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SeeSite: Characterizing Relationships
Between Splice Junctions and Splicing
Enhancers

Christine Lo, Boyko Kakaradov, Daniel Lokshtanov and Christina Boucher

Abstract—RNA splicing is a cellular process driven by the interaction between numerous regulatory sequences and binding
sites, however, such interactions have been primarily explored by laboratory methods since computational tools largely ignore
the relationship between different splicing elements. Current computational methods identify either splice sites or other regulatory
sequences, such as enhancers and silencers. We present an novel approach for characterizing co-occurring relationships
between splice site motifs and splicing enhancers. Our approach relies on an efficient algorithm for approximately solving
Consensus Sequence with Outliers, an NP-complete string clustering problem. In particular, we give an algorithm for this problem
that outputs near-optimal solutions in polynomial time. To our knowledge, this is the first formulation and computational attempt for
detecting co-occurring sequence elements in RNA sequence data. Further, we demonstrate that SeeSite is capable of showing
that certain ESEs are preferentially associated with weaker splice sites, and that there exists a co-occurrence relationship with

splice site motifs.

Index Terms—RNA splicing, exon splicing enhansers, randomized algorithms, PTAS, EPTAS

1 INTRODUCTION

RNA-splicing is the process of removing introns from
pre-mRNA and merging the remaining exons into
mRNA. During RNA-splicing, the spliceosome deter-
mines the location of the exons to merge by recogniz-
ing a motif at the splice sites, or the exon-intron bound-
aries where splicing occurs. Unfortunately, splice sites
may be very degenerate, meaning that the corre-
sponding sequence deviates dramatically from the
motif [9]. When evolutionary changes weaken a splice
site, regulatory elements such as ESEs (exonic splicing
enhancers) and ISEs (intronic splicing enhancers) can
be used to compensate for the degeneracy [3], [20],
[34]. These regulatory elements are also thought to
play a role in alternative splicing, as many alternative
splice sites are weaker than constitutive sites [28], [39].

Current computational approaches for the analysis
of splicing elements can be split into two categories
based on their aim: those that detect splice sites, and
those that detect splicing enhancers and silencers.
Splice site identification tools find the boundaries be-
tween the exons and introns by using either RNA-seq
data [30], [31], [13], [2] or previous annotations [22],
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[11]. While splice site identification is a fundamental
problem, it only serves to partially solve the long-term
goal of fully understanding how splicing activity is
regulated since proximal sequences around these sites
significantly affect splicing [9]. The second group of
computational tools focus on identifying other splic-
ing elements, such as enhancers and silencers that can
occur in the introns (e.g. ISEs and ISSs) and exons
(e.g. ESEs and ESSs). These tools search for motifs in
a wide region around the splice sites but limit the
search to exact matches of a motif. More specifically,
they search for f-mers that are statistically enriched
in a set of cases versus controls [8], [15], [16], [25],
[38]. For example, RESCUE-ESE [15] is a well-known
program that compares exons with weak splice sites
to those with strong splice sites reasoning that those
with weak splice sites will have more enhancers. Both
groups of computational tools focus on finding either
splice sites or their regulatory elements and ignore the
co-occuring relationship between the two. However,
a co-occuring relationship between specific enhancer
motifs and specific splice site motifs are known to
exist [34], and an investigation of splicing activity
necessitates a method that deciphers this co-occuring
relationship.

Here we address the problem of identifying the co-
occuring relationship between splice sites and splic-
ing enhancers. We introduce a computational tool
called SeeSite! that classifies splice sites based on
their strength and uses this classification to identify

1. A Java implementation of the method demonstrated in this
paper is available at: http:/ /bix.ucsd.edu/SeeSite.
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co-occuring splicing enhancers in neighboring exon
regions. SeeSite involves two distinct stages. In the
first stage, SeeSite groups similar splice sites together
and characterizes (i.e. finds the corresponding motif
recognized by the spliceosome) and classifies each
splice site as “weak” or “strong”. In the second stage,
SeeSite looks for enhancers in the exonic region of
the weak splice sites of the motif (i.e. it locates and
characterizes the ESEs).

The two stages of SeeSite both rely on character-
izing a group of sequences; however the two stages
have their differences. For instance, in the first stage,
the location of the splice site sequences are given,
whereas the location of the enhancer sequences need
to be determined in the second stage. Also, the first
stage requires the classification of sequences into
“weak” and “strong”, while no classification is needed
in the second stage. Despite their difference, both
stages of SeeSite use the same three-step algorithm
which is general enough so that the parameters can
be tailored to handle each stage appropriately. Figure
1 illustrates the flow of data among these two stages.

The three-step algorithm used in both stages of
SeeSite involves building a graphical representation of
the input data, finding all dense subgraphs, and char-
acterizing the sequences in each dense subgraph. The
first two steps of the algorithm can be handled using
standard methods. However the third step requires
solving a string clustering problem in the presence
of noise since a number of the splice sites can be
highly degenerate and can confound the consensus
sequence. We formalize this problem as the Consensus
Sequence with Outliers problem. This combinatorial
problem is NP-complete [6] so we have to settle for
heuristic algorithms to solve it. On the other hand, we
show that choosing the parameters to our algorithm
cleverly yields strong guarantees on the quality of the
output. Specifically, we show that our algorithm is an
efficient polynomial time approximation scheme (PTAS)
unless the noise completely overwhelms the signal.
We extend our theoretical findings by also giving a
PTAS for Consensus Sequence with Outliers without any
restrictions on the input.

A problem that is related to our model of detection
of co-occuring splicing elements is motif-recognition,
which models the biological challenge of finding tran-
scription factor binding sites in genomic data [23].
Although, there are numerous programs that solve
specific instances of this problem, including PROJEC-
TION [7], Winnower [23], MITRA [14], MCL-WMR
[4], and VAS [10], they are optimized to find the
set of sequences that minimizes the pairwise dis-
tances. Thus, such programs are inappropriate for co-
occuring splicing elements since they will not return
sets of sequences that contain highly-degenerate (i.e.
“weak”) sites even though they maybe existing in
the data. SeeSite overcomes this challenge, making
it appropriate for detection of co-occuring splicing

elements.

The rest of the paper is organized as follows: In
Section 2, we give the formal definition for the Con-
sensus Sequence with Outliers problem, algorithms to
solve this problem, and the theoretical guarantees of
these algorithms. In Section 3, we discuss the three-
step algorithm and explicitly describe the flow of
data between the first and second stage of SeeSite. In
Section 4, we demonstrate the applicability of SeeSite
in detecting co-occuring relationships between splice
sites with specific ESEs.

2 PROBLEM DEFINITION AND ALGORITH-
MIC APPROACH

In this section, we focus on the formal definition
of Consensus Sequence with Outliers and prove some
properties about this problem, including the existence
of an algorithm that produces a near-optimal solution
in polynomial time.

21 The Consensus Sequences with Outliers
Problem

Given a set of possible ¢-mers, we would like to
determine the consensus sequence, and the subset of
f-mers that are the most degenerate. The following
problem defines this task.

Definition 1: We denote d(z,y) to be the Hamming
distance between the length-¢ sequences z and y.
Given n length-¢ sequences S = {s1,...,s,} over a
finite alphabet ¥ and nonnegative integer k, the aim
of the Consensus Sequence with Outliers problem is to
find a consensus sequence, s, and subset, S* C S,
where n — |S*| =k and ), g d(t, s) is minimal.
The problem is NP-hard [6], however, it is amenable
to efficient approximation algorithms that are able to
work well in practice.

We begin with some preliminary definitions before
giving our algorithmic results. For a set .S of length-
¢ sequences, we denote the consensus sequence of S
as ¢(S) and define it to be equal to the sequence that
is obtained by picking a most-frequent character at
every position with ties broken arbitrarily. We note
that the tie-breaking will not affect our arguments. We
denote the sum Hamming distance between a single
sequence s and a set of sequences S as d(S,s) =
> wieg d(t,s). The Consensus Sequence With Outliers
problem can now be succinctly stated as follows:
given a set S of sequences and integer &, the objective
is to find a subset S* C S of size n* = n — k such that
d(S*,¢(S*)) is minimized. Observe that the consensus
sequence of set S, ¢(5), minimizes d(S, ¢(S5))—that is,
no other sequence z is closer to S than ¢(S) but some
x # ¢(S) could achieve d(S,z) = d(S, ¢(S5))

Given a subset S* C S we can compute ¢(5*) in
polynomial-time. If we are given ¢(S5*) for the optimal
solution S* (but not given S* itself) then we can
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Fig. 1: The goal of SeeSite is the identification of co-occurring splice site-ESE motifs in two stages. First, splice
site motifs are found based on a graph representation of /-mers at splice site locations. In the second stage,
the exon regions for each of the weak splice sites cited are examined to determine co-occurring ESEs. The
output of the first stage determines the input to the second stage. The output of SeeSite is a set of splice sites
classified by their canonical form, the identification of weak splice sites, and the group of co-occurring ESEs

for each splice site motif.

recover S* from ¢(S*) and S in polynomial-time since
S* is the set of the n—k sequences in S that are closest
to ¢(S*). Similarly, given any sequence z, we denote
S, as the subset of S containing the n* sequences
closest to x. By construction S, satisfies the following
inequality: d(S’,z) > d(Sg,x) > d(Sz,c(S;)) for any
subset S’ C S of size n*.

We give a heuristic algorithm for solving the Con-
sensus Sequence with Outliers problem based on ran-
dom sampling. The algorithm has two parameters r
and ¢. It picks r sequences S’ = (s, sh, ...s..) from S
uniformly at random (with replacement), and finds
the consensus sequence corresponding to S’. It repeats
this process t times and outputs the best consensus
sequence found. The pseudocode for this algorithm
is given in Algorithm 1.

2.2 Approximation Guarantees

We prove guarantees on the quality of the solution
output by Algorithm 1, when the parameters r
and t are chosen appropriately. In particular we
show that Algorithm 1 is an efficient polynomial time
approximation scheme (EPTAS) for Consensus Sequence
with Outliers if the data does not consist mainly
of outliers. A polynomial time approximation scheme

Algorithm 1

Input: S, k, r, t.

Output: a sequence s and subset, S* C S of size
n — k.

Step 1: Initialize s* <+ 0 and d;p, < 0.

Step 2: Try ¢ times:

(a) Choose a random subset of S of size r,
denoted by S’

(b) Order the sequences in S by increasing dis-
tance from ¢(S’) and let S,,,,, be the last k sequences
in this ordered set.

(c) Let S* be equal to S/Smaz-

(d) If d(S*,c(S*)) is less than d,;, then update
dmin and s*.

Step 3: Return s* and the corresponding S™.

(PTAS) is a polynomial-time algorithm that outputs a
(1+¢)-approximate solution for every e > 0. Typically
the running time upper bound, while polynomial for
every fixed value of €, grows very rapidly as e tends
to 0. If the exponent of the polynomial in the running
time of the algorithm is independent of € then the
PTAS is said to be an efficient PTAS (EPTAS). To
prove our bounds we prove the following technical
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lemma, which states that if the sample S’ was taken
from an (unknown) optimal solution S*, rather than
from the entire input set .S, then in expectation ¢(S")
is almost as good as the consensus sequence for the
set S*.

Lemma 1: For all € > 0 and o, there exists a value
of r such that the following holds: if S is a set of n
length-¢ sequences over the alphabet ¥, where the
size of ¥ is equal to o, and S’ is a subset of S of size
r, (s},8h,...s,), chosen uniformly at random, then
Ed(S,c(S")] < (14 €)d(S, c(9)).

Proof: We prove that there exists r such that
E[d(S,c(S)] < (1 + 2€)d(S,c(S)). Applying this
weaker inequality with ¢ = ¢/2 then proves the
statement of the Lemma. We assume, without loss of
generality, that ¢(5) is equal to 0f, e <1/16,and r > 8.
We restrict interest to column ¢ of S, where 0 < i < ¢,
let d; be the number of nonzero symbols in column 4
and let z; = n — d;. Observe that d(S, c(S")) is equal
to the sum over ¢ of the number of sequences s € S
such that sfi] # ¢(S")[i]. By linearity of expectation
it is sufficient to prove that for every i we have
E[d(S[d], c(S")[i])] < (1 + 2¢€)d;.

First, we assume d; is at most en. Let ¢ be the proba-
bility that ¢(S")[i] # 0. It follows that E[d(S[é], ¢(S")[4])]
is at most d;(1—g)+g¢n. We determine an upper bound
on the probability g:

o < ()t
z=[r/2]
< > 27(di/n)”
z=[r/2]
< o (dy i Lo /)"

1 —(di/n)
Since d;/n < e < 1/16, we get:

g < or+1 (dz/n) [r/2] < 2r+1€[r/4'| (dz/n) [r/4]
1\ [7/4] . .
It follows from the last inequality, and that » > 8, that

¢ < 2(d;/n)*. Hence, we obtain the following bound
on E[d(S]i, c(S")[i]):

E[d(S[i],c(SH])] < di(1-q)+ an
< d; +2 (i:) n

Next, we assume that d; > en. We say that a
symbol « € X is a good symbol if there are at least
z; — ne? sequences in S that have the symbol « at
column ¢; any symbol that is not good is bad. If

c(S")[i] is a good symbol then d(S[i],c(S)[i]) is at

most d; + ne? and hence, is at most (1 + €)d; since
d; > en. Let p be the probability that ¢(S")[i] is a bad
symbol then, E[d(S[i], c(S")[i])] is upper bounded by
(1 — p)(1 + €)d; + pn. Lastly, we determine an upper
bound on p to complete the proof.

Let a be a bad symbol and p,, be the probability that
c(9")[i] is equal to a. We note that in order for ¢(S”)[i]
to be ¢, there has to be more positions equal to « than
0in S’[i]. Let X be the difference between the number
of positions equal to o and the number of positions
equal to 0 in S'[i]. It follows that p, < Pr[X > 0].
Let X; be an indicator variable which is 1 if s}[] is
equal to a, -1 if it is equal to 0, and 0 otherwise.
Since « is a bad symbol, there are at least ¢> more
positions equal to 0 than positions equal to « in S’[i]
and therefore, F[X;] = Pr[si[i] = 0] — Pr[s}[i] =
a] < —¢. By linearity of expectation, we obtain
E[X] = ¥_, E[X;] < —re®. Using this inequality, we
get Pr[X > 0] < Pr[X — E[X] > re?]. Since the X;
variables are independent and the difference between
the upper and lower bound of X; is 2, we can use
Hoeffding’s inequality to obtain the following bound.

—2r2et re*
2 —
Pr[X — E[X] > re7] <exp< o ) = exp (2)

. 2In(%)
min | n, max =

,8)), we get
Pa < g Finally, we bound p as follows: p < > p, <

By choosing r =

2 .
oS = €2. We now use this bound on p and our

assumption that d; > en to bound :
E[d(S[i], (S < (1-p)(A+e)di+pn
< (1+e)d; +€*n < (1+2€)d;
U
If the number of outliers is small, then with
reasonably high probability a small random subset of
the input sequences will not contain any outliers. If
the random sample does not contain outliers we can
use Lemma 1 to tie the quality of the output solution
with the quality of the optimum solution. Based on
this intuition we can prove the following theorem.

Theorem 1: There exists a randomized EPTAS for
Consensus Sequence with Outliers for inputs when
k < ecn for ¢ < 1. The algorithm runs in time
T - f(e)(n£)°®) and outputs a (1 + €)-approximate
solution with probability 1/2.

Proof: The algorithm selects a value for r such
that for a random subset S’ of the unknown op-
timal solution S* the inequality E[d(S*,c(5))] <
(14 5)d(S*,c(S*)) holds. It follows from Lemma 1
that this can be done so that r only depends on e.
We show that a single iteration of the outer loop of
Algorithm 1 with this choice for r yields a (1 + ¢)-
approximate solution with probability (1 —¢)" - f(e).
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Then setting ¢t = O ((1_6)17”0(6)) yields the statement
of the theorem.

It remains to find a sufficient lower bound of the
probability that the set returned by a single itera-
tion of the outer loop of Algorithm 1 is a (1 + ¢)-
approximation. Since £ < c¢n, it follows that the
probability that S’ is taken from an (unknown) op-
timal solution S* is at least (*=*)" = (1 —¢)". If
S’ is taken from S* then by Lemma 1 we have that
E[d(S*,c(5"))] < (1 + £)d(S*,c(5*)). By Markov’s
inequality [18, p. 311] the probability that d(S*,c(S"))
exceeds expectation by a factor at least 1+ £ is at most
ﬁ. Hence, with probability f(e) for some function
f of e we have that:

€ €
a(s*,e(8") < (1+ g) a(s*,e(s7) - (1+ §) ,
which is at most (1 + €)d(S*, ¢(S*)) when (5)2 <&
In particular, this holds if € < 3, concluding the proof.
L
We note that one would expect natural inputs to
contain substantially fewer outliers than n/2, and that
Markov’s inequality is a very pessimistic bound for
the probability of achieving expectation. It is likely
that for reasonable inputs Algorithm 1 performs much
better in practice than the proved bounds. In fact, on
our synthetic data the algorithm vastly outperformed
the theoretical bounds.

Using Lemma 1 we can also get a simple
deterministic PTAS (but not an EPTAS) for Consensus
Sequence with Outliers without any assumptions on
the relationship between k£ and n. Specifically we
prove the following theorem.

Theorem 2: There exists a PTAS for Consensus
Sequence with Outliers.

Proof: It follows from Lemma 1 that there exists an
integer r such that if S’, the set of r of sequences cho-
sen from S, is from an (unknown) optimal solution S*
then E[d(S*,¢(5))] < (1+¢€)d(S*,¢(S*)). Some subset
S’ of S* must achieve the expectation. The algorithm
guesses this set S’ by trying all possible n” subsets of
S of size r. Let x = ¢(S"). The algorithm returns the set
Sg of the n* sequences closest to x. This set satisfies
d(Sz,¢(5z)) < d(Sz,x) < d(S*,x) < (14€)d(S*, ¢(5*)),
concluding the proof.

L

3 METHODS

There are two distinct stages of SeeSite: the first stage
characterizes the splice sites, while the second stage
detects enhancers in the exons corresponding to the
weak splice sites. Both stages run the same three-step
algorithm. In this section, we describe the three steps
of the algorithm in detail, and how the two stages
are pipelined together to create SeeSite. The input

to SeeSite is the intron-exon or exon-intron bound-
ary regions containing the splice junctions and their
neighboring exons (details on how these sequences
are obtained are described in the preprocessing sec-
tion). The input parameters are: the minimum sub-
graph size (denoted as m), the maximum number of
mismatches (denoted as d), and the maximum number
of mismatches for the existence of an edge (denoted
as b). There is an option to restrict the search to ESEs
or splice junctions that have a specific canonical form.
The output of SeeSite is all splice junctions, grouped
by their consensus sequence, and a set of ESEs for
each consensus sequence. By comparing the set of
ESEs for differing consensus sequences, co-occurrence
relationships become evident.

3.1 Preprocessing Step

The input to SeeSite is a set of sequences flanking the
splice junctions, where the splice junctions are either
known or putative. When the splice sites are known,
these input sequences can be trivially identified by
examining the sequences flanking the splice sites. For
putative sites not in the reference transcriptome the
flanking sequences need to be explicitly identified,
which can be done using a short read alignment
program that is capable of dealing with RNA-seq data
(e.g. TopHat [30], OSA [19], GSNAP [33]).

3.2 Pipelining Together the Stages of SeeSite

In the first stage, SeeSite finds and characterizes all
possible splice sites. These sites are grouped according
to their consensus sequence, i.e. all splice sites with
the same consensus sequence are in the same group,
with some of the splice sites classified as being weak.
As previously mentioned, a splice site will be clas-
sified as weak if the sequence marker corresponding
to the splice site is highly degenerate, and has been
determined to be an outlier sequence.

The exons are partitioned into smaller subgroups
that constitute the input for the second stage as fol-
lows: all exons whose corresponding splice sites have
the same consensus sequence are grouped together,
then all exons whose splice site was classified as
strong are removed. What remains are groups of
exons whose splice junctions have the same consensus
sequence and have been classified as being weak. The
three-step algorithm is run on each (smaller) set of
exon sequences in the second stage. The parameters
that specify the amount of allowed degeneracy (i.e.
parameters b and d) are dramatically reduced in the
second stage since ESEs are inherently shorter and
more well-conserved. Figure 1 illustrates the flow of
data among the two stages of SeeSite

3.3 Three-Step Algorithm

The steps of the basic algorithm used for both stages
of SeeSite are as follows: graph construction, dense
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Fig. 2: The core algorithm is a three-step process that runs twice in succession. On the first run (yellow region
marked Stage 1), the algorithm receives a set of proximal sequences from known or putative splice junctions
and determines one or more motifs for their splice sites. On the second run (blue region marked Stage 2), the
algorithm receives multiple subsets of sequences from the first run—each corresponding to a weak splice site
motif—and searches their exonic portions for neighboring ESEs.

subgraph detection, and recovery of the splice junc-
tions and ESEs. An overview of this algorithm is
shown in Figure 2.

Step 1: Graph Construction

In our graphical representation of the data set, each
occurring ¢-mer is represented by a vertex and the
construction of our graph ensures that {-mers corre-
sponding to the same motif sequence are represented
by dense subgraphs (though the converse need not
hold). Thus, the problem of detecting ESEs and splice
sites is converted to finding dense subgraphs of size
at least m in our constructed graph G. Here, we
remind the reader that m is an input parameter, and
n is the number of input sequences. We now give
a formal definition of the constructed graph. Our
definition makes the simplifying assumption that all
input sequences have length at most L. We note that
the definition can be trivially extended to the case
where the input sequences have varying lengths.

1) The vertex set contains a vertex v; ; representing
the l-length subsequence in sequence i starting
at position j, foreachiand j =1,2,...,L—{+1.
There are at most n(L — [ + 1) vertices.

2) Each pair of vertices v; ; and vy ;/, for ¢ # ¢’ is
joined by an edge when the Hamming distance

between the two represented subsequences is at
most b.

This graph is represented by a symmetric adjacency
matrix, where each entry is 0 for a non-edge, and 1 for
an edge. We reduce the running time of searching G
by considering subgraphs of G, {Go,G1,...,Gr-1},
where G; is the subgraph induced by a reference
vertex, denoted as vp ;, and its neighbors (for some ar-
bitrary choice of reference sequence R). Similar graph
constructions have been used by Yang and Rajapakse
[36], Pevzner and Sze [23], and Yang et al. [35].

Step 2: Detection of Dense Subgraphs

We implemented a modified version of the MCQ algo-
rithm of Tomita and Seki [29] to enumerate all dense
subgraphs of size at least m. Each dense subgraph
represents a set of ¢-mers, such that the Hamming
distance between any pair of /-mers in the set is at
most b. We chose MCQ due to the experimental work
showing that when compared with other existing
algorithms, it is the most efficient and practical for
dealing with large graphs. The underlying idea of this
branch-and-bound, depth-first search method is to be-
gin with a small dense subgraph, add a vertex to it if
and only if it is connected to some minimum number
of vertices already contained in the subgraph, and halt
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when no other vertices can be added. If the subgraph
has size at least m then it is returned. The vertex sets
outputted by the MCQ algorithm correspond to sets
of /-mers that need to be considered further in the
next stage of the algorithm.

Step 3: Consensus Sequence with Outliers Algorithm

Each set of ¢-mers identified in the previous step is
considered to be a Consensus Sequence with Outliers
instance in this step. Algorithm 1 is used to solve
each Consensus Sequence with Outliers instance. The
parameters of the Consensus Sequence with Outliers
instance is varied based on which stage of SeeSite
is being run. When searching for splice sites in the
first stage, the number of outliers is equal to |m/4],
and when searching for ESEs in the second stage
there are no outliers. Both the Consensus Sequence with
Outliers problem definition and algorithmic methods
are adaptive in that they are provably efficient, regard-
less of the number of outliers. In Subsection 2.2, we
proved that Algorithm 1 runs efficiently even when
the number of outliers are arbitrarily large or small.
When there are no outlier sequences, Algorithm 1
simply returns the majority sequence and, therefore,
is efficient.

4 EXPERIMENTAL RESULTS AND Discus-
SION

Existing computational methods search for either
splice sites or ESEs, but overlook the connection be-
tween the two groups of motifs. In this section, we
demonstrate the ability of SeeSite to identify both
enhancer sequences and splice site motifs that have
an unusually strong tendency to co-occur.

4.1 Identification of Co-occurring Relationships
in Genes with Known Splice Sites

The human genome has many multi-exon genes with
excellent EST coverage and high-quality annotation,
and thus, provides a good source of known splice sites
on which we can evaluate the capability of SeeSite.
Our benchmark dataset consists of 9,487 known splice
sites from the human genome (GRCh37 assembly)
and its reference annotation (RefSeq). For each known
splice junction, we extracted two 100nt subsequences
centered at the 5 and 3’ splice sites flanking each
known intron and provided them to SeeSite to search
for proximal ESEs.

In the first stage of SeeSite, we grouped all splice
sites according to their consensus sequence, and clas-
sified each site as being strong or weak. For this
stage, we varied the input parameters ¢, d and b,
and only considered groups of splice junctions of size
greater than m = 100. We used a metric referred
to as the consensus value (CV), which ranges from
100 (perfect consensus) to 0 (worst consensus), to

gauge the degeneracy (or strength) of the sequence
corresponding to the splice junction [24], [38]. The
CV guided our choice of k, the number of outlier
sequences allowed. We observed that when k was
greater than 25% of the size of the instance, the CV
of some of the outlier sequences was greater than 60.
Therefore, we set the value of & to be 25% of the size
of the instance to ensure that we classify degenerate
splice sites as “weak”.

SeeSite characterized 9,308 of the 9,487 known
splice sites, 87% of these sites overlapped with known
gene models that have been verified by ESTs. Less
than 2% of splice sites had been identified by ESTs but
were not found by SeeSite. SeeSite characterized the
GT-AG, GC-AG, and AT-AC splicing site patterns in
87%, 3%, and 0.5% of the 9,308 splice sites considered.
The remaining 179 splice sites were too degenerate
to be characterized; each of these sites contained at
most 2nt consistent with one of the identified splice
site motifs. For the splice sites characterized as GT-
AG, 2% matched perfectly to the consensus (CV of
100), 4% had a CV between 90 and 80, 26% had a
CV between 80 and 77, and the remaining 68% had a
CV less than 77. All splice sites that were found to be
outlier sequences had a CV less than 60.

In the second stage, SeeSite identified ESEs corre-
sponding to the groups of weak splice sites. For each
group of weak splice sites of the same consensus form,
we ran the second stage with varied values of d and
b, and ¢ equal to 5 and 6 and k = 0. Previous results
[9], [15] demonstrating that commonly occurring ESEs
were either 5-mers or 6-mers guided our choice of
£. We validated our findings by comparing the ESEs
found by SeeSite with those identified by RESCUE-
ESE [15]% 95% of the ESEs that were identified by
SeeSite were also identified by RESCUE-ESE [15], and
less than 1% of the ESEs that were identified by
RESCUE-ESE were not identified SeeSite [15].

Table 1 gives all splice site forms characterized
by SeeSite, and for each splice site form, the ESEs
that occur most frequently. As witnessed in the ta-
ble, the ESEs that occur most frequently with one
splice site form occur infrequently with splice sites
of other forms. Our results confirm the existence
of co-occurring splicing elements, i.e. a pairing of
splice sites with specific ESEs. For the weak splice
sites of each form, GT-AG, GC-AC, and AT-AC, we
determined the ESEs that occur most frequently and
those that occur the most infrequently and compared
these across different splicing sites. We witnessed that
the occurrence of several ESEs have high probability
of occurring with the corresponding splice site hav-
ing a specific pattern (e.g. GT-AG, GC-AC, and AT-
AC), while others have low probability of occurring
with splice sites of other forms. There exists strong

2. The ESEs identified by RESCUE-ESE are
http://genes.mit.edu/burgelab /rescue-ese/ESE.txt.

found at:
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evidence for a pairing of ESEs to splicing sites.

To address the conjecture that ESEs are more likely
to be present when the splice junction is weak rather
than strong, we ran the second stage of SeeSite on the
strong splice sites, and compared the number of exons
that are associated with strong splice sites and contain
an ESE, with the number of exons that are associated
with weak splice sites and contain an ESE. In this
context, we refer to a splice site as strong if the CV
is greater than or equal to 85. We found that 90% of
weak splice sites are paired with an ESE, as opposed
to 30% of strong splice sites. This statistic supports
the idea that co-occurring pairs are contributing to
splicing by compensating for a lack of strong splicing
signals.

The results suggest the existence of several non-
canonical splice site patterns and demonstrates a
possible synergistic relationship between ESEs and
different classes of splice site patterns. Validation
experiments such as fluorescence-activated screens of
splicing reporters [32] are needed to resolve whether
the relationships detected by SeeSite are biologically
significant. We believe that the introduction of SeeSite
will inspire future investigations on co-occurring re-
lationships between splice sites and other regulatory
elements (i.e. exon silencers, intron silencers, intron
enhancers).

4.2 Identification of Co-occurring Relationships
in Genes with Putative Splice Sites

In addition, we evaluated SeeSite in a setting where
the splice sites are unknown, and RNA-seq data is
needed to extract these putative junctions not con-
tained in the reference transcriptome. To identify their
potential splice sites, we obtained single-ended 75nt
RNA-Seq reads from the Brain tissue dataset of Illu-
mina’s Human BodyMap 2.0 project (GEO Accession
number GSE30611) and aligned them to the human
genome and transcriptome references using TopHat
(with default settings) [30]. Then, we removed 6,629
known splice junctions that were expressed in our
data, which represent about 70% of the 9,487 known
splice sites described earlier. Finally, we used HMM-
splicer (with default settings) [13] on the remaining
alignments to identify 2,690 pairs of novel splice sites
which represent both canonical and non-canonical
junctions in the aligned reads. This preprocessing of
RNA-seq data yields 100nt regions around putative
splice junctions suitable for input to SeeSite.

Similar results were observed on the the puta-
tive splicing data, consisting of 2,690 non-reference
splicing regions. SeeSite identified splice junctions in
2,600 (96%) of the 2,690 genes considered. The most
common splice sites, GT-AG, GC-AG, and AT-AC, are
found in 98.7%, 1.1% and 0.1% of human introns,
respectively. This is not surprising since similar results
have been reported on similar datasets by Dimon et

al. [13], Au et al. [2], and Trapnell et al. [30]. There
are also splice junctions that do not have GT-AG,
GC-AG or AT-AC splice sites, however, this was so
rare that we did not have a large enough set of
weak splice junctions to determine co-occurring rela-
tionships. ESEs that frequently occured in genes con-
taining a GT-AG splice junction included: GAGAAA,
AAAAGA, AAGAAA; each of these ESEs occurred
in less than 10% of the containing splice junctions
of different forms. Similarly, the ESEs in the exons
of the genes having splice junctions of the form GC-
AG or AT-AC were frequently one of the enhancers in
the following respective sets: {AAGCAG, CAGAAG}
and {ATGGAA, AAAGCT}. The sets of frequently
occurring ESEs for GT-AG, GC-AG and AT-AC were
disjoint, meaning no ESEs that co-occurred with one
splice site form also co-occurred with another splice
site form.

4.3 Practical Considerations: Memory and Time

We evaluated the memory and time requirements of
SeeSite. Its wall-time depends on the computing re-
sources available to the user since it is a multithreaded
application. For evaluation purposes we used four
threads, a setting that is suitable for most servers.
The memory requirements depend on a number of
factors, including size of exons, and number of genes
considered. SeeSite required a maximum of 32 GB
and 8 hours to complete on our benchmark dataset
consisting of 9,487 known splice sites from the human
genome (GRCh37 assembly) (see Table 2).

5 CONCLUSION

To our knowledge, SeeSite is the first tool that directly
identifies co-occurring relationships between splice
sites and ESEs. While there are numerous programs
that detect either splice sites or proximal enhancers
and silencers, the classification of co-occurring rela-
tionships from a computational perspective has been
more elusive until now. We believe that the intro-
duction of SeeSite will inspire future investigations
on co-occurring relationships between splice sites and
other regulatory elements (i.e. intron silencers and
exon silencers).

The results suggest the existence of several non-
canonical splice site patterns and demonstrates a
possible synergistic relationship between ESEs and
different classes of splice site patterns. Validation
experiments such as fluorescence-activated screens of
splicing reporters [32] are needed to resolve whether
the relationships detected by SeeSite are biologically
significant or simply spurious correlations detected in
the data. However, this is unlikely, given the strength
and frequency of a number of the patterns. Determin-
ing the exact biological relationship of these paired
splicing elements warrants further investigation.
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Splicing Pattern

Frequently occurring ESEs

Infrequently occurring ESEs

GAGARA (27%)
AAAAGA (24%)
AAGAAA (24 %)

GT (G/A) AGT|| (T/C) AG

AAGCAG (7%)
CAGAAG (2%)
ATGGAA (0%)
CAGAAG (4%)

AAGCAG (35%)

GCA(T/RA)G(G/T)|[(T/A)AC CAGAAG (34%)

GAGARAA (2%)
AAAAGA (2%)
ATGGAA (3%)
AAAGCT (5%)

ATGGAA (41%)

ATG (C/A) T (G/A) || (G/T)AC AAAGCT (31%)

AAGCAG (2%)
CAGAAG (3%)
AAAAGA (2%)

TABLE 1: Some examples that illustrate the co-occuring relationship between splice sites and ESEs that control splicing
expression. We searched for all possible ESEs in over 3000 weak splice sites of the form GT-AG, over 500 weak splice
sites of the form GC-AC, and over 100 weak splice sites of the form AT-AC. For each splice site pattern we listed the
ESEs that frequently occur with splice junctions of the corresponding form and infrequently occur with splice junctions
of other forms. The percentage of genes containing the corresponding ESE and weak splice site of the given form is given

in brackets.

Genome Number of splice sites  Time Memory
Human genome (GRCh37 assembly) 9,487 477 min. (approx. 8 hours) 32 GB
Arabidopsis (Columbia Reference) 9,231 491 min. (approx. 8 hours and 11 min.) 36 GB

TABLE 2: Running time and memory usage of SeeSite on a select number of gene of of the human and

Arabidopsis genomes.
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