CSE 260 - Introduction to Parallel Computation

Topic 8: Benchmarks & Applications

October 25, 2001
Parallel Benchmarks

- **Microbenchmarks** measure one aspect of computer.
 - e.g. MPI all-to-all bandwidth.

- **Kernel benchmarks**: “inner loop” from important codes.
 - Linpack, NPB (NAS Parallel Benchmark) kernels, ...

- **PseudoApps**:
 - NPB pseudo apps, SPLASH (for multiprocessors), ...

- **Full applications**:
 - SPEChpg (hpg = high performance group = SPEC+Perfect)
 - SPEChpg96 includes seismic, cfd, molecular dynamics, ...

John McCalpin observes Linpack has .015 correlation with application performance
NAS Parallel Benchmarks (NPB)

- NAS = Numerical Aeronautics Simulation
- Developed by NASA to help choose what to buy.
- Five kernels and three pseudo apps.
- Widely used in parallel computation community.
- NPB 1 were “pencil & paper”
 - Specified by simple untuned serial code.
 - Vendors write code - few limits, except get right answer
- NPB 2 are MPI implementations.
 - Vendors can tune code, but must report how much.
LAPACK

• Evolved from Linpack and Eispack.

• Dense Linear Algebra:
 - Solve $Ax = b$ for x
 • A can be full, triangular, or symmetric forms
 - Least squares: choose x to minimize $|Ax - b|^2$
 - Eigenvalues: Find λ s.t. $\det(A - \lambda I) = 0$.
 - Singular Value Decomposition.
 - Decompositions: LU, QR, Cholesky, ...

• 600,000 lines of Fortran code
Basic Linear Algebra Subroutines (BLAS)

Called by LAPACK programs to do low-level stuff.

“Vanilla” implementations comes with LAPACK.

Vendors can supply well-tuned versions.

Levels:
- Level 1 for vector ops (DDOT, DAXPY, MAX...)
 - 1970’s: Got 10x performance improvement on IBM 370.
- Level 2 for matrix-vector operations
- Level 3 for matrix-matrix
 - 1989: Needed for computers with memory hierarchies.
LAPACK names

• Routines have 4- to 6-letter names: TFFOO
 - T is precision:
 Double, Single, Complex, Z (double complex)
 - FF is matrix structure:
 • GE = general (full rectangular)
 • TR = triangular, SY = symmetric, ...
 - OO is operation:
 • MM = matrix multiply, MV = matrix x vector
 • EV = eigenvalue, LS = least squares, ...

• Example: **DGEMM** is matrix-matrix product
ScaLAPACK: parallelized LAPACK

- **ScaLAPACK**
- **PBLAS**
 - parallel
- **BLACS**
 - communication subroutines
- **Message passing routines**
 - (MPI, PVM, ...)

- LAPACK
- BLAS

Multicomputer programs

Local programs
LU decomposition

\[
\begin{bmatrix}
4 & 3 & 2 \\
2 & 3 & 2 \\
8 & 2 & 4 \\
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{bmatrix} \times \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \times \begin{bmatrix}
8 & 2 & 4 \\
2 & 3 & 2 \\
4 & 3 & 2 \\
\end{bmatrix}
\]

"Partial pivot": Swap rows to maximize \(a_{11}\).

Subtract multiples of first row from other rows to get zeros in column 1.

(No swap needed here for \(a_{22}\)).

Now make rest of column 2 zeros.

\[A = P \times L \times U\]

The “P” is silent in (P) LU decomposition
LU decomposition

- Solving $Bx = y$ is easy when $B = P, L, \text{or } U$.

 Example: for $Lx = y$, first find x_1, then x_2, ...

- L and U can share storage originally occupied by A matrix.

- “Subtract multiples of one row from others” is $A' = A - (i\text{-th column of } L) \times (i\text{-th row of } U)$

 First step ... second ... third ...

Visualize as a pyramid
Parallelizing the LU pyramid

One-dimensional **block** decomposition

Problem: Load imbalance!
(e.g. \(P_1\) is idle much of the time)
Parallelizing the LU pyramid

1-D block cyclic decomposition

- Load balance is improved by assigning multiple slices to each processor.
- But block cyclic needs more rounds of communication.
- Compromise: 4 to 10 times as many slices as processors.
Parallelizing the LU pyramid

2-D block decomposition

• With 1-D, each processor communicates to P-1 others.
• 2-D: processors communicate to 2(\(P^{1/2}-1\)) others.
• 2-D has fewer rounds of communication too.
• 2-D requires communication for \textit{pivoting} (finding col min)

For small P (e.g. < 16), extra overhead and need to send both rows \textit{and} columns makes 2-D undesirable.
Parallelizing the LU pyramid

2-D block cyclic decomposition

Better load balancing.
Requires communication for pivot step
Other common algorithms

• **Finite Difference Methods**
 - Used for PDE’s with regular structure (like our project)

• **Finite Element Methods (FEM’s)**
 - Often to solve PDE’s (partial differential equations) with irregular structure.
 • Car crash simulations (LSDYNA)
 • Vibration analysis of buildings, bridges, airplanes

• **Fast Fourier Transforms (FFT’s)**
 - Given position of vibrating object at various times, determines frequencies of vibration (or vice versa).
Algorithmic Improvements

Comparison of Finite Difference Solvers

Diffusion problem, run on NCube-2
study by Shadid & Tuminaro at Sandia (1990-ish)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Float Ops (billions)</th>
<th>Time (secs)</th>
<th>MFlop/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobi</td>
<td>3820</td>
<td>2124</td>
<td>1800</td>
</tr>
<tr>
<td>Gauss-Seidel</td>
<td>1210</td>
<td>885</td>
<td>1365</td>
</tr>
<tr>
<td>Least Squares</td>
<td>259</td>
<td>185</td>
<td>1400</td>
</tr>
<tr>
<td>Multigrid</td>
<td>2</td>
<td>6.7</td>
<td>318</td>
</tr>
</tbody>
</table>
Applications run on parallel computers

- **CFD** = Computational Fluid Dynamics
 - Aerodynamics of airplanes, ink jet blobs, ...
 - Ocean and air circulation (weather & climate)
 - Petroleum reservoir modeling
 - Combustion chamber design
 - Plasma physics in stars and reactors

Use Finite Difference or Finite Element Methods

- **Structural Dynamics**
 - Car crash simulations
 - Building, bridge, or airplane vibration analysis

Usually use FEM’s
Applications (continued)

• **Signal processing**
 - Seismic analysis (e.g. to find underground oil)
 - Radar & sonar
 - Search for Extraterrestrial Intelligence (SETI)
 Usually use FFT’s

• **Molecular dynamics**
 (simulate forces on molecules, see how they move)
 - Protein folding
 - Drug action
 - Materials analysis (e.g. crack propagation)
 Need lots of random numbers
Applications (continued)

• **Electromagnetic simulation**
 - Antenna design
 - Determining if computer emits radio interference
 Sometimes use huge dense matrix calculations

• **Graphic and visualization**
 - Surface rendering
 - Volume rendering (for translucent objects)

• **Optimization**
 Maximize function subject to various constraints
 - Scheduling (airlines, delivery routes, materials flow, ...)
 Uses linear programming, combinatorial searches, ...
Applications (continued)

• **N-body problems**
 Simulate N objects affected by gravity or other forces
 - Galaxy evolution,
 “Fast Multipole” methods are good for this

• **Genomics, proteomics**
 - Determine if two proteins or DNA strings are similar
 - useful to trace evolution, determine function of genes,...
 - Determine likely structure of proteins

• **Information retrieval**
 - GIS data from satellites
 - Web searches
US Government Funding Agencies

• **NSF**: National Science Foundation
 - **CISE** (Computer and Information Science) directorate funds lots of parallel computing.
 - **NPACI** (SDSC at UCSD is lead site) and **NCSA** (UIUC is lead site) are large NSF centers.

• **DOE**: Department of Energy
 - Sponsors various national labs and the **ASCI** program
 - **LBNL** = Lawrence Berkeley National Lab (includes NERSC)
 - **LLNL** = Lawrence Livermore National Lab (Bay Area)
 - **LANL** = Los Alamos National Lab (New Mexico)
 - Sandia National Lab (New Mexico)
 - Argonne (U.Chicago), Oak Ridge (Tennessee), ...
More US Government Agencies

- **DOD**: Department of Defense
 - **DARPA**: Defense Advanced Research Projects Agency
 - Army, Navy and Air Force have funding orgs
 (Not easy to break into funding circles)

- **NIH**: National Institute of Health

- **NASA** (includes NASA Ames lab in Bay Area)

- **NSA**: National Security Agency

- **NOAA**: National Ocean and Atmospheric Adm.
 - Climate & Weather - includes NCAR Lab (Boulder)
Assignment for Next Tuesday

• Read Culler et al, LogP: Towards a Realistic Model of Parallel Computation.
 www.cs.berkeley.edu/~culler/papers/logp.ps

• Write down (to hand in at beginning of class) a question or comment you have on the paper. These will be used to stimulate discussion.