Q1. Optimization vs Search

Assume TSP can be solved in polynomial time by algorithm T (input: a matrix of distances and a budget), then the following algorithm can solve TSP-OPT in polynomial time:

T' (input: a matrix of distances)
- Set lower bound of budget as \(N \), the number of cities
- Set upper bound of budget as \(NM \), where \(M \) is the largest weight
- Binary search in the budget range from \(N \) to \(NM \), using T on the input of the same matrix of distances, and start with the budget \(\lfloor (N + NM)/2 \rfloor \). If for the given budget there exists a tour, reset the upper bound to be this current budget and repeat the process; else if there does not exist a tour, reset the lower bound to be the current budget and repeat. We stop when the two bounds meet, and that will be the minimum budget with which a tour exists.
- Return the route with the minimum budget

Q2. Proving NP-Completeness by Generalization

(a) SUBGRAPH ISOMORPHISM:
This is a generalization of CLIQUE problem: given graph \(H \) and determine whether there is a clique (a complete graph) of a given size. If we set the \(G \) in SUBGRAPH ISOMORPHISM problem to be the complete graph of the given size, it will be exactly the CLIQUE problem.

(c) MAX SAT:
This is a generalization of SAT problem: given a CNF and find a truth assignment that satisfies all clauses. If we set the \(g \) in MAX SAT problem to be the number of clauses then it is exactly the SAT problem.

(e) SPARSE SUBGRAPH:
This is a generalization of INDEPENDENT SET problem: given a graph and find a set of \(a \) vertices where there are no edges between any pair of vertices. If we set the \(b \) in SPARSE SUBGRAPH to be zero, it becomes INDEPENDENT SET problem.
Q3. Reductions to Integer Linear Programming

For full credits you need to do at least 3 of the 4 reductions below:

1. From Zero-One Equations

The Zero-One Equations asks for an assignment of 0s and/or 1s for all variables satisfying the given linear inequalities. It can be solved by adding the two equations for each variable x_i: $x_i \geq 0$, $x_i \leq 1$, in addition to the existed equations so it becomes an instance of Integer Linear Programming.

2. From Subset Sum:

The Subset Sum problem asks for a subset of given set of integers such that the sum of all numbers in this subset is zero. Assume the set of numbers is $\{a_1, a_2, ..., a_n\}$, then it can be solved if the following linear equalities can be satisfied by integer assignment of all variables:

$$a_1x_1 + a_2x_2 + ... a_nx_n = 0, \quad x_i \geq 0 \text{ and } x_i \leq 1 \text{ for all } x_i$$

This is an instance of Integer Linear Programming.

3. From 3SAT:

The 3SAT is to find a Boolean assignment to all variables of CNF where each clause contains exactly 3 literals. Let us define integer-value variable y_i for each variable x_i so we have the following inequalities:

$$y_i \geq 0 \text{ and } y_i \leq 1 \text{ for all variables } x_i$$

Then for each 3-literal clause add one inequation summing up 3 corresponding y-variables: if x_i is not negated in the clause, sum y_i; else if x_i is negated, sum $(1 - y_i)$.

For example, for the clause $(x_p \lor x_q \lor x_r)$, the following equation will be added:

$$x_p + x_q + x_r \geq 1$$

And, for the clause $(x_i \lor \neg x_j \lor \neg x_k)$, the following equation will be added:

$$x_i + (1 - x_j) + (1 - x_k) \geq 1$$

Finding an assignment of true/ false to satisfy a given 3SAT CNF is equivalent to finding integer solution to the above Integer Linear Programming problem.

4. From Independent Set:

To solve Independent Set problem of finding k vertices of graph $G = (V, E)$ where $|V| = n \geq k$ there are no edges between any pair of the k vertices, first map each vertex v_i to a variable x_i then find an assignment of integers to satisfy the following inequalities:

$$x_i \geq 0, \text{ for each vertex } v_i \in V$$

$$x_i + x_j \geq 0 \text{ and } x_i + x_j \leq 1, \text{ for each edge } (v_i, v_j) \in E$$

$$x_1 + x_2 + ... x_n = k$$