integer cost $\text{cost}(e)$ dollars and a time it takes to traverse $\text{time}(e)$. Lars has a limited number N of dollars and would like to get between two locations (s and t) in as little total time as possible.

(a) Give an algorithm that given G, s, t, the functions cost and time and the total budget N, determines the shortest time to get from s to t under the budget. For full credit your algorithm should run in time $O(N(|V| + |E|))$ or better. [20 points]

(b) Suppose that some routes are allowed to have a cost of 0. Provide an algorithm to solve the new version of this problem with runtime $O(N(|V| \log(|V|) + |E|))$ or better. [20 points]

Question 2 (Negative Cycle Finding, 35 points). We know how to use Bellman-Ford to determine whether or not a weighted, directed graph G has a negative weight cycle. Give an $O(|V||E|)$ time algorithm to find such a cycle if it exists. Hint: If there is such a cycle use Bellman-Ford to find a vertex v with $\text{dist}_{|V|-1}(v) > \text{dist}_{|V|}(v)$ and compute the paths involved. From this you should be able to find a cycle. You may also need to modify your graph some to deal with the possibility of a negative weight cycle not reachable from your chosen starting vertex s.

Question 3 (Divide and Conquer Recursions, 25 points). Give the asymptotic runtimes of the following divide and conquer algorithms.

(a) An algorithm that splits the input into two inputs of a two-thirds the size and then does $\Theta(n)$ extra work. [2 points]

(b) An algorithm that splits the input into five inputs of half the size and then does $\Theta(n^{5/2})$ extra work. [2 points]

(c) An algorithm that splits the input into four inputs of half the size and then does $\Theta(n^2)$ extra work. [2 points]

(d) An algorithm that splits the input into six inputs of a third the size and then does $\Theta(n^{3/2})$ extra work. [2 points]

(e) An algorithm that splits the input into two inputs of a third the size and then does $\Theta(n)$ extra work. [2 points]

(f) An algorithm that splits the input into two inputs of half the size and then does $\Theta(n \log(n))$ extra work. Note: you cannot use the Master Theorem in this case. You may have to do some work to derive the answer. [15 points]

Question 4 (Extra credit, 1 point). Approximately how much time did you spend working on this homework?