IPSN 2021

MAY 18-21, 2021

NASHVILLE, TENNESSEE, USA

ExGSense Toward Facial Gesture Sensing with a Sparse Near-Eye Sensor Array

<u>Chen Chen</u>¹, Ke Sun¹, Xinyu Zhang² ¹Computer Science and Engineering ²Electrical and Computer Engineering Jacobs School of Engineering University of California San Diego

Background © Lux Interaction

JACOBS SCHOOL OF ENGINEERING Computer Science and Engineering

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Collaborations Through VR

- Enables a new forms of telepresence applications;
- Empowers professionals to virtually connect with one to another;

Immersive Data Analysis, (Rabaudo et. al., '20)

Training for Components Assembling (Rumii software)

Sense of Co-Presence is the Key!

• Capturing full face of remote collaborators enables one to perceive the non-verbal cures of the remote collaborators, yet challenging!

- Camera Based Solution (Inside or Outside of HMD);
 - Occlusions;
 - \$\$

- Camera Based Solution (Inside or Outside of HMD);
 - Occlusions;
 - \$\$
- Proximity & Pressure Based Solution;
 - Complicated hardware design;
 - Can only detect partial facial gestures;

- Camera Based Solution (Inside or Outside of HMD);
 - Occlusions;
 - \$\$
- Proximity & Pressure Based Solution;
 - Complicated hardware design;
 - Can only detect partial facial gestures;
- Interferometry and Tomography Based Solution;
 - Low sensing granularity;
 - Impacts from differences of underlying anatomical patterns across different users;

(Interferi, Iravantchi et. al., CHI '19)

- Biosignal Based Solution;
 - Eye activities detections using EOG;
 - Facial muscle related gestures detections using EMG;
 - Coarse grained emotion detections, bulky as well as complicated setup using EEG;

(J!NE Related, Ishimaru et. al., UbiComp '14, Rostaminia et. al. ETRA '19, IMWUT '19)

(AlterEgo, Kapur et. al., IUI '18)

(Emotiv EPOC '18)

ExGSense

• Sensing Modality: We used the near-eye biopotential sensors to detect full face expressions. To achieve this, we explore the paradigm of *indirect* sensing where the lower facial gestures can be detected by the transducers resting on the upper face;

ExGSense

- Sensing Modality: We uses the near-eye biopotential sensors to detect full face expressions. To achieve this, we explore the paradigm of *indirect* sensing where the lower facial gestures can be detected by the transducers resting on the upper face;
- Detection Framework: We propose a dual-branch multiview representation learning pipeline, which can explicitly exploit the sensor diversities across time-frequency-spatial domains. We further propose a simple re-calibration approach for adapting the pretrained model for different users;

ExGSense

- Sensing Modality: We uses the near-eye biopotential sensors to detect full face expressions. To achieve this, we explore the paradigm of *indirect* sensing where the lower facial gestures can be detected by the transducers resting on the upper face;
- Detection Framework: We propose a dual-branch multiview representation learning pipeline, which can explicitly exploit the sensor diversities across time-frequency-spatial domains. We further propose a simple re-calibration approach for adapting the pretrained model for different users;
- **Prototype & Evaluations:** We build a proof-of-concept prototype of ExGSense and conduct the user study to verify its ability to concurrently track the fine-grained upper face eye and lower face mouth gestures by fully leveraging the underlying facial anatomy patterns;

Preliminary

ElectroOculoGraphy (EOG)

- ~µV;
- Induced by eye movements;
- Can be decomposed to EOG-H and EOG-V;

Preliminary

ElectroOculoGraphy (EOG)

- ~µV;
- Induced by eye movements;
- Can be decomposed to EOG-H and EOG-V;

<u>ElectroMyoG</u>ram (EMG)

- ~mV;
- Induced by muscle contract and relax;
- Indirect Sensing: using transducers resting on the upper face to detect the lower face mouth gestures;
- 3 Muscle Groups:
 - Levator Labii Superioris (LLS);
 - Zygomatics Majors (ZYG);
 - Risorius (RIS);

2 Unwanted Noise:

- Inter-Person Variations;
- Inter-Session Variations;

Implementations

Data Acquisitions:

- OpenBCI Cyton Board;
- 8 16-bit ADC (TI ADS1299);
- X24 Gain;
- Stream data to host PC through BLE 4.0;
- Sampling Frequency f_s= 250Hz;

OpenBCI Cyton Bioprocessing Board

Implementations

Data Acquisitions:

- OpenBCI Cyton Board;
- 8 16-bit ADC (TI ADS1299);
- X24 Gain;
- Stream data to host PC through BLE 4.0;
- Sampling Frequency f_s= 250Hz;

OpenBCI Cyton Bioprocessing Board

Transducer:

- Disposal wet electrodes can reduce noise, yet are less comfortable and impractical for mobile applications;
- Remove the wet gels to enable the comfortable reusable electrodes with reasonable signal quality degradations;

Push In Button Connector

Transducer Arrangement

Indirect Sensing & Symmetric Design

- Indirect Sensing: detect the lower facial gestures by only leveraging the transducers resting on the upper face;
- Symmetricity: introduce spatial redundancies and minimize imperfect sensing performance;

Transducer Arrangement

Virtual Channel Measurements

- Physical Channel Measurements (Blue): Direct collected by DAQ;
- Virtual Channel Measurements (Pink): Computed algorithmically;

- 4 Participants;
- Eye Gestures: None, Blink, Gaze Up/Down/Left/Right;
- Horizontal Mouth Gestures: Small, Medium, Large;
- Vertical Mouth Gestures: Small Medium, Large;

Virtual Channel Measurements

Prototype

Front View w/ HMD

16

Algorithms – Finding Cut-Off Frequencies

- Goal: Find optimal frequency that separates EMG & EOG;
- Only use FFT to perform the feature significance test;
- (a b) p-value corresponding to each FFT bin at each channel;
- (c d) p-value corresponding to each frequency, averaged across all channels;
- •~25Hz;

Algorithms – Dual Branch Multi-View Classifications

- Channel & Global Encoders;
- Cross-Entropy Losses;
- Only the classification branch will be un-freezed for calibration purpose;
- PyTorch based implementation;

Sensing Events

• Emotion sensing and gesture detections are different;

d

- A Combinations of:
- 6 Eye Gestures [Green]:
- Neutral;
- Blinks;

a

- Gaze Looking Up;
- Gaze Looking Down;
- Gazing Looking Left;
- Gaze Looking Right;

b

- 7 Mouth Gestures [Blue]:
- Neutral;
- [A] Smile;
- [B] Mouth Open;
- [C]Kissy Mouth;
- [D] Tongue Touch Upper Teeth;
- [E] Raising Left Cheek;
- [F] Raising Right Cheek;

				-	
Index	Eye	Mouth	Index	Eye	Mouth
0	None	None	21	Gaze Right	В
1	Blink	None	22	Blink	С
2	Gaze Up	None	23	Gaze Up	С
3	Gaze Down	None	24	Gaze Down	С
4	Gaze Left	None	25	Gaze Left	С
5	Gaze Right	None	26	Gaze Right	С
6	None	А	27	Blink	D
7	None	В	28	Gaze Up	D
8	None	С	29	Gaze Down	D
9	None	D	30	Gaze Left	D
10	None	Е	31	Gaze Right	D
11	None	F	32	Blink	Е
12	Blink	А	33	Gaze Up	Е
13	Gaze Up	А	34	Gaze Down	Е
14	Gaze Down	А	35	Gaze Left	Е
15	Gaze Left	А	36	Gaze Right	Е
16	Gaze Right	А	37	Blink	F
17	Blink	В	38	Gaze Up	F
18	Gaze Up	В	39	Gaze Down	F
19	Gaze Down	В	40	Gaze Left	F
20	Gaze Left	В	41	Gaze Right	F

k

Single User Evaluations

- 10 participants;
- Train and test on the single user;
- The data of non-mixture gesture of each user is split into 70%, 10% and 20% for training, validation and testing;
- The model is train by 6 + 7 = 13 gestures;
- F1 score is used for balancing between precision and recall;

Eye Gestures Mouth Gestures

res All Gestures

Single User Evaluations

- 10 participants;
- Train and test on the single user;
- The data of non-mixture gesture of each user is split into 70%, 10% and 20% for training, validation and testing;
- The model is train by 6 + 7 = 13 gestures;
- F1 score is used for balancing between precision and recall;
- Findings:
 - Overall ~93% accuracy;
 - Competitiveness of dual-branch classification pipeline (reduce # of training examples from 6 X 7 = 42 to 6 + 7 = 13);
 - Sensitivity of mouth gesture detections when mixed with eye gestures (~98%);

User Independent Evaluations without Partial Calibrations

 Understand how ExGSense can be adapted to an "unseen" participants;

User Independent Evaluations without Partial Calibrations

- Understand how ExGSense can be adapted to an "unseen" participants;
- Leave one user out cross validation;

User Independent Evaluations without Partial Calibrations

- Understand how ExGSense can be adapted to an "unseen" participants;
- Leave one user out cross validation;
- ~80% for eye and ~78% for mouth;
- Low performance for mouth gesture B (mouth open);

Examples

• Real-time and continuous facial tracking and reconstructions;

- Real-time and continuous facial tracking and reconstructions;
- While transferring to new users, a small set of training samples are still required for model calibration purpose;

- Real-time and continuous facial tracking and reconstructions;
- While transferring to new users, a small set of training samples are still required for model calibration purpose;
- Continuous efforts on addressing multi-facet issues related to usability and incorporations into commercially available VR headset;

- Real-time and continuous facial tracking and reconstructions;
- While transferring to new users, a small set of training samples are still required for model calibration purpose;
- Continuous efforts on addressing multi-facet issues related to usability and incorporations into commercially available VR headset;
- A more diverse of participants;

Thank You!

Hope you enjoy our work! For more detail, please refer to our manuscripts!

Contact: chenchen@ucsd.edu

Background © Random 42