CSE 260 - Class #2

Larry Carter
carter@cs.ucsd.edu
www.cs.ucsd.edu/classes/fa01/cs260

Class time won't change
Office Hours: AP&M 4101
MW 10:00-11:00 or by appointment

Note slight change
First quizlet next Tuesday

• Vocabulary, concepts, and trends of parallel machines and languages

• 15 minutes - multiple choice and short answers
Reading Assignment

“High Performance Computing: Crays, Clusters, and Centers. What Next?“

Gordon Bell & Jim Gray

Microsoft Research Center Tech Report MSR-TR-2001-76

Recommended Talk

Google - Weds 9/26 (tomorrow) 11:00,
4301 APM
Some topics from of Class 1

• Why do parallel computation?
• Flynn’s taxonomy (MIMD, SIMD, ...)
• Not all parallel computers are successful
• Vector machines
• Clusters and the Grid
 - Need to add term Beowulf cluster
 • Do-it-yourself cluster of (typically) Linux PC’s or workstation (though Andrew Chien uses Windows NT).
 • Very popular recently
Scalability

An architecture is *scalable* if it continues to yield the same performance per processor (albeit on a larger problem size) as the number of processors increases.

- Scalable MPPs designed so that larger versions of the same machine (i.e. versions with more nodes/CPUs) can be built or extended using the same design.
A memory-centric taxonomy

• **Multicomputers**: Interconnected computers with separate address spaces. Also known as message-passing or distributed address-space computers.

• **Multiprocessors***: Multiple processors having access to the same memory (shared address space or single address-space computers.)

• * Warning: Some use term “multiprocessor” to include multicomputers.
Multicomputer topology

- Interconnection network should provide connectivity, low latency, high bandwidth

- Many interconnection networks developed over last 2 decades
 - Hypercube
 - Mesh, torus
 - Ring, etc.

Basic Message Passing Multicomputer
Lines and Rings

• Simplest interconnection network
• Routing becomes an issue
 - No direct connection between nodes
Mesh and Torus

- Generalization of line/ring to multiple dimensions
- 2D Mesh used on Intel Paragon; 3D Torus used on Cray T3D and T3E.
Mesh and Torus

- Torus uses wraparound links to increase connectivity
Hop Count

- Networks can be measured by *diameter*
 - This is the minimum number of hops that message must traverse for the two nodes that furthest apart
 - Line: Diameter = N-1
 - 2D (NxM) Mesh: Diameter = (N-1) + (M-1)
 - 2D (NxM) Torus: Diameter = ⌊N/2⌋ + ⌊M/2⌋
Hypercube Networks

- Dimension N Hypercube is constructed by connecting the “corners” of two N-1 hypercubes

- Interconnect for Cosmic Cube (Caltech, 1985) and its offshoots (Intel iPSC, nCUBE), Thinking Machine’s CM2, and others.
Fat-tree Interconnect

- Bandwidth is increased towards the root (but aggregate bandwidth decreases)

- Data network for TMC’s **CM-5** (a MIMD MPP)
 - 4 leaf nodes, internal nodes have 2 or 4 children

- To route from leaf A to leaf B, pick random switch C in the least common ancestor fat node of A and B, take unique tree route from A to C and from C to B

Binary fat-tree in which all internal nodes have two children
An Impractical Interconnection Topology

• Completely connected
 - Every node has a direct wire connection to every other node

N \times (N-1)/2 Wires
The MPP phenomenon

• In mid-90’s, all major microprocessor were the engine for some MPP (Massively Parallel Processing systems, vaguely meaning >100 procs).
 - These replaced early-90’s machines like CM-5 and KSR1 that had lots of proprietary hardware

• Examples:
 - IBM RS6000 & PowerPC -> SP1, SP2, SP
 - Dec Alpha -> Cray T3D and T3E
 - MIPS -> SGI Origin
 - Intel Pentium Pro -> Sandia ASCI Red
 - HP PA-RISC -> HP/Convex Exemplar
 - Sun SPARC -> CM-5
The MPP phenomenon

- Many of these have died or are dying out
 - IBM and SUN still doing well

- Being replaced by PC-based Beowulf clusters

- Next wave: clusters of playstations ????
Message Passing Strategies

• **Store-and-Forward**
 - Intermediate node receives entire message before sending it on to next link

• **Cut through routing**
 - Message divided into small “packets”,
 - Intermediate nodes send on packets as they come in
 - Concern: what happens if destination isn’t ready to receive a packet?
 • One possible answer: “Hot potato routing” – if destination isn’t free, send it somewhere else! Used in Tera MTA.
Latency and Bandwidth

Bandwidth: number of bits per second that can be transmitted through the network

Latency: total time to send one (“zero-length”) message through the network

- **Fast Ethernet**: BW = 10MB/sec (or 100 MB/sec for gigabit Ethernet), latency = 100usec.
- **Myrinet**: BW = 100’s MB/sec, latency = 20 usec.
- **SCI (Scalable Coherent Interface)** - BW = ~400 MB/sec latency = 10 usec. (DSM interface)

Latency is mostly time of software protocols
Shared Address Space Multiprocessors

4 basic types of interconnection media:
- **Bus**
- **Crossbar switch**
- **Multistage network**
- Interconnection network with **distributed shared memory (DSM)**
Bus architectures

- Bus acts as a “party line” between processors and shared memories
- Bus provides uniform access to shared memory (UMA = Uniform Memory Access) (SMP = symmetric multiprocessor)
- When bus saturates, performance of system degrades
- Bus-based systems do not scale to more than 32 processors [Sequent Symmetry, Balance]
Crossbar Switch

- Uses $O(mn)$ switches to connect m processors and n memories with distinct paths between each processor/memory pair

- UMA

- Scalable performance but not cost.

- Used in Sun Enterprise 10000 (like our “ultra”)
SUN Enterprise 10000

- We’ll use 64-node E10000 ("ultra") at SDSC.
 - 400 MHz UltraSparc 2 CPU’s, 2 floats/cycle.
 - UMA
 - 16 KB data cache (32 byte linesize), 4MB level 2 cache, 64 GB memory per processor
 - Front end processors ("gaos") are 336 MHz
 - Network: 10 GB/sec (aggregate), 600 ns latency
Multistage Networks

- Multistage networks provide more scalable performance than bus but at less cost than crossbar.
- Typically $\max\{\log n, \log m\}$ stages connect n processors and m shared memories.
- Memory still considered “centralized” (as opposed to “distributed”). Also called “dancehall” architecture.
Some Multistage Networks

• Butterfly multistage

• Shuffle multistage
Distributed Shared Memory (DSM)

• Rather than having all processors on one side of network and all memory on the other, DSM has some memory at each processor (or group of processors).

• NUMA (Non-uniform memory access)

• Example: HP/Convex Exemplar (late 90’s)
 - 3 cycles to access data in cache
 - 92 cycles for local memory (shared by 16 procs)
 - 450 cycles for non-local memory
Cache Coherency

If processors in a multiprocessor have caches, they must be kept coherent (according to some chosen consistency model, e.g. sequential consistency.)

The problem: If P1 and P2 both have a copy of a variable X in cache, and P1 modifies X, future accesses by P2 should get the new value.

Typically done on bus-based systems with hardware “snooping” – all processors watch bus activity to decide whether their data is still valid.

Multistage networks and DSM use directory-based methods.
MESI coherency protocol

Used by IBM Power PC, Pentiums, ...

Four states for data in P1's cache:

- **Modified**: P1 has changed data; not reflected in memory
 (Data is “dirty”. Other processors must invalidate copies.)
- **Exclusive**: P1 is only cache with data, same as in memory
- **Shared**: P1 and other proc’s have (identical) copies of data
- **Invalid**: Data is unusable since other proc has changed

P1 initiates bus traffic when:

- P1 changes data (from S to M state), so P2 knows to make I
- P2 accesses data that has been modified by P1 (P1 must
 write block back before P2 can load it).
Multiprocessor memory characteristics

UMA (uniform memory access) computer
- Also known as **SMP** (symmetric multiprocessor)
 - Sequent, Sun Enterprise 10000 (E10000)

NUMA = non-uniform memory access
- Cray T3E (uses remote loads & stores rather than cache coherency)
 - **COMA** = cache-only memory access
 - Kendall Square Research’s KSR1
 - **CC-NUMA** = cache coherent NUMA
 - Stanford DASH, SGI Origin
Multi-tiered computers

• Cluster of SMP’s.
 - or Multiprocessor Multicomputer
 - Each “node” has multiple processors with cache-coherent shared memory
 - Nodes connected by high-speed network.

• Used in the biggest MPP’s
 - IBM SP (e.g. Blue Horizon), Intel ASCI Red, ...
Message Passing vs. Shared Memory

• Message Passing:
 - Requires software involvement to move data
 - More cumbersome to program
 - More scalable

• Shared Memory:
 - Subtle programming and performance bugs

• Multi-tiered
 - Best(?) Worst(?) of both worlds
Other terms for classes of computers

• **Special Purpose**
 - Signal processors, Deep Blue, Sony gameboys & playstations

• **Bit Serial**
 - CM-2, DAP

• **COTS** (Commercial Off-The Shelf)

• **Heterogeneous** - different model procs
 - Grid, many clusters, partially upgraded MPP’s,...
Some notable architects

• Seymore Cray
 - CDC 6600, Cray Research vector machines, then moved to Cray, killed in auto accident.

• John Cocke
 - Many IBM supercomputers, prime inventor of RISC (though Patterson coined term), resisted MPP’s for years.

• Burton Smith
 - HEP, Tera MTA, recently acquired Cray Research, changed name to Cray Inc.
Cray Computers

• Cray is almost synonymous with supercomputer

• Superscalar-like machines (before term invented):
 - CDC 6600, 7600

• Multiprocessor vector machines without caches:
 • Cray 1, Cray X-MP, Y-MP, C90, T90, (J90)

• MPP’s (Massively Parallel Processors)
 - T3D, T3E (“T3” = 3-D Torus)

• Recent offerings:
 - SV1 (vector multiprocessor + cache), Tera MTA, assorted other servers via mergers and spinoffs.
Today’s fastest supercomputers include:
(http://www.netlib.org/benchmark/top500/top500.list.html)
(doesn’t include secret machines, nor commercial ones like google)

Sandia’s ASCI Red [9216 Intel Pentiums Pro’s] - first
to achieve 1 TFLOP/S speed (1997) (bigger now).

Livermore’s ASCI White (’2000) [8192 IBM SP
Power3’s] - today’s fastest computer.

Los Alamos’ ASCI Blue-Mountain (’98) - [48 128-proc
cc-NUMA SGI Origins, connected via HIPPI.]

ASCI (Advanced Strategic Computer Initiative) is a
big DOE (Department of Energy) project for
replacing nuclear tests by simulation

... and, after 5 more IBM, 2 Hitachi, 1 NEC, 1 T3E, ...
SDSC's Blue Horizon: 1152-proc IBM SP
World's 13th fastest computer (June 2001 listing)
Fastest computer available to US academics.
Biggest supercomputers

- Petaflop
- Teraflop
- Gigaflop
Selected Computers

- **SISD**
 - Scalar: *CDC 6600* (and 7600)
 - Vector: Cray *X-MP* (and Y-MP), *T90*

- **SIMD**
 - *IlliacIV*

- **MIMD**
 - Distributed Address Space
 - Vendor-assembled (*IBM SP*, Cray *T3E*, TMC *CM-5*)
 - Clusters (e.g. *Beowulf*)
 - Shared Address Space
 - UMA (*Sun E10000*, Cray/Tera MTA)
 - NUMA (*SGI Origin*)
 - Clusters of SMP’s (e.g. *ASCI red/white/blue*)

- Special purpose machines:
 - IBM Deep Blue
 - Sony Playstations

 e.g. Blue Horizon at SDSC
Possible Mini-studies

• Extend previous chart to earlier years, using some objective measure of performance.

• Make list of 10 most notable computers by some criterion (fastest, best cost/performance, most profitable, ...)