Every NPC language is Self Reducible

Chris Calabro

May 10, 2004

A relation (not a language, contrary to the title) $R \subseteq (\Sigma^*)^2$ is poly-time self reducible iff \exists poly-time Turing machine M such that

$$\forall x \in L = \text{dom } R \ (x, M^L(x)) \in R.$$

If L is NPC, then there is a poly-time (in its first input) Turing machine V deciding a relation R such that $L = \text{dom } R$. We now show that R is self reducible.

First construct the auxiliary relation

$$R' = \{(x, \alpha, w) \mid (x, \alpha w) \in R\}.$$

Then $L' = \text{dom } R' \in \text{NP}$ and so $L' \leq_p L$. So \exists poly-time $f : \Sigma^* \rightarrow \Sigma^*$ such that

$$\forall x \in \Sigma^* \ (x \in L' \iff f(x) \in L).$$

The following machine, given oracle access to L, can find a witness for a given $x \in L$ in poly-time, thus showing that R is self reducible.

```plaintext
M^L(x) {
    if x \notin L
        return 'not in L'
    w \leftarrow \epsilon
    while \neg V(x, w)
        if f(x, w0) \in L
            w \leftarrow w0
        else
            w \leftarrow w1
    return w
}
```

This is not necessarily a downward self reduction since we may be reducing the problem instance x to a more complex problem instance after f is applied.