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Abstract

SimPoint is a technique used to pick what parts of the pro-
gram’s execution to simulate in order to have a complete pic-
ture of execution. SimPoint uses data clustering algorithms
from machine learning to automatically find repetitive (sim-
ilar) patterns in a program’s execution, and it chooses one
sample to represent each unique repetitive behavior. Together
these samples represent an accurate picture of the complete
execution of the program. SimPoint is based on the k-means
clustering algorithm; recent work proposed using a differ-
ent clustering method based on multinomial models, but only
provided a preliminary comparison and analysis.

In this work we provide a detailed comparison of us-
ing k-means and multinomial clustering for SimPoint. We
show that k-means performs better than the recently proposed
multinomial clustering approach. We then propose two im-
provements to the prior multinomial clustering approach in
the areas of feature reduction and the picking of simulation
points which allow multinomial clustering to perform as well
as k-means. We then conclude by examining how to poten-
tially combine multinomial clustering with k-means.

1 Introduction

As a program executes its behavior often changes. These
changes are not random, but rather are often structured as se-
quences of a small number of recurring behaviors, which we
term phases. This structured behavior can be of great benefit
as it allows us to intelligently sample a programs execution,
as long as these recurring phases can be found, without per-
forming full cycle-accurate simulation. This is accomplished
by identifying each of the repetitive behaviors and then taking
only a single sample of each behavior to serve as the repre-
sentative of that behavior. All of these representative samples
taken together should approximate the complete execution of
the program. This is the underlying philosophy of the tool
called SimPoint [24, 25, 20, 2, 16, 15].

SimPoint intelligently chooses a very small set of sam-
ples called Simulation Points that, when simulated and
weighted appropriately, provide an accurate picture of the
complete execution of the program. Simulating in detail only
these carefully chosen simulation points can save hours of
simulation time over random statistical sampling, while still
providing the accuracy needed to make reliable decisions
based on the outcome of the cycle level simulation.

The SimPoint approach uses the k-means clustering al-
gorithm for finding the phases of a program. In the machine
learning community the k-means algorithm is a time-proven
technique which groups together data points into clusters
based on their spatial locality to one another. Recent work
by Sanghai et al. [22] proposed using multinomial mixture
models instead of k-means for the clustering. They reported
results for 8 SPEC benchmarks and found that their multi-
nomial approach resulted in a similar error rate, but fewer
simulation points.

In this work, we evaluate this prior multinomial approach
for all of the SPEC benchmarks on all of the inputs. To
perform this evaluation Sanghai et al. [22] were gracious
enough to provide us with the code they used for their KDD
paper. We found that the prior multinomial algorithm [22]
resulted in higher max error rate and slightly higher aver-
age error rates, while using more simulation points than k-
means. Even so, we see promise in their approach. We there-
fore focused on improving the prior multinomial clustering
algorithm, and found two areas of improvement. The first
improvement focuses on a better approach for reducing the
dimensionality of the data for use with multinomial cluster-
ing. The second improvement focuses on an improvement
for picking simulation points. With these improvements we
are able to achieve similar error rates with a slight improve-
ment in the number of simulation points using multinomial
clustering over k-means. Finally, we examine a heuristic for
choosing when to use the multinomial model or k-means for
clustering, based upon how well the multinomial centers are
represented by their corresponding simulation points, which
we call ‘purity’.

The remainder of the paper is laid out as follows. First,
we define phase behavior and describe its related work in
Section 2. Section 3 describes in depth the multinomial ap-
proach as proposed in [22]. Section 4 presents our two main
optimizations over the prior approach. Section 5 compares
the performance of the prior and our optimized multinomial
approaches with that of SimPoint. We also propose a heuris-
tic for choosing which clustering method to use for a pro-
gram/input in this section, and provide results that validate
the approach. Our findings are summarized in Section 6.

2 Defining Phase Behavior and Related Work

As described in prior work [23], program behaviors change
over time on many different time scales, and even at a large
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time scale one can find repeating behaviors. A program
may have stable behavior for billions of instructions and then
change suddenly. In addition to performance, we have found
for the SPEC 95 and 2000 programs that the behavior of all
of the architecture metrics (branch prediction, cache misses,
etc.) tend to change in unison, though not necessarily in the
same direction [23, 25]. These corresponding changes are
due to underlying changes in program execution, and can re-
sult in tremendous changes across a variety of architectural
metrics.

2.1 Phase Vocabulary
The underlying methodology used in this work is the ability
to automatically identify these underlying program changes
by grouping a program’s execution into phases without rely-
ing on architectural metrics to identify the phases. To ground
our discussion in a common vocabulary, the following is a list
of terms we use to describe the analysis performed by Sim-
Point, and their definitions.

• Interval - A section of continuous execution (a slice in
time) of a program. All intervals are assumed to be
non-overlapping, so to perform our analysis we break a
program’s execution into contiguous non-overlapping in-
tervals. The length of an interval is often defined as
the number of instructions committed during that interval
(e.g., interval lengths of 1, 10, or 100 million instructions
were used in [20]). SimPoint 3.0 supports both fixed-
length intervals (all intervals have the same length) and
variable-length intervals (VLIs), which allows different
intervals to account for different amounts of executed in-
structions [14].

• Phase - A set of intervals within a program’s execution
with similar behavior. A phase can consist of intervals that
are not temporally contiguous, so a phase can re-appear
many times throughout execution.

• Similarity - How close the behavior of two intervals are
to one another as measured across some set of metrics.
Well-formed phases should have intervals with similar be-
havior across various architecture metrics (e.g. IPC, cache
misses, branch misprediction).

• Frequency Vector - Each interval is represented by a fre-
quency vector, which represents the program’s execution
during that interval. The most commonly used frequency
vector is the basic block vector [24], which represents how
many times each basic block is executed in an interval.
Frequency vectors can also be used to track other code
structures [16] such as all branch edges, loops, procedures,
registers, opcodes, data, or program working set behavior
as long as tracking usage of the structure provides a sig-
nature of the program’s behavior.

• Similarity Metric - Similarity between two intervals is cal-
culated by taking the distance between the corresponding
frequency vectors from the two intervals. SimPoint de-
termines similarity by calculating the Euclidean distance
between the two vectors.

• Phase Classification - Groups together intervals into
phases with similar behavior, based on a similarity met-
ric. Phase classification is applied to a program binary
running a particular input (a binary/input pair).

2.2 Similarity Metric - Distance Between Code Signa-
tures

SimPoint represents intervals with frequency vectors. A fre-
quency vector is a one dimensional array, where each ele-
ment in the array tracks usage of some way to represent the
program’s behavior. We focus on code structures, but a fre-
quency vector can consist of any structure (e.g., data working
sets, data stride access patterns [16]) that may provide a sig-
nature of the program’s behavior. A frequency vector is col-
lected for each interval. At the beginning of each interval we
start with a frequency vector containing all zeros, and as the
program executes, we update the current frequency vector as
structures are used.

A common frequency vector we have used is a list of
static basic blocks [24] (called a Basic Block Vector, or
BBV), which we also use in this paper. If we are tracking
basic block usage with frequency vectors, we count the num-
ber of times each basic block in the program has been en-
tered in the current interval, and we record that count in the
frequency vector, weighted by the number of instructions in
the basic block. The intuition behind this is that the behavior
of the program at a given time is directly related to the code
executed during that interval [24]. We use the basic block
vectors as signatures for each interval of execution: each vec-
tor tells us what portions of code are executed, and how fre-
quently those portions of code are executed. By comparing
the BBVs of two intervals, we can evaluate the similarity of
the two intervals. If two intervals have similar BBVs, then
the two intervals spend about the same amount of time in
roughly the same code, and therefore we expect the behavior
of those two intervals to be similar.

To compare two frequency vectors, SimPoint 3.0 uses
the Euclidean distance, which has been shown to be effec-
tive for off-line phase analysis [25, 20]. The Euclidean dis-
tance is calculated by viewing each vector as a point in D-
dimensional space, and calculating the straight-line distance
between the two points.

2.3 Using k-Means for Phase Classification
Clustering divides a set of points into groups, or clusters,
such that points within each cluster are similar to one an-
other (by some metric, usually distance), and points in dif-
ferent clusters are different from one another. The k-means
algorithm [17] is an efficient and well-known clustering al-
gorithm which we use to split program behavior into phases.
The k in k-means refers to the number of clusters (phases)
the algorithm will search for.

The following steps summarize the phase clustering al-
gorithm at a high level. We refer the interested reader to [25]
for a more detailed description of each step.
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1. Profile the program by dividing the program’s execution
into contiguous intervals, and record a frequency vector
for each interval.

2. Reduce the dimensionality of the frequency vector data
to a smaller number of dimensions using random linear
projection.

3. Run the k-means clustering algorithm on the reduced-
dimension data for a set of k values.

4. Choose from among these different clusterings a well-
formed clustering that also has a small number of clusters,
using a threshold on the Bayesian Information Criterion
(BIC). The BIC [19] gives a measure on how well a clus-
tering fits a set of data.

5. Select the simulation points for the chosen clustering. For
each cluster (phase), we choose one representative interval
that will be simulated in detail to represent the behavior of
the whole cluster. By simulating only one representative
interval per phase we can extrapolate and capture the be-
havior of the entire program. To choose a representative,
SimPoint picks the interval in each cluster that is closest to
the centroid (center) of each cluster. Each simulation point
also has an associated weight, which reflects the fraction
of executed instructions that cluster represents.

6. With the weights and the detailed simulation results of
each simulation point, we compute a weighted average for
the architecture metric of interest (CPI, miss rate, etc.).
This weighted average of the simulation points gives an
accurate prediction of the metric for the complete execu-
tion of the program/input pair.

2.4 Related Work on Phase Analysis
Several other researchers have worked on phase analysis, and
we review some of the related work here. The recurring use
of different areas of memory in a program was first noted by
Denning and Schwarz [5] and was formalized as the idea of
working sets. While working sets have driven the develop-
ment of caches for decades, recently many of the more subtle
implications of recurring behaviors have been explored by
researchers in the computer architecture community.

Balasubramonian et al. [1] proposed using hardware
counters to collect miss rates, CPI and branch frequency in-
formation for every 100,000 instructions. They used these
miss rates and the total number of branches executed for
each interval to dynamically evaluate the program’s stability,
which they then used to guide dynamic cache reconfiguration
to save energy without sacrificing performance.

Dhodapkar and Smith [6, 7, 8] found a relationship
between phases and instruction working sets, and showed
that phase changes occur when the working set changes.
They proposed performing dynamic reconfiguration of multi-
configuration units in response to phase changes indicated by
working set changes. Through a working set analysis of the
instruction cache, data cache and branch predictor they found
methods to save energy.

Hind et al. [10] provided a framework for defining and
reasoning about program phase classifications, focusing on
how to best define granularity and similarity to perform phase
analysis.

Isci and Martonosi [11, 12] have shown the ability to
dynamically identify the power phase behavior using power
vectors. Deusterwald et al. [9] used hardware counters and
other phase prediction architectures to find phase behavior.

These related methods offer alternative techniques for
representing programs for the purpose of finding phase be-
haviors. They each also offer methods for using the data to
find phases. Our work on SimPoint frames the problem as
a clustering problem in the machine learning setting, using
data clustering algorithms to find related program behaviors.
This problem is a natural application of data clustering, and
works well.

3 Multinomial Clustering

In this section we describe in detail the approach used in [22]
to perform multinomial clustering and the choosing of simu-
lation points.

3.1 Overview of Multinomial Clustering
A multinomial model defines the probability of a vector of
counts of d mutually exclusive events that happen over time.
For example, if d = 3, then there are three mutually exclusive
events which can happen, and we can use a vector to repre-
sent how many times each of these events happen over a pe-
riod of time. So if the vector contains the values (30, 20, 25),
then over 75 trials the first event happened 30 times, the sec-
ond event happened 20 times, and the third event happened
25 times, though the order in which the events happened is
not captured. This model appears to fit well with the con-
cept of a frequency vector, e.g. a basic block vector, which
is a count of mutually exclusive execution paths over a time
interval.

Rather than using just one multinomial probability
model, we can combine several of them to create a mixture
of multinomials. This way, multiple parts of the probability
space can be covered with different models. However, we
must learn an appropriate set of parameters for each multino-
mial in the mixture using clustering. The multinomial mix-
ture uses a set of k multinomial models (which we also call
centers in a clustering context), each of which represents a re-
gion of high probability. That is, a multinomial model should
represent a cluster of frequency vectors. The proportion of
frequency vectors represented by the multinomial model is
kept track of by an overall weight associated with the model,
called a prior probability. This weight represents the percent
of vectors that are accounted for by the multinomial model.
Each model represents all d dimensions of the clustered data,
and each dimension for a multinomial model represents the
probability of that dimension occurring across all of the vec-
tors, weighted by the amount that each vector belongs to the
cluster.
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The soft-assignment clustering model considers each
clustered vector to be represented by all k clusters, where
each cluster represents some proportion of the vector. This
is formalized as a set of k probabilities for each vector; these
probabilities come naturally out of the EM clustering algo-
rithm for multinomials. These probabilities can be used to
assign a vector to a cluster, by choosing the cluster with
the highest probability of generating that vector. This is the
method the authors of [22] use to assign vectors to clusters.

3.2 Feature Reduction and Multinomial Representation
of Data

Each clustered vector using a multinomial mixture is a vec-
tor of d counts. Those counts represent the number of times
one of d mutually exclusive events has happened during a
time interval. This is very appropriate for representing a fre-
quency vector, where each element is the count of the num-
ber of times a basic block has executed (in the case of ba-
sic block vectors). However, since d may be thousands or
even millions, we need to reduce the dimensionality to make
clustering feasible. In particular, we need to find a lower-
dimension representation of the data. Following earlier work
in SimPoint and text-based machine-learning, the prior ap-
proach for multinomial clustering used random linear pro-
jection to reduce the dimension of the data. Random linear
projection consists of constructing a random projection ma-
trix, which is then used to project all the original data down
to a lower-dimensional representation.

One must be careful in constructing the random projec-
tion matrix so that it does not produce negative numbers in
the resulting projected data. We cannot have negative num-
bers in the resulting data because the multinomial probability
model is applicable only to vectors of non-negative numbers.
This makes sense, since it is not clear what a negative count
of some event occurring would mean. Upon consultation
with the authors of the [22], they have improved their ran-
dom matrix projection to be the following. Their approach
performs the feature reduction by using a projection matrix
randomly generated from just 0 and 1s.

In previous work, we have chosen to project to 15 dimen-
sions using SimPoint with k-means, and have found that this
is an adequate number of dimensions for capturing phase be-
havior. Sanghai et al. [13] found this to be inadequate for
some programs using multinomial clustering. Thus we use
their heuristic for choosing the number of projected dimen-
sions depending on the original number of dimensions, which
we list here.

original dimension projected dimension
< 2000 15

2000 − 9999 50
10000 − 19999 75

≥ 20000 100

Once we have a projection matrix, we can apply it to the
frequency vector data to obtain a lower-dimensional version.
If the frequency vector data is represented as a matrix X of
n rows (vectors) by d1 columns (original dimension), then

we construct a projection matrix P of size d1 rows by d2

columns (low dimension). Then the projected frequency vec-
tors are found with a matrix multiplication: X ′ = XP . The
projected data X ′ will have n rows (vectors) and d2 columns
(dimensions). Since X is usually sparse (and P may be
sparse), there are efficient ways of computing this without
resorting to using every element in X and P .

After projection, we have a low-dimensional set of vec-
tors. The prior approach [22] then used these vectors as-is in
the multinomial clustering approach we describe next.

3.3 Multinomial Clustering Approach Details

The prior work used the standard multinomial clustering al-
gorithm, which we describe in detail in this section.

The multinomial probability model assigns a probabil-
ity to a set of d mutually-exclusive events occurring in any
order. This set of events is represented by a vector v =
(v1, v2, . . . , vd) of counts of the number of times each event
has happened. For example, a coin flip could represent two
events: a head or a tail, so d would be 2. If we count the
number of heads and tails over 8 flips, there may be 5 heads
and 3 tails. For our example, v = (5, 3). The probability
of all the events is determined by a vector of d parameters
c = (θ1, θ2, . . . , θd), which represent the probability of each
event happening. In our example, if the coin is fair, it would
be the case that θ1 = θ2 = 0.5. The probability of all the
events occurring according to the multinomial model is given
by

Pr(v|c) =
(
∑d

i=1 vi)!∏d
i=1 vi!

d∏
i=1

θvi

i

where θi ≥ 0 and
∑d

i=1 θi = 1.
The left (fractional) part of this equation is the normal-

ization which allows the events to occur in any permutation
order. For example (using our coin example again), there
are many ways that we could have obtained 5 heads (H) and
3 tails (T): HHHHHTTT, TTTHHHHH, THTHTHHH, etc.
This normalization counts the possible number of permuta-
tions of these events, since any of them may have occurred,
ensuring that the sum of the probability over all vectors v is
equal to 1.

The right (product) part of this equation gives a proba-
bility of each of the sub-events occurring. Continuing our
coin flip example, if v1 = 5 is the number of heads, then
θv1
1 = 0.55 is the probability of getting 5 heads in 5 flips,

which needs to be normalized by the process described in the
former paragraph.

In this work, the vectors v are fixed and the parameters
c are what we will be estimating through the Expectation-
Maximization algorithm. We use one multinomial model
to represent one cluster, so there may be a set of k clusters
(multinomials) that are summed to describe all the data. The
probability of a d-dimensional vector v according to the mix-
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ture of k multinomials is

Pr(v) =
k∑

j=1

Pr(v|cj)Pr(cj)

Here cj is the vector of d probabilities for cluster j and
Pr(v|cj) is the multinomial probability as defined above.
The term Pr(cj) is the prior probability of cluster j, which is
related to the size of cluster j. The sum of prior probabilities
over all k clusters is 1. This Pr(v) is the global probability
of vector v belonging to the mixture of multinomials, where
the probability of v belonging to each cluster is weighted by
the probability of the cluster and summed over all clusters.

To create a mixture of multinomial models, Sanghai
et al. [13] used the Expectation-Maximization (EM) algo-
rithm [4], which is a popular iterative algorithm that is much
like the k-means algorithm. The algorithm begins with a ran-
dom setting of the probabilities in each multinomial model
and each cluster weight. In the following, x i means the ith
vector in a set of vectors. So xi is a vector having d dimen-
sions, which was v above. Then it proceeds by iterating two
steps:

• E-step: calculate the probability Pr(cj |xi) using Bayes’
rule (see below) for each cluster cj and each vector xi.
This expectation value represents the probability that clus-
ter cj generated vector xi, or the probability that vector xi

belongs to cluster cj .
• M-step: update the d probabilities in each multinomial

model, and each of the k weights, so that they give the
maximum probability to the data. This step depends on
the expectation values computed in the E-step. For cluster
cj , the probabilities (θ1, . . . , θd) are updated by

θd =
∑n

i=1 Pr(cj |xi)xid + 1∑n
i=1 Pr(cj |xi) + d

Pr(cj) =
∑n

i=1 Pr(cj |xi) + 1
n + k

We add 1 to each numerator and the appropriate amount to
the denominator so that we avoid zero probabilities; this
is a standard technique known as Laplace smoothing [21].

The EM algorithm converges once there is little change to
the model in the M-step, or equivalently when the likelihood
(defined below) does not change much between iterations.

The equation for Pr(cj |xi) comes from Bayes’ rule:

Pr(cj |xi) =
Pr(xi|cj)Pr(cj)

Pr(xi)

where Pr(cj) is the prior probability of cluster cj , and
Pr(xi|cj) is the multinomial probability assigned to vector
xi by the multinomial that is associated with cluster cj . As
indicated earlier, Pr(xi) can be computed as the sum over
all numerators in the above equation. The output of the EM
algorithm is a set of k multinomial models (the cj’s) and their
weights (prior probabilities, the Pr(cj)’s).

3.4 Choosing the number of clusters with the BIC
One issue that must be addressed in clustering is the number
of clusters that should be used to cluster the data. The more
clusters that we choose, the more accurately we can repre-
sent the entire set of vectors that are clustered. However, in
this application, the number of clusters chosen, k, is the num-
ber of simulation points picked. So this directly impacts the
amount of simulation time required for each program. There-
fore, we want a small number of clusters so that simulation
time will be low, but we want a sufficient number of clusters
to accurately capture the diversity that is represented in the
program.

The prior k-means approach with SimPoint addressed
this problem for multinomial clustering by performing a
search over many values of k. In particular, for program in-
tervals of 100 million instructions, we searched from k = 1
to 15. After performing all these clusterings, we must choose
a single best k that fits the data well but does not have too
many clusters. To do this, we score each clustering using
the Bayesian Information Criterion (BIC) [25]. The BIC is
a penalized likelihood which measures how well a clustering
model fits a set of clustered vectors. The BIC for a multino-
mial clustering model with clusters c1, . . . , ck is calculated
as:

BIC =
n∑

i=1

log

⎛
⎝

k∑
j=1

Pr(xi|cj)Pr(cj)

⎞
⎠ − kd − 1

2
log(n)

The term that contains the sum of logarithms is called the log-
likelihood, which tends to increase as we increase the number
of clusters. From this we subtract a penalty term that gives a
larger penalty for more clusters.

Because the EM algorithm begins with a random initial-
ization, it can find different solutions depending on the ini-
tialization. Therefore, for each k, the prior multinomial ap-
proach by Sanghai et al. [22] ran the clustering algorithm
multiple times from different random starting points (ran-
dom seeds). They performed 100 random initializations for
each k. Then as the representative for that k, they choose the
clustering that achieved the highest BIC score. When they
find the best clustering for each k, they then need to choose
one particular clustering. Thus they use the BIC score again,
choosing the clustering with the highest score across all the
k considered. This is the approach we also use in this work
for multinomial clustering.

3.5 Picking of Simulation Points
Once we have a set of multinomial models and prior proba-
bilities for the chosen k, for the purposes of SimPoint phase
analysis we need to pick a set of simulation points. Sanghai
et al. [22] proposed doing the following:

• Assign each projected vector a label according to the high-
est probability cluster (multinomial model) for that vector.
That is, give label j to vector xi for the highest value of
Pr(Cj |xi) over all multinomial models j. This is called
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hard assignment. This means that a vector is assigned to
the multinomial model (center) that most represents it.

• For each cluster cj , compute the centroid mj of all vectors
with label j. We define Cj as the set of indexes of all the
vectors that are assigned label j, and we compute mj as

mj =
1

|Cj |
∑
i∈Cj

xi

where |Cj | is the size of Cj (the number of vectors in the
cluster). Recall that cj is the vector of probabilities that
represents the mean of cluster j. Thus mj is the average
of all the vectors xi that have been assigned to belong to
cluster j, and this is the centroid of that cluster. Note that
cj and mj are similar, but they are different. The cj is
based on soft assignment calculations, and mj is based on
the hard assignment calculations (as in k-means).

• For each cluster cj , choose the vector that is closest to mj ,
as measured by Euclidean distance. Only choose from
vectors that have a label of j. The interval corresponding
to this vector will be the simulation point for that cluster.

With this method, there may be some clusters which have
no representative chosen, for there may be no vector for
which Pr(cj |xi) is highest at j. In other words, there can be
multinomial clusters that don’t represent any particular vec-
tor very well, and thus no vector belongs more to that cluster
more than to all other clusters. Therefore, even if we choose
k multinomial models, we may choose fewer than k simula-
tion points.

4 Improving Multinomial Clustering

In this section we describe two enhancements to the multino-
mial clustering approach in [22]. The two parts of the algo-
rithm we focus on for improvement are in the feature reduc-
tion and the picking of the simulation points.

4.1 Random Projection
We examine using our prior random projection approach
from SimPoint [25] to provide the feature reduction for multi-
nomial clustering. To construct a low-dimensional set of non-
negative valued frequency vectors using random linear pro-
jection, we can use random linear projection like usual. But
we construct the projection matrix with the constraint that no
entry in the projection matrix may be negative. This is done
by filling the projection matrix with uniform random num-
bers between 0 and 1. This corresponds to the types of pro-
jections we have used for SimPoint with k-means. However,
in our prior work we used random values between -1 and 1.

After projection, we have a low-dimensional set of vec-
tors. Previous work [22] has used these vectors as-is, but our
approach normalizes the vectors so that they sum to 1, and
then multiplies by a scaling factor (e.g. 10,000). We normal-
ize the vectors because we are dealing with fixed-length inter-
vals, and we want each vector to represent the same amount

of time from the program execution. Also, the magnitude of
the sum of the vector has an impact on the probabilities given
by the multinomial model, and after projection we may have
vectors with very different sums. Therefore, it makes sense
to normalize the vectors. This is the first important change
we examine over the prior technique.

After we perform normalization, we need to scale the
vectors for two reasons. The most important is that the values
of a vector being used in a multinomial model are supposed
to represent a count. If we simply normalize them to sum to
1, then all elements are within the range of 0 to 1, so none
of them really represents a count. The second reason is that
data x of small magnitude will have high probability in ev-
ery multinomial model, since θx goes to 1 as x goes to 0, for
all θ > 0. Thus the clustering algorithm will not be sensi-
tive enough to changes in the data. In other words, for every
vector, every multinomial model will give high probability to
that vector, so that a vector will belong about equally to all
multinomial clusters. Thus the vectors will not be divided up
well among clusters. Further, when the count x < 1, coun-
terintuitive things happen with the probabilities; for example,
0.50.5 > 0.50.8, while 0.55 < 0.58; so we really must scale
the counts beyond 1 to get appropriate probability behavior.

For the results in this paper, we examine applying this
normalization and scaling factor to both our random projec-
tion using a projection matrix filled with random numbers
between 0 and 1, and the prior approach of using random
projection using a projection matrix filled with only 0s and
1s.

4.2 Picking of Simulation Points
The prior approach [22] for choosing the simulation points
used the cluster assignment from the multinomial model. We
examine the following alternative method for choosing sim-
ulation points:

• Assign each projected vector a label according to the high-
est probability cluster (multinomial model) for that vector
(i.e. give label j to vector xi for the model j that gives the
highest value of Pr(cj |xi)).

• For each cluster cj , compute the centroid mj of all vectors
with label j, as shown in the previous section.

• For each interval, reassign the interval to the cluster cj

that it is closest to using the Euclidean distance between
the vector and the centroid mj . This step is new over what
was done in the prior approach [22], and it can change the
cluster memberships of some vectors, since membership
is now based on Euclidean distance rather than multino-
mial probability.

• For each cluster cj , choose the vector that is closest to mj .
Only choose from intervals that have a label of j. This
interval will be the simulation point for that cluster.

This method is the same as that of the previous section
except for the third step. We found that the third step is im-
portant because the prior approach [22] might not pick the
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interval that is closest to the centroids that are calculated in
the second step above. In step one above, the intervals were
assigned to a cluster based on its highest probability of be-
ing represented by that multinomial model. But the problem
is that in step two above, once all of the cluster centers are
calculated, the algorithm transitions from using a multino-
mial model to a Euclidean distance-based model. In doing
so, we should pick the interval that is closest to the centroid.
Whereas, the prior technique does not permit labels to change
from the multinomial labels in picking the simulation point.
This misses some opportunity to pick intervals closer to the
centroids with respect to the changed metric.

We also examined a third way of choosing the simulation
points, where we use the same model for clustering as the
model for choosing simulation points. In other words, we do
not use Euclidean distance at all. In this approach the simu-
lation point for each multinomial model (center) is chosen to
be the interval that maximizes Pr(xi|cj) for cluster cj . Due
to space we don’t provide results for this, since it had higher
error rates than the above approach and the prior approach.

5 Comparing Multinomial and K-Means Cluster-
ing

In this section we compare the results for using multinomial
clustering in comparison to k-means, and examine a purity
metric to determine when to possibly use the multinomial
over the k-means approach.

5.1 Methodology
We performed our analysis for the complete set of SPEC
2000 programs for multiple reference inputs using the Alpha
binaries on the SimpleScalar website. We collect all of the
frequency vector profiles using SimpleScalar [3]. To generate
our baseline fixed length interval results, all programs were
executed from start to completion using SimpleScalar. The
baseline microarchitecture model used in our prior work [20].
All processor performance data we present in this work as-
sumes perfect warmup. For the multinomial comparison of
the work in [22], Sanghai et al. generously shared their code
for us to replicate their approach.

5.2 Performance of Multinomial Improvements
For all of these results, we cluster basic block vectors using a
fixed length interval length of 100 million instructions. This
was the interval length used in the prior multinomial cluster-
ing paper [22]. All of the CPI error rates are calculated with
respect to simulating the baseline program/input from start
to end. For all of the results we use the same multinomial
clustering parameters as in [22], which examines clusters of
size 1 to 15 and uses the BIC to choose the best one, we use
100 random restarts, and we use the number of dimensions
as specified in the Table in Section 3.2.

Figures 1 and 2 show the relative error in CPI and the
number of simulation points found across several configu-
rations of the multinomial approach as well as standard k-
means SimPoint. The baseline multinomial approach (KDD

baseline) used in [22], is the leftmost entry in both plots. The
other multinomial configurations in this plot are based on the
following naming schema, and all start with the label “multi”:

• sparse: Projection matrix is based on the approach in [22]
described in Section 3.2, which is a matrix randomly filled
with 0s and 1s. The additional change is that the pro-
jected vectors are normalized and scaled by a factor of
either 1,000 or 10,000 as described in Section 4.1.

• uniform: Projection matrix is based on the SimPoint
method, where the values are uniformly picked between
0 and 1 as described in Section 4.1.

• same: The simulation points are picked from the cluster
assignments given by the multinomial clustering, as de-
scribed in Section 3.5.

• reassign: The simulation points are picked from reassign-
ing the intervals to their closest centroids derived from the
multinomial clustering of the data, as described in Sec-
tion 4.2.

The last field on each “multi” entry is the scaling coeffi-
cient (1,000 or 10,000) used on the projected and normalized
vectors, which was described in Section 4.1. The standard
SimPoint entries in this plot are labeled k-means-maxK-N ,
where N=6..10. For these configurations, we use the Sim-
Point 3.0 algorithm where the maximum number of clusters
considered, maxK, was set to each of the values of N and the
best clustering based on the BIC threshold was picked.

The results show that the KDD baseline has the high-
est maximum CPI error across the other configurations, but
maintains a comparable average CPI error. It also picks as
many or more simulation points as all the other configura-
tions. In comparison to the results presented in [22], there
were a few robustness issues with the clustering methodol-
ogy in the prior work which were confirmed by the authors
of that work. We got a version of their code with those issues
fixed. With those fixes the results for the 8 benchmarks ex-
amined in the prior work changed so that their multinomial
approach was no longer superior to k-means, sometimes it
was worse, sometimes it was better.

In adding the normalization and the scaling factor to the
feature reduction (multi-sparse results), we see a consistent
drop in the maximum CPI error rate and average CPI error
rates over the baseline KDD algorithm. The reason is that
these additions ensure that each interval has the same influ-
ence on the clustering algorithm, which has an impact on the
multinomial models generated as described in Section 4.1.
In using our uniform random projection (multi-uniform), we
actually see slightly worse error rates than when using the
multi-sparse approach, but we see a nice reduction in the
number of simulation points.

When adding in the re-assignment of clusters as de-
scribed in Section 4.2 (these are the results with reassign in
their name), we see a small decrease in CPI error rate for the
multi-sparse results, and a much larger decrease in error rate
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Figure 1: Average and maximum CPI error over all of the SPEC benchmarks and inputs.
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Figure 2: Average and maximum number of simulation points over all of the SPEC benchmarks and inputs.

in the multi-uniform results. The best performing multino-
mial technique in terms of balancing accuracy and number of
simulation points was the multi-uniform-reassign-10K.

The last four sets of results in Figures 1 and 2 provide a
comparison against standard SimPoint 3.0 with max K set to
6-10 using 5 random seeds. The results show that k-means
with maxK of 7 and higher tend to provide the lowest error
rates of all the results in these figures. Even so, in comparison
to the multi-uniform-reassign-10K approach, the error rates
and number of simulation points are similar. Figures 3 and 4
show the CPI error rates and number of simulation points for
all of the SPEC INT and FP programs and their inputs. Due to
space we only show results for multi-uniform-reassign-10K
with and without the cluster purity chooser (described below)
and for k-means with a maxK of 7 and 10.

The one potential advantage of the multinomial approach
is that in the multi-uniform-reassign-1Kresult in Figure 2, we
see on average 2 fewer simulation points than k-means with
maxK of 7. The downside is that it has a higher error rate,
but if what we care about are relative errors, which should
be consistent across the design space exploration as shown
in [20], then this may be attractive to use.

In summary, the reason why we see a consistent reduc-
tion in average error rate when performing the vector reas-
signment and why it is hard for the multinomial approach to
beat k-means is that the SimPoint approach assigns each in-

terval to only one specific cluster. The k-means algorithm
is a hard assignment algorithm, so it specifically optimizes
for this case. In terms of the multinomial algorithm used for
picking simulation points, this also performs a hard assign-
ment of a given interval to the highest probability multino-
mial center after clustering has finished. However, the multi-
nomial clustering model uses soft assignment during clus-
tering, where each interval is represented by multiple cluster
centers. So soft-assignment EM multinomial clustering is not
as well suited as k-means for a final hard assignment, and in
the end choosing simulation points comes down to perform-
ing a hard assignment of a single simulation point to the clus-
ter.

We tried a hard-assignment variant of the EM algorithm
with a multinomial mixture model. The difference was that
instead of using soft assignment during the expectation step,
we did a hard assignment like k-means. However, this ap-
proach performed similarly to the soft-assignment with our
reassignment improvement for choosing simulation points,
both in error rate and number of simulation points chosen.
We do not report these results here, but with the other evi-
dence we have shown they indicate that for this application,
hard assignment is a key aspect to obtaining good perfor-
mance for the phase classification task. Even though EM
and k-means are similar algorithms when viewed from a high
level, the key differences appear to come from the use of soft
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Figure 3: CPI error rates for all of the SPEC INT and FP program. Results are shown for multinomial clustering with uniform
projection and reassignment of cluster labels with a scaling factor of 10,000 with and without the purity chooser. Results are
also shown for k-means with maxK of 7 and 10.

or hard assignment in the algorithms.

5.3 Measuring the Purity of Multinomial Clusters
Each vector that is clustered by a mixture of multinomials
with soft assignment can belong fractionally to each of the
k clusters. A good question to ask then is how well can we
represent each cluster with a single vector chosen from that
cluster? We can use the probability Pr(cj |xi) to quantify
this. If an interval xi is selected to represent cluster cj , then
we hope that Pr(cj |xi) is as large (close to 1.0) as possible.
We could investigate this measurement for the highest-ranked
vector of each cluster. For example, if we have 3 clusters
and three associated vectors, then the simulation points might
have expectation values of:

cluster 1 cluster 2 cluster 3
vector 1 0.80 0.05 0.15
vector 2 0.15 0.85 0.00
vector 3 0.00 0.05 0.95

Here Pr(cluster 1|vector 1) = 0.80, for example. It
makes sense to look at how much each interval chosen be-
longs to the cluster it was chosen from, as compared to other
clusters. We call this a measurement of the “purity” of that
clustering. To measure this, for each cluster cj we choose the
interval xi that maximizes Pr(xi|cj). Call this interval sj ;
note that sj is not necessarily the simulation point, since we
choose simulation points in a different manner. However, s j

is the interval that is most highly representative of cluster cj

according to the multinomial probabilities. Then we compute
the purity metric as:

purity =

∑k
j=1 Pr(cj |sj)

k

The purity score for the above example would be (0.80 +
0.85 + 0.95) / 3 = 0.867. The purity score will always take a
value between 0 and 1. A score of 1 means that each selected
interval belongs 100% to the cluster it represents.

We can use this metric to investigate how pure a cluster-
ing is, with the expectation that a higher purity means that
the data was more well-clustered with a mixture of multino-
mials. We found a strong correlation: when the purity is low,
the multinomial approach usually has a much higher than av-
erage error rate. Note that this purity metric is based on only
looking at the clustering model; no performance metrics are
examined.

We propose that this measure of cluster purity can be used
to select when the multinomial algorithm will do a good job
of clustering the data, and when it will not. We therefore ex-
amine an approach that only uses the multinomial simulation
points if the purity score is high (i.e. above 0.95), because we
know that each multinomial cluster has a very strong repre-
sentative. Otherwise, we resort to using the standard k-means
SimPoint approach, since there is a multinomial cluster that
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Figure 4: Number of simulation points chosen for all of the SPEC INT and FP program. Results are shown for multinomial
clustering with uniform projection and reassignment of cluster labels with a scaling factor of 10,000 with and without the
purity chooser. Results are also shown for k-means with maxK of 7 and 10.

does not have a strong multinomial representative. We chose
0.95 as the purity threshold because we want to be sure that
when we do decide to use multinomial clustering, it is based
on a very pure clustering. Looking at the data (not shown
here due to space), we found that for a lower purity thresh-
old, it may be that the resulting prediction is still good, but
above 0.95 almost all the predictions were good.

Figures 5 and 6 show the average and maximum CPI er-
ror and number of simulation points for the best multinomial
configuration from Figure 1 and its performance with the pu-
rity chooser to decide if the multinomial simulation points
should be used or the k-means simulation points. The pu-
rity results represent using the multinomial approach if the
purity metric is above 95%, otherwise using k-means with
maxK set to 10. In these plots we also include standard
k-means SimPoint with maxK=7 and maxK=10 as a com-
parison. The detailed results of these statistics are seen in
Figures 3 to 4, where the Spec 2K FP and INT benchmarks
are plotted for the same configurations. For the purity-multi-
uniform-reassign-10K results, 29% of the programs were
chosen to be clustered with multinomials, and the remaining
with k-means. For the purity-multi-sparse-reassign-10K re-
sults, 25% of the programs were chosen to be clustered with
multinomials.

The benefit of using the purity score can be seen from
these results. The average CPI stays about the same when us-
ing the purity chooser, but we found that the programs with
high error rates are flagged, and a lower error rate is then
achieved by using k-means. This improvement in accuracy is
a result of finding the programs where there are clusters with-
out good representation in the multinomial approach based
on the purity score. SimPoint has better accuracy in general,
and can do a better job at representing them although it may
require more simulation points. By combining the two tech-
niques we can achieve a better accuracy and fewer simulation
points over either solo method.

5.4 Timing Comparison
One difference we did notice between the multinomial ap-
proach and k-means is the running time of the two algo-
rithms. We found the multinomial approach to be around
10 times slower than using k-means. Both techniques have
linear run-time in the size of the input data and the number of
clusters used. However, performing multinomial clustering
with EM requires many more floating point operations, and
it cannot be optimized nearly as well as k-means. Because
k-means uses hard assignment throughout the algorithm, it
can be heavily optimized so that not all computations need to
be fully performed. For example, k-means relies heavily on
finding the shortest distance between a vector and all the k
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Figure 6: Average and maximum simulation points over all
of the SPEC programs and inputs for using the full multino-
mial approach, using the full k-means approach, and then
using the purity chooser. The purity results represent using
that multinomial approach if the purity metric is above 95%,
otherwise using k-means with maxK set to 10.

centers. If you have already computed the distance between
an interval and center c1 as 3.0 and you are computing the
distance to c2, you may find that partway through the dis-
tance computation the distance will be greater than 3.0. If
this is the case, then you can stop the computation for c2,
since you only care about the minimum distance, and clearly
c2 will not be the minimum. This example is called partial
distance search [18]. The hard assignment of k-means makes
it a great candidate for these types of optimizations. Con-
versely, because the EM algorithm must calculate the prob-
ability of every interval according to every model, there is
little that can be done to optimize it.

Figure 5.4 shows the time in seconds for running k-means
and the multinomial algorithm varying the number of vectors
as we vary the number of clusters (value of k). For this ex-
periment, the interval vectors are randomly generated from
uniformly random noise in 15 dimensions.

The results show that as the number of vectors and clus-
ters increases, so does the amount of time required to cluster
the data. The first graph shows that for 100,000 vectors and
k = 128, it took about 3.5 minutes for k-means to perform
the clustering. For multinomial clustering it took roughly 64
minutes to cluster the same amount of data. Both of these
timings are for one clustering for one random initialization.
It is clear that the number of vectors clustered and the value of
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Figure 7: Timing results for clustering with k-means and a
mixture of multinomials.

k both have a large effect on the run-time of k-means and the
multinomial algorithm: the run-time changes linearly with
the number of clusters and the number of vectors. Finally, we
find that k-means gives good performance with only 5 ran-
dom initializations per k, whereas following [22] we find we
need 100 random initializations per k for multinomial mix-
ture clustering in order to find a consistently good clustering.
The need for more random initialization further increases the
timing gap between the two algorithms.

6 Summary

Characterizing the behavior of program execution has be-
come crucial for modern computer architecture research, es-
pecially in the application of processor simulation. SimPoint
automates the process of picking simulation points using a
phase classification algorithm based on k-means clustering,
which significantly reduces the amount of simulation time re-
quired. By simulating only a handful of intelligently picked
sections of the full program, the simulation points provide
an accurate picture of the complete execution of a program,
which gives a highly accurate estimation of performance.

A different clustering algorithm is explored in this work,
based on the multinomial model [22]. We examine the base-
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line approach as proposed in [22] and compare its perfor-
mance to k-means SimPoint [20, 25] and find that k-means
has better performance, both in accuracy and number of sim-
ulation points.

We then propose two optimizations to the baseline ap-
proach [22]. First we find that normalizing and scaling the
projected data results in a better clustering of the data. Sec-
ondly, we propose a different method for picking the simula-
tion points from the clusters. We use the multinomial model
for grouping the intervals into clusters and to calculate those
clusters’ centroids, just as in the prior technique. But after
this step we choose the interval that is closest to a centroid
from any intervals, not restricting them based upon the multi-
nomial model labeling. We found that this helps reduce the
maximum error rates seen for the SPEC benchmarks.

Finally we propose a new metric, cluster-purity, for de-
termining how effective the multinomial algorithm is at char-
acterizing a program. The cluster-purity metric is used to
score the multinomial clustering, and based on its score we
decide if this is a good representation. The benefit with such
a score is that we can use it to choose between the two clus-
tering techniques. Based on the purity score we can decide
whether we should use the multinomial representation or if
we should use the SimPoint k-means representation instead.
The multinomial approach does not excel in accuracy as Sim-
Point does, but on average it picks fewer simulation points.
This combination of the two techniques results in a small im-
provement in accuracy (mainly helping the programs that had
a high error rate) with a small reduction in the average num-
ber of simulation points.
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