Question 1 (Huffman Code, 30 points). Consider a text with the following letter frequencies:

- 'A' appears 5 times
- 'B' appears 6 times
- 'C' appears 20 times
- 'D' appears 8 times
- 'E' appears 15 times
- 'F' appears 2 times

Find the Huffman tree for an optimal Huffman encoding of this text.

We employ the standard greedy algorithm. A and F are the least common letters, so we combine them into a new node [A OR F] that appears 7 times. The nodes [A OR F] and B are now the least common, so we combine them into a node [A OR B OR F] that appears 13 times. The lightest pair is now [A OR B OR F] and D, which we combine into [A OR B OR D OR F] which appears 21 times. The lightest pair is now C and E which we combine into [C OR E] which appears 35 times. Finally, we combine [C OR E] with [A OR B OR D OR F] to get the root node.

The tree produced is as given below:

```
  F    A
   B
 /   \
D   C   E
```
Question 2 (Game Analysis, 35 points). Frank and Grace are playing a game. In this game, there is a pile of \(n \) stones. The players take turns and on a turn they remove any square number of stones up to the total number of stones in the pile. The loser is the player who is unable to make a move (in other words the person left with a pile of 0 stones). Devise an algorithm to determine who has a winning strategy for this game (assume that Frank goes first). Your algorithm should have runtime that is polynomial in \(n \) (although you do not have to prove this).

Hint: The game with \(n \) stones is winning for the first player if and only if there is some \(m \leq \sqrt{n} \) so that the game with \(n - m^2 \) stones is losing for the first player.

We note that the game with \(n \) stones is winning if and only if the game with \(n - m^2 \) stones is losing for some \(m \). We use a dynamic program where the subproblems are whether or not the first player can win the game with \(n \) stones for various values of \(n \). We have the following algorithm:

\[\text{IsWinning}(n) \ \text{// determines if Frank can win the game with n stones}\]
\[
\text{Initialize array A[0...n] setting all entries to False}\]
\[
\text{// A[i] is whether or not game with i stones is winning}\]
\[
\text{For i = 1 to n}\]
\[
\text{IsWinning = False} \ \text{// Whether or not we have found a way to win yet}\]
\[
\text{For m = 1 to floor(sqrt(n))}\]
\[
\text{If A[n-m^2] = False}\]
\[
\text{IsWinning = True}\]
\[
A[i] = \text{IsWinning}\]
\[
\text{Return A[n]}\]
Question 3 (Interval Covering Problem, 35 points). Consider the following computational problem. Given \(n \) points on the real line \(x_1 < x_2 < \ldots < x_n \), find a minimum number of unit length intervals \(I_1, I_2, \ldots, I_m \) that cover these points. In particular, each \(I_j \) should be an interval of the form \([y_j, y_j + 1] \) (unit length), and for every \(1 \leq i \leq n \) the number \(x_i \) should be an element of \(I_j \) for some \(j \) (the intervals cover the points). Among such coverings, we are looking at one with \(m \), the number of intervals, as small as possible.

It turns out that there is a greedy algorithm for this problem. In particular, after determining the first \(k \) intervals, we let \(I_{k+1} \) be \([x_j, x_j + 1] \) where \(x_j \) is the smallest point not yet covered. So for example if the points were \(0, 0.3, 1.5, 2.1, 3 \), we would have intervals \([0, 1], [1.5, 2.5], [3, 4]\). Prove that this algorithm produces an optimal solution. Hint: Show that the smallest interval in an arbitrary solution covers no more points than the smallest interval in the greedy solution.

Let \(I_1, \ldots, I_k \) be the greedy solution and \(I'_1, \ldots, I'_m \) by an arbitrary solution. Suppose that \(I'_1 \) is an interval in the second cover containing \(x_1 \). Note that the right endpoint of \(I'_1 \) is at most \(x_1 + 1 \). Therefore, \(I'_1 \) only covers \(x_i \)'s that are at most \(x_1 + 1 \). However \(I_1 \) covers all the \(x_i \)'s with this property (since none are less than \(x_1 \)). From here we note that \(I'_2, \ldots, I'_m \) must cover all of the \(x \)'s not covered by \(I_1 \). On the other hand, by induction on the number of points, \(I_2, \ldots, I_k \) is an optimal cover of these points. Thus, we must have \(m \geq k \).

As an alternative proof, one should note that if \(I_j \) has left endpoint \(x_{a_j} \) that it must be the case that \(x_{a_j + 1} > x_{a_j} + 1 \) (since otherwise it would be covered by \(I_j \)). This means that no two of the \(x_{a_j} \) can be covered by the same unit interval, and thus proves that any cover must have at least \(m \) intervals. Thus the greedy solution is optimal.