Small Space = No Space

Chris Calabro

July 10, 2007

Abstract

One might think that having a super constant amount of space that is much less than \(\lg \lg n \) is still more powerful than having no space at all, but this is not the case. We show that

\[
\text{SPACE}(lglglgn) = \text{SPACE}(O(1)) = \text{SPACE}(0) = \text{the regular languages}.
\]

First we show

\[
\text{SPACE}(\lg \lg \lg n) \subseteq \text{SPACE}(O(1)).
\]

Let \(M \) be a TM using space \(\leq \lg \lg \lg n \) and tape alphabet \(\Gamma \), and let \(L \) be its language. Let \(f(n) = \max_{x \in L \cap \Sigma^n} \text{space } M(x) \). If \(f \leq O(1) \), then we are done. (Actually this isn’t so obvious since we defined \(f \) in terms of strings that \(M \) accepts, but if \(M \) uses \(c = O(1) \) space on the strings in \(L \), then we can construct a machine \(M' \) that uses \(O(1) \) space on all strings by simulating \(M \) and rejecting if it tries to use more than \(c \) space.)

Else \(\forall n_0 \exists n \geq n_0 \forall m < n \ f(m) < f(n) \). I.e. for infinitely many \(n \), \(f(n) \) strictly dominates \(f(m) \) when \(m < n \). For an \(n_0 \) to be chosen later, choose \(n \geq n_0 \) so that \(\forall m < n \ f(m) < f(m) \). Let \(s = f(n) \) and choose \(x \in L \cap \Sigma^n \) so that \(M(x) \) uses space exactly \(s \).

Define the total state of \(M \) when its input tape head is in position \(i \) as the state and the contents of the work tape. Define a crossing sequence at \(i \) as the sequence of total states when the input tape head of \(M \) crosses from position \(i \) to \(i+1 \) or vice versa. Notice that no crossing sequence can have length \(> |Q||\Gamma|^s \) because otherwise \(M \) would loop, contradicting that \(M \) accepts \(x \).

So the number or crossing sequences at \(i \) is

\[
\leq (|Q||\Gamma|^s)^{|Q||\Gamma|^s+1} \leq 2^{2^{O(lg lg lg n)}} = 2^{(lg lg n)^O(1)} \ll n.
\]

We retroactively choose \(n_0 \) large enough so that the above inequality holds \(\forall n \geq n_0 \).

So \(\exists 1 \leq i < j \leq n \) s.t. the crossing sequence at \(i \) is the same as that at \(j \). Let \(y = x \) but with the substring at positions \([i, j) \) removed. So \(m = \def \ y < |x| \) and \(M \) accepts \(y \). In fact,

\[
\text{space } M(y) = \text{space } M(x) = f(n) > f(m) \geq \text{space } M(y),
\]
a contradiction. (To see the 1st equality, note that the space \(M \) uses is defined to be monotone w.r.t. time; or equivalently we could assume w.l.o.g. that \(M \) never writes a blank symbol.)

Next, \(\text{SPACE}(O(1)) \subseteq \text{SPACE}(0) \) holds since a constant amount of memory can be held in the state of a Turing machine.

Next we show that \(\text{SPACE}(0) \subseteq \text{the regular languages} \). Let \(M \) be a read-only TM with state set \(Q \). Here we will use a slightly different notion for the \(i \)th crossing sequence: it will include the sequence of states when the tape head of \(M \) is in either position \(i \) or \(i+1 \) and a note for each element in the sequence whether it represents the head being in position \(i \) or \(i+1 \). If on input \(x \) a crossing sequence has length \(> 2|Q| \), then \(M(x) \) does not halt. So \(M(x) \) accepts iff there are crossing sequences \(s_1, \ldots, s_{n-1} \) each of length \(\leq 2|Q| \) that are consistent with \(x \) and with each other and that halt in an accept state.

We construct an NFA \(N \) to decide whether such crossing sequences exist. \(N \) will scan \(x \) from left to right and guess a crossing sequence at each step, remembering the most recent 2 guesses to compare them for consistency. The first sequence must begin with the start state of \(M \). If some sequence has an accept state, then \(N \) will remember this and accept once it has seen a crossing sequence where the tape head does not move right, since this will signify that the entire path of the movement of the tape head of \(M \) has been determined.

To describe the algorithm that \(N \) uses to determine whether 2 adjacent crossing sequences are consistent is trivial but tedious, so we skip it.

Finally, that the regular languages are contained in \(\text{SPACE}(\lg \lg \lg n) \) is obvious.