
Using SimPoint for Accurate and Efficient Simulation
Erez Perelman Greg Hamerly Michael Van Biesbrouck

Timothy Sherwood Brad Calder

Department of Computer Science and Engineering
University of California, San Diego

{eperelma,ghamerly,mvanbies,sherwood,calder}@cs.ucsd.edu

Abstract

Modern architecture research relies heavily on detailed pipeline
simulation. Simulating the full execution of a single industry
standard benchmark at this level of detail takes on the order of
months to complete. This problem is exacerbated by the fact that
to properly perform an architectural evaluation requires multiple
benchmarks to be evaluated across many separate runs. To ad-
dress this issue we recently created a tool called SimPoint that
automatically finds a small set of Simulation Points to represent
the complete execution of a program for efficient and accurate
simulation. In this paper we describe how to use the SimPoint
tool, and introduce an improved SimPoint algorithm designed to
significantly reduce the simulation time required when the simu-
lation environment relies upon fast-forwarding.

Keywords
SimPoint, Clustering, Simulation, Fast-forwarding, Sampling

1. SIMPOINT
Understanding the cycle level behavior of a processor run-

ning an application is crucial to modern computer architecture
research. To gain this understanding, detailed cycle level simu-
lators are typically employed. Unfortunately, this level of detail
comes at the cost of speed, and simulating the full execution of
an industry standard benchmark on even the fastest simulator
can take weeks to months to complete. This fact has not gone
unnoticed in the academic community, and several researchers
have started to develop techniques aimed at reducing simulation
time.

For architecture research it is often necessary to take one in-
stance of a program with a given input, and simulate its per-
formance over many different architecture configurations. The
same program binary with the input may be run hundreds or
thousands of times to examine how, for example, the effective-
ness of a given architecture changes with its size. Our goal in
creating SimPoint [1, 2] is to (1) significantly reduce simulation
time, (2) provide an accurate characterization of the full pro-
gram, and (3) to perform the analysis to accomplish the first
two goals in a matter of minutes. These goals are met by simu-
lating only a handful of intelligently chosen sections of the full
program. When these sections (simulation points) are carefully
chosen, it provides an accurate picture of the complete execu-
tion of the program and results in highly accurate estimations
of performance

The key to our approach is that for a given program and in-
put, the simulation points only need to be chosen once. This is
because we select them using a method that is independent of
any particular architecture configuration. The simulation points
are selected using a metric that is only based on the code that
is executed over time for a program/input pair. Once the sim-

Copyright is held by the author/owner.
SIGMETRICS’03, June 10–14, 2003, San Diego, California, USA.
ACM 1-58113-664-1/03/0006.

ulation points are chosen they can be used for the hundreds
or thousands of independent simulations that may be needed,
significantly reducing simulation time.

To pick the simulation points in [1, 2], we introduce the con-
cept of profiling Basic Block Vectors (BBV) as a way of cap-
turing the important behaviors of the program over time [1]. A
Basic Block Vector captures the relative frequency of the code
blocks executed during a given portion of execution. After pro-
filing a program with a particular input, we compare the basic
block vectors to see how similar they are to one another. In-
tervals of execution that execute the same code blocks with the
same frequency are grouped together into clusters using clus-
tering algorithms from machine learning. We found that sec-
tions of execution (represented by basic block vectors) that are
grouped into the same cluster have very similar behavior across
all the architecture metrics we have examined. Once we break
the program into clusters, we pick a single point from each clus-
ter (appropriately weighted) to serve as its representative. The
set of representative sections are where detailed simulation is
performed. Simulating only these simulation points provides an
accurate and efficient representation of the complete execution
of the program. All of the code to track the basic blocks, per-
form the analysis, do the clustering, and pick the simulation
points is distributed as part of our SimPoint tool.

1.1 Using SimPoint for Simulation
A run of the SimPoint tool begins by running each program

and input pair through the basic block tracker to generate the
basic block vectors. Currently we support gathering the vectors
with either ATOM or SimpleScalar. These vectors are then run
through the analysis portion of the tool, which does the cluster-
ing and generates the points for simulation. One input param-
eter worth mentioning is the granularity, or interval size. The
interval size determines how large of a chuck (in instructions)
the program’s execution should be divided into. Therefore, it
determines the length of simulation that will be required for
any simulation point used. In this paper we use a granularity
of 10 million instructions, whereas our prior work [2] used 100
million instructions per simulation point. In addition to setting
the granularity, it is also possible to set the ceiling on the max-
imum number of samples (clusters) you are willing to simulate,
and SimPoint will find the most representative simulation points
under those constraints. The output from our tool is a set of
points to be simulated and their corresponding weights (based
on the percent of execution that a given simulation point repre-
sents). This is used to weight the corresponding metrics sampled
for a simulation point, when combining the results together to
get an overall metric for simulating the program/input pair.

When using simulation points or sampling, the issue of how
to warmup the architecture structures needs to be dealt with.
The three approaches we have examined are using checkpoints,
stale state, and no warmup at all.

If the simulation environment supports checkpoints, then a
checkpoint can be made at the start of each simulation point.



This avoids fast-forwarding to each simulation point for each run
of the program/input. In addition, all of the simulation points
can even be run in parallel to obtain extremely fast results for
one particular program/input pair.

If the simulation environment does not support check-pointing,
then the simulation must fast-forward between the simulation
points. When large simulation intervals are used (e.g., 100 mil-
lion instructions) we found that no warmup is needed, since any
cold-start effects are insignificant in comparison to the effect
of execution. If no warmup is used, all of the large architecture
structures (e.g., cache, branch predictors) make use of a warmup
bit that indicates when the first time an entry is used. If it is
the first time, the access is assumed to be a hit or a correct pre-
diction. This a very simple method we added to SimpleScalar,
and provides fairly accurate warmup state, since the miss rates
for these structures are usually fairly low. For smaller interval
sizes (e.g., 10 million) we found that it is beneficial to use Stale
State or other proposed warmup techniques to reduce bias from
cold-start effects. Stale state is a method of not resetting the
architecture structures between simulation points, and instead
uses them in the state they were in at the end of the prior sim-
ulation point we just fast-forwarded from.

1.2 Early Simulation Points
In [2], the goal was to pick a single simulation point from each

cluster that best represents all the intervals of execution in that
phase. For simulation environments that do not support check-
pointing, it can require up to several days to fast-forward to the
latter part of the execution if that is where the simulation point
is located. Our goal is to find early simulation points to signif-
icantly reduce time spent fast-forwarding while still accurately
representing the overall execution of the program.

If we consider a simulation environment where multiple points
can be simulated one after the other (a single run is done through
the program and detailed simulation is interleaved with periods
of fast-forwarding), then the last simulation point in program
execution order will determine the simulation time. Our Early
SimPoint algorithm focuses on choosing a clustering that is both
representative of the program’s execution and has some feasible
simulation points early in the program for all clusters (if possi-
ble). This might not be achievable for all program’s, since an
important phase of execution may truly only appear at the end
of the program’s execution. We therefore give priority in our al-
gorithm towards still making sure that the clustering represents
the overall execution of the program. Once the early clustering
is performed, we choose a representative simulation point early
in the execution from each cluster.

Figure 1 shows the percent error in IPC using simulation
points from [2], and Early simulation points. The error is calcu-
lated by comparing the estimated error using the different sam-
pling techniques, to the IPC found doing detailed simulation of
all the programs to completion. The simulation points from [2]
assume perfect warmup, and are collected with interval sizes of
100 million. For the Early results, we used an interval size of 10
million, and each program had less than 30 simulation points.
The early simulation points use stale state as described above
to reduce bias from cold-start effects. The results show that the
early simulation points have a slightly higher error rate, 3.5% on
average, over the 2.1% error from the original simulation points
from [2].

In terms of simulation time, Figure 2 shows the number of
instructions required to fast-forward for these simulation tech-
niques. Here the benefit of using early simulation points over
the former simulation points is clearly seen. The results show

applu
apsi
art
equake
lucas
m

esa
m

grid
sixtrack
sw

im
w

upw
ise

bzip2
crafty
gap
gcc
gzip
perl
vortex
vpr
A

vg
M

ax

0

5

10

%
 E

rr
o

r 
IP

C

SimPoint
Early SimPoint

Figure 1: IPC relative error for the Original SimPoint
and Early SimPoint algorithms.

applu
apsi
art
equake
lucas
m

esa
m

grid
sixtrack
sw

im
w

upw
ise

bzip2
crafty
gap
gcc
gzip
perl
vortex
vpr
A

vg

0

100

200

300

400

500

B
ill

io
n

 In
st

s

SimPoint
Early SimPoint

Figure 2: Number of instructions to fast-forward for
simulation.

that using early simulation points reduces simulation time more
than 15 times over the prior SimPoint algorithm in [2].

Summary: Even on the fastest cycle level simulators, sim-
ulating a single minute of real time can take 50 days. Even
doing very simple emulation of a program for the purpose of
fast-forwarding can take on the order of days. SimPoint is a
powerful, available, and easy to use tool for attacking this prob-
lem. It requires little or no modification of most cycle level sim-
ulators used today, and only needs to be run once per program
input pair to pick the simulation points. SimPoint will perform a
fully automated analysis of a profile to determine where to best
spend limited simulation program analysis resources, and our
new Early SimPoint technique makes the approach even faster
on simulators without support for check-pointing. Using Sim-
Point we have found errors always to be less than 8.4%, and
even with Early SimPoint the error does not go above 12.2%.
Early SimPoint has the benefit that the average fast-forwarding
amount is reduced from 167 billion instructions to less than 11
billion instruction.

This work was funded in part by NSF CAREER grant No. CCR-
9733278, Semiconductor Research Corporation grant No. SRC-
2001-HJ-897, and an equipment grant from Intel.

2. REFERENCES
[1] T. Sherwood, E. Perelman, and B. Calder. Basic block

distribution analysis to find periodic behavior and simulation
points in applications. In International Conference on Parallel
Architectures and Compilation Techniques, September 2001.

[2] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior. In
10th International Conference on Architectural Support for
Programming, October 2002.


