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Abstract

A recent study [ 1] examined the use of sampled hardware
counters to create sampled code signaturedhis approach
is attractive because sampled code signatures can be quickly
gathered for any application. The conclusion of their study
wasthat there exists a fuzzy correlation between sampled code
signatures and performance predictability. The paper raises
the question of how much information is lost in the sampling
process, and our paper focuses on examining this issue.

We first focus on showing that there exists a strong cor-
relation between code signatures and performance. We then
examine the relationship between sampled and full code sig-
natures, and how these affect performance predictability. Our
results confirm that there is a fuzzy correlation found in re-
cent work for the SPEC programs with sampled code signa-
tures, but that a strong correlation exists with full code signa-
tures. Inaddition, we propose converting the sampled instruc-
tion counts, used in the prior work, into sampled code sig-
natures representing loop and procedure execution fregquen-
cies. These sampled loop and procedure code signatures al-
low phase analysis to more accurately and easily find pat-
terns, and they correlate better with performance.

1 Introduction

ranges from 100,000 instructions to one million instructions.
Code signatures are formed for every interval of 10 million
or 100 million consecutive instructions. They call these code
signaturegxtended I nstruction Pointer Vectors (EIPVS). The
advantage of this approach is that it can quickly create code
signatures for any application running on the machine, and no
binary instrumentation is required. The disadvantage is that
the sampled code signatures do not cover all of the code exe-
cuted, which may be necessary for predicting performance,
and sampling introduces additional variabilities in instruc-
tions executed and CPI due to other processes running on the
machine, including VTune itself.

Prior work determined that Basic Block Vectors (BBV) [8,

11] are one of the most accurate techniques for creating code
signatures. A BBV for an interval represents how many times
each basic block in the binary was executed during that inter-
val. We call this a full code signature, since it accounts for
every instruction - effectively, one sample is collected for ev-
ery basic block. The advantage of this approach is that the
code signatures accurately represent the complete execution
path, weighted by each basic block’s execution frequency.
We gather BBVs through binary instrumentation or functional
simulation. Compared to program counter sampling, the BBV
approach requires more profiling overhead to gather code sig-

In recent years, several studies have shown that there is a Cgl,';_\tures, but the result is a lossless profile with no variability.

relation between code and performance predictability, con-

In [1], the authors concluded that there was a weak corre-

centrating mainly on the SPEC2000 programs [2, 6, 7, 8, 1dation between code signatures and performance predictabil-
13, 17, 18, 16, 3, 11, 14]. This analysis is based upon thy for some database applications. One possible explanation
fact that as a program executes its behavior is structured inf8" this result is that the behavior of a database is highly data
repeating behaviors called phases. A phase is a set of intélependent; the queries issued determine what code gets ex-
vals within a program’s execution that have similar behaviorécuted, and the performance of each query is highly depen-
regardless of temporal adjacency. Phase analysis shows ti§§nt on the contents of the query itself and the structure of
both the code traversed and the underlying hardware perfome gueried data. For these reasons, it is understandable that
mance tend to change at the same time. Therefore, one cHatabases exhibit weaker correlations between code and per-
capture a code signature for a phase, and then use the strfetmance.
ture of the code to predict performance. However, the paper [1] also claims that many of the
Recently, Annavaram et al. [1] examined the use of codSPEC2000 benchmarks exhibit weak correlations between
signatures obtained through periodic sampling to predict pecode signatures and performance. This claim contradicts the
formance for database applications and SPEC2000. The maiesults found in other recent work, such as [8, 13, 16, 11]. One
difference between [1] and prior work is the type of code sigpossible explanation for this contradiction is the use of sam-
natures used to perform the analysis. In [1], they propospled code signatures instead of full code signatures, but this
using a tool called VTune to sample the hardware counterissue was not addressed in [1]. The focus of our paper is to
to create what we catbmpled code signatures. The program answer the questions raised in [1]: Do full code signatures ex-
counter is sampled once eveWinstructions executed, aiid  hibit a strong or weak correlation with performance, and what



is the relationship between sampled and full code signatureg&rforming a design space search, and to guide many opti-
Our paper makes the following contributions: mizations and policy decisions across different architecture
configurations.
e \We present new results showing that there is a strong COLH £l Code Signatures— Basic Block Vectors

relation between code and performance predictability fo . . .
the SPEC2000 programs using full code signatures (b;rhe first step of phase analysis is to collect the frequency dis-

sic block vectors [17]). We show this strong correlationt”buuon of executed code to create signatures that represent

through direct examination of the code signatures aane program’s behavior at different times in its execution. We
through off-line phase analysis ' perform clustering analysis on these code signatures to group

similar parts of the program’s execution into clusters based
» We show that there is a fuzzy relationship between EIPVgn the similarity of the signatures with SimPoint [18]. Each
and BBVs. This is shown by (a) comparing the dimensiong|uster is a phase.
ality of EIPVs and BBVs, (b) receiver operating character-  Our approach uses the Basic Block Vector (BBV) [17] to
istics, (c) coefficients of variation of CPI, and (d) SimPointrepresent the code signature in order to capture information
error rates. about changes in a program’s behavior over time. A basic
« Finally we show that EIPVs can be significantly improvedblock is a single-entry, single-exit section of code with no
by mapp|ng each EIP to |tS Corresponding |00p or procei.nternal Control ﬂOW ABaSC BIOCk \ector iS a one dimen'
dure. sional array, where each element in the array corresponds to
one static basic block in the program. We start with a BBV
. containing all zeroes at the beginning of each interval. During
2 Full Code .SI gnat_ures and Perfor- each interval, we count the number of times each basic block
mance Predictability in the program has been entered, and we record the count in

The focus of this section is to examine the correlation beEhe BBV for that interval. For example, if the 50th basic block

tween code signatures and performance for the full SPEE’ executed 15 times in an interval, then bbv[50] = 15 for that

2000 benchmark suite for off-line phase analysis. Most of thiénterval. In addition, we multiply each count by the number

. . . of instructions in the basic block, so basic blocks containing
zgfiltyi:slié?Egg:npduabt:ic;%;?jrt;)(;‘:)?enor work [18, 16, 3, 11], more instructions will have more weight in the BBV. Finally,

: ) . ' ._atthe end of each interval, we normalize the basic block vec-
we f!rst provide a brief summary of ph_ase pehawortor by dividing each element by the sum of all the elements in
and basic block vectors. We then summarize prior worl§he vector.
that shows relationships between code signatures and perfor-
mance. This section concludes with results quantifying th?el

correlation between code and performance.

The behavior of the program at a given time is directly
ated to the code executed during that interval [17]. We per-
form clustering on BBVs, because each vector contains the
21 Phase Behavior frequen_cy distribution of_code executed in each interval._ B_y
.comparing BBVs of two intervals, we can evaluate the simi-

Programs e_xhibit large sgale r_epeating behavior; we call thlFarity of two intervals. If the distance between the two BBVs
phase behavior [18]. To identify phases, we break a pro- is small (close to 0), then the two intervals spend about the

gram’s execution into contiguous non-overlapping intervals, e
. ; X . ) -~ “same amount of time in roughly the same code, and therefore
An interval is a continuous portion of execution (a slice in

. . .~ we expect the performance of those two intervals to be sim-
time) of a program. For our studies we have used inter:

val sizes of 1 million, 10 million and 100 million instruc- ilar. Code signatures grouped into the same cluster exhibit

tions [16]. A phaseis a set of intervals within a program’s similar CPI, numbers of branch mispredictions, numbers of

. L : ._cache misses, etc.
execution with similar behavior, regardless of temporal adja-

cency. This means that a phase may appear many times a8 Prior Work Relying on the Relationship Between
program executesd?hase classification partitions a set of in- Code and Performance
tervals into phases with similar behavior. The phases that wehodapkar and Smith [6, 7, 8] found a relationship be-
discover are specific to the input used to run the program. tween phases and instruction working sets, and found that
The key observation for phase recognition is that any arphase changes tend to occur when the instruction working
chitectural metric is a function of the paths a program takeset changes. They track the instruction working set with bit
through its code. We can identify phase behavior and classifyectors, with one bit for each basic block; a bit is set when
it by examining the proportions in which different regions of the corresponding basic block is executed. They detect phase
code are executed over time. Accurately capturing phase behanges in hardware by comparing bit vectors. With their
havior by only examining program or ISA-level metrics, in- approach, multi-configuration units can be re-configured in
dependent of the underlying architectural details and perforesponse to phase changes. They use their working set analy-
mance, allows us to partition a program’s execution into arsis for instruction cache, data cache and branch predictor re-
chitecture independent phases. This means that it is possildenfigurations to save energy. In [8] they do a detailed com-
to use phase information for the same binary and input wheparison of BBVs with their bit vector approach for on-line



ture model we simulate is detailed in Table 1. We simulate an

| Cache 8k 2-way set-associative, 32 byte blocks, 1 cycle latency . . . .
D Cache 16K 4-way Set-associalive, 32 byte blocks, 2 cycle|la- aggressive 8-way dyr.'amma.“y S.Chedmeq mmrgprocgssorywth
tle'\slxcy4 - S a two level cache. Simulation is execution-driven, including
L2cache | . ng? “way set-associative, 32 byte blocks, 20 cycle la- oy o cytion down any speculative path until the detection of a
Memory 150 cycle round trip access fault, TLB miss, or branch misprediction.
Branch Pred hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k hi-
modal predictor 2.5 Correation of Code Signatureswith Performance
0-0-0 Issue out-of-order issue of up to 8 operations per cycle, 128 . ) .
entry re-order buffer To show the relationship between code signatures and per-
Mem Disam | '0a0/store queue, loads may execute when all prior store go mance predictability, we use the approach of Dhodapkar

addresses are known . . . .
8-integer ALU, 4-load/store units, 2-FP adders, 2-integer et al. [8]. The idea is to evaluate the relationship between

Func Units
el ykuk;{g'gégé'g'? %%%B“{,Xm TLB miss Tatency after significant CPI changes and significant vector changes be-
irtual Mem | earlier-issued instructions complete tween every pair of consecutive intervals. Clearly this analy-
Table 1: Baseline Alpha Simulation Model. sis depends on the definition of “significant,” so we define two

thresholdstt, the CPI significance threshold, andg the vec-

tor significance threshold. These thresholds determine which

T_h_e|r paper fOQUSEd on the accuracy of on-line phase Cla?‘ﬁtervals have significant CPI changes, and which intervals
sification techniques, whereas this paper focuses on off-li ave significant code signature changes

phase classification. We use some of their analysis to exam- L : S .
: . . To determine ifC' PI,, for an interval is significantly dif-
ine the correlation between code signatures and performancge. . .
. . . ferent from theC'PI,,_, for the previous interval, we deter-
Huang et al. [10] associate changes in program behavior .

with major subroutine changes. They show that code behay- "c t|OPL, — CPIn1|/CPIy— > ct. If ctis .05, the

I . e . : urrent CPI is significantly different from the previous CPI
ior is quite homogeneous within each major subroutine, anﬁ

. : . it differs by at least 5%, compared to the CPI of the last
fairly heterogeneous across major subroutines. They Sho}'ﬁ’terval
that dynamic reconfiguration on major subroutine boundaries ) L . o
y g ) To determine if a vectoV,, for an interval is significantly

effectively reduces power consumption. They also improve ifferent from the vectol/. . for the previous interval. we
the accuracy of sampled simulation by examining call graphgetermine N anhatt dn‘itl v P V2 S ot T,he
to identify major subroutines for statistical simulation [13]. anhattan-avs ance(Vo—1, Vn)/ vt .
. : Manhattan distance is the sum of the absolute values of pair-
Patil et al. [14] use BBVs to characterize program behav- . ; : .
. . : wise differences as described in [18]. All vectors are normal-
ior on Itanium systems. With one set of BBVs, they exam- : o
: ) . ized so their elements sum to 1, so the minimum Manhattan
ine the relationship between BBVs and performance on thre . . . . .

. . ; . . istance is 0, and the maximum Manhattan distance is 2. So if
different implementations of the Itanium architecture. On av-

erage, the difference between actual performance and BB% is .05, the current code signature significantly differs from

) e previous signature if it executes at least 5% of its code dif-

predicted performance was less than 10%. The authors also . :

. : erently (either completely different code, or the same code

show that BBVs can predict L3 misses and causes for stalls” . : !

\ in different proportions). For these experiments, we use full
with reasonable accuracy.

basic block vectors - the vectors are not projected to reduce

canlEézttiﬂégfaﬁr?ggzﬁgetgit phr?)?iﬁnbetr;laev(l;%rdlg g;ggﬂ?gn@?“eir dimensionality, so each basic block vector contains the
y yP 9 ull basic block profile for each interval of execution.

We used techniques from machine learning to classify the ex- " __. - N
ecution of the program into phases (clusters). We found that Given a CPI significance threshold and a vector signifi-

intervals of execution grouped into the same phase eXh\i/t\)}zance threshold, we look at three quantities: the number of

similar behavior across all examined architecture metrics. We- <. po_s_ltlves, the number of false DOS'“Y?S' and the ”‘r'mbe.r
of significant CPI changes. These quantities are described in

extended this approach to perform hardware phase CIaSSiﬁCgétail below

tion and prediction [19, 12]. Our prior work is missing de- . . o

tailed analysis showing the strong correlation between cod True positives are the fraction of intervals with S|gn|.f|cant

and performance predictability for our off-line phase analysis Pl changes that are succe ssfully detected by code S|gn.atures.

approach, which we focus on in this section. To calculate the tr_ue.posmves, we count t.he'n.umber of inter-
vals where both significant CPI changed significant vector

2.4 Methodology difference are detected, and divide by the number of intervals

For the analysis in this section we simulated all of the SPE@ith significant CPI change.

2000 benchmarks compiled for the Alpha ISA over multi-  False positives are the fraction of intervals without sig-

ple inputs. We provide results for 45 program/input com-nificant CPl changes for which the code vectdosreport a

binations. Compiler flags and binaries can be found asignificant change. To calculate the false positives, we count

http://ww. si npl escal ar. com . For these bench- the number of intervals wher® significant CPI change is de-

marks, SimpleScalai m out or der was used for full de- tected and significant vector differensaletected, and divide

tailed simulation of each program and collection of BBV codeby the number of intervals with no significant CPI change.

signatures. At every interval of execution, architecture statisNote that a false positive is not necessarily a mistake in this

tics are printed along with a BBV. The baseline microarchitecease, since a program can perform two completely different

phase classification, and found that BBVs are very accurat



calculations that exhibit very different microarchitectural be- 5,
havior, but happen to have very similar CPI. In addition, inter- 90%
vals with different code signatures, but similar CPI can exhibit ,, gpg
diverse CPI if we change the architecture, as shown in Sec€ 70 -
tion 2.6. What is more important is that the intervals grouped§ 60% -
together have similar performance, which we examine in Sec&  50% -
tion 2.7. S 0% —#—10m ct .50
In the extreme case, ift is 0%, then almost every interval 5 30% —>—10mct 90 | |
transition will appear to be a significant vector change (except” 2%
when the vectors are exactly the same), so we expect nearly 10:/" ‘9‘
100% true positives and nearly 100% false positives, since MO% 10‘% 20‘0 " 30‘% 40‘% 50%
everything will appear different, regardless of the CPI signif-
icance threshold. At the other extremeyifis 100%, then no
significant vector changes will ever appear, and we will have ) ) o .
0% true positives and 0% false positives. Figure 1: Receiver operating characterlstl_c curves for differ-
Figure 2 shows the percentage of intervals that are corft CP! significance thresholds and BBV significance thresh-
sidered significant CPI changes for 10 million interval size ©/dS- Each point represents a vector significance threshold

Figure 2 shows that 20% of the interval transitions resulted if/€creasing from left to right. Results are shown for a 10 mil-
a CPI change greater than 10%, and only 5% of the programn interval size for four different CPI significance thresh-
interval transitions had a CPI change greater than 50%. Dh@!ds: “10m ct .10 means 10m granularity, and 10% CPI
dapkar and Smith [8] used thresholds of 2% and 10%for S gnificance threshold.

whereas we examine a much larger rangetofVe are inter-

ested in identifying large CPI changes in addition to smaller 30%

25% ‘

% Tru

% False Positives

CPI changes, because applications such as SimPoint are more
interested in large-scale program behavior. g
Figure 1 shows theReceiver Operating Characteris- S 20% -
tic (ROC) [15] curves at a variety of CPI significance5
thresholds and vector significance thresholds. There is orfe 15% 1
data series for each CPI significance threshold, and eagh 10,
data point represents one vector significance threshold frorﬁ

{5%,10%, 15%, ... 95%} from right to left. Each pointis the € 5% 1

average over 45 benchmark and input pairs from SPEC200¢ 0%

Results are shown for four CPI S|gn|f|_cance thres_h_ota)sc(f < 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100
10%, 30%, 50% and 90%, when using a 10 million (10m) %
interval size. Different CPI Thresholds (%)

Figure 1 shows the trade-off between true and false posi-
tives for different vector significance thresholds. With a CPIFigure 2: For each CPI significance threshold, we show the
significance thresholdc{) of 50% and a BBV significance percentage of intervals with significant CPI change. Results
threshold ¢t) of 35%, BBVs accurately track 90% (y-axis) areshown for a 10minterval size.
of the interval transitions with at over 50% change in CPI.
In addition, BBVs falsely detected a significant code change
in 13% (x-axis) of the intervals with less than 50% changevariance and strong phase behavior. For our use of phase
in CPI. This shows that it is possible to predict CPI changegnalysis, it is not clear to us how meaningful it is to classify
with h|gh accuracy (h|gh true positives and low false posibenchmarks based upon CPI variance, since the CPI variance
tives) across a wide range of significance thresholds just byhanges depending on the architecture configuration exam-
looking for changes in code signatures. The graph also Shovi,@ed and the interval size used. To illustrate this, Figure 3

that it is easier to predict larger CPI changes than smaller Chows the range of CPI variances across 18 different memory
changes. hierarchy configurations and interval sizes of 1, 10, 100, and

1000 million instructions. Itis clear thgtcc- 166 has a wide

2.6 Phase Behavior in Programs with Small and Large  range of CPI variances which depend on machine configura-
CPI Variance tion, and the CPI variance @frt - 110 changes depending

Annavaram et al. [1] classify benchmarks into four quadrantsipon the interval size used.
(Q-I) for benchmarks with low CPI variance and weak phase In addition, [1] classifiegzi p andart into Q-1, and
behavior, (Q-11) for those with low CPI variance and stronggcc into Q-lll, stating that they have weak phase behavior.
phase behavior, (Q-111) for those with high CPI variance andThe reasons we believe they did not find phase behavior are
weak phase behavior, and (Q-1V) for those with high CPI(a) their use of sampled code signatures, which we examine
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Figure 4: gcc-166 - Receiver operating characteristic curves
for gce-166 on the memory hierarchy configuration with max-
imum CPI variance from our 18 memory hierarchy configura-

Figure 3: CPI Variance at different granularities, with differ-
ent memory hierarchy configurations for 3 programs. Each
program was run at the specified granularity on 18 differ-

program.

ent memory hierarchy configurations to completion in Sm- tions.

pleScalar. The architecture configuration results with mini-

mum, median, and maximum CPI variance are shown for each 100 7 Ams
90 - /o/°

o e

Z 60 - Z{
o
in more detail in Section 3, (b) if the overall CPI variance of § ig , D/;/o/o/

sitives

a program is low, their approach will not detect many phases 20 / —0—10mct .03
because they build their clusters based on CPlvariance - in[1§ 5 N —O—10m ct .05
they state that if CPI variance is already low, it does not make 1o —A—10m ct .07
sense for them to split the execution into more clusters, (c) ©

before performing their clustering, they filter out infrequently 0 10 20 30 40 50
used dimensions - this can distort code signatures if the fil- % False Positives

tered out data was not evenly distributed across many inter-

vals. In comparison, our analysis uses full code signatures féfigure 5. gzip-graphic - Receiver operating characteristic
classification, without examining CPI data, and we use raneurves for gzip-graphic on the memory hierarchy configura-
dom projection [5] to reduce dimensionality. tion with minimum CPI variance from our 18 memory hierar-

We have found that it is important to project randomly in-¢hy configurations.
stead of filtering out infrequently used dimensions, because
dimensions that account for a small percentage of overall ex-
ecution can be very important indicators of program behaviowhole program target vector is the BBV if the whole program
if they occur with high temporal locality. For example, if a is viewed as a single interval: it represents the program’s over-
program executes ten million instructiongini nt f , butthe  all basic block profile. The BBV distance to the target vector
program runs for ten billion instructiongy i nt f accounts shows how much a program’s code profile for a 10m slice
for just 0.1% of the program’s execution, but if the programof execution differs from its overall code profile. The same
only callspri nt f at the end of execution to display results, information is also provided fogzi p in Figures 5 and 7.
then those ten million instructions are highly indicative of theThe time-varying graphs visibly show that changes in CPI
program’s behavior - they should not be thrown away. If thishave corresponding changes in code signatures, which indi-
information is discarded, it will be difficult to correctly clas- cates strong phase behavior for these applications.
sify the behavior of the program when it cafisi nt f . Figure 4 shows that BBVs fogcc- 166 track CPI

To illustrate some issues with classifying applications t¢hanges of 30% or more with 90% accuracy and only 5% false
specific quadrants, Figure 4 shows the ROC graply éa- positives. This shows that code signatures hasteoag corre-
166 and Figure 6 showgcc- 166's time varying CPI and lation to CPI changes. This can also be seen in Figure 6 where
BBV distance graphs. The time varying graph shows time ifyOU can see over time that the CPI changes are mirrored with
units of 10 million instructions executed on the x-axis, and® high accuracy by changes seen in the BBV distance graph.
CPI or BBV distance on the y-axis. The CPI time-varying In Figure 1 we used CPI thresholds of 10% to 80%, since
graph shows how thgcc’s CPI changes over time. Simi- those found the dominating phase behavior if one had to pick
larly, the BBV distance graph plots the Manhattan distanca standard set of thresholds. Figure 7 shows the CPIl and BBV
from each vector to the whole program target vector. Thalistance time varying graphs fgei p- gr aphi ¢ on the ar-



5.0

4.0
T 3.0 | |
O 20 “ 2

1.0 ‘”ﬂ‘ MW‘ J‘ ‘ k b w" ‘ et rﬂ W

g IS S I | E— e 0 S ) | S

. 0 500 1000 1500 2000 2500 3000 3500 4000 4500
o 08 i o
[}
E 06 ™ ] ‘» 1 _I ‘ l I J
'loﬁ 04 + WW l } MWM U PP Y Ll " J Im WMM A MM"“ A
2 o vl R I oy
2 o2

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500
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Figure 7: Time varying graph of CPI and BBV distance to the target vector from each interval of execution for gzp-graphic at
10minterval size.

chitecture configuration withowest CPI variance out of our 2.7 Clustering Performance

18 configurations. This graph shows that phase behavior Cafhis section has shown that there is a strong relationship be-
be found by examining very small CPI changes. Thisis why ity een cPI changes and code signature changes. We are also
is important to perform the phase analysis by clustering codgerested in the homogeneity of phases after clustering simi-
signatures in an architecture-independent manner, instead I%fr code signatures. We measure homogeneity by examining
relying on CPI thresholds. To show this, Figure 5 plots the{he CPI data for each phase.

.ROC curves for CPI thrgsholds Of.3%’ 5.% and 7%gai p SimPoint [18] is a tool that uses tlkemeans algorithm

in the same low CPI variance configuration. The results shO\ﬁom machine learning to group code signatures into clusters

that even thouggzi p has very small CPI changes (less thalnbased on signature similarity. The single most representative

0.01 CPI variance), the CPI changes are still strongly Correéode signature from each group is selected for detailed simu-

lated to BBV changes. lation, and the results of each detailed simulation are extrapo-

The results in this section show a strong correlation belated to estimate the program’s overall behavior.
tween code signatures and performance, which contradicts the We present two metrics for our SimPoint results: coeffi-
guadrant classification fayzi p andgcc in [1]. It also em-  cient of variation (CoV) of CPI, and estimated CPI error. The
phasizes the importance of performing classification based aoefficient of variation is the standard deviation divided by
code signatures, which are independent of the underlying athe average. In other words, it is the standard deviation ex-
chitecture. Because the CPI variance can change dependipgessed as a fraction of the average. To calculate the whole
on the architecture, it is easier to find phase behavior in prggrogram CoV of CPI, we take the CPI data for each interval,
grams with low CPI variance by examining code signatures.calculate the standard deviation and the average, and divide.
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Figure 9: Estimated CPI error using SmPoint at 10minterval size.

To calculate the SimPoint CoV of CPI, we perform the CoV,

. 64k 2-way set-associative, 64 byte blocks, 3 cycle]la-
of CPI calculation for each cluster (phase), and then compute! Cache tency
the weighted average of the per-cluster CoVs of CPI. Eachp cache 64k 2-way set-associafive, 64 byte blocks, 3 cycle|la-

. . . . tency
per-cluster CoV is weighted by the number of intervals in itg L2 Cache 7Meg 16-way set-associative, 64 byte blocks, 20 cycle
cluster. latency ‘

Memory 275 cycle round trip access

hybrid - I6K Meta, 8K entry Bimodal, 8K 8-bit histor
L2. 16KB BTB and 16 entry RAS

Figure 8 shows the whole program and SimPoint Co\f 0-0-O Issue gg-gf-order issue of up to 4 instructions/cycle, 32 entry
of CPI. The SimPoint CoVs are significantly lower than the 32 entry Toad/store queue, Toads may execute when all

Branch Pred

Mem Disam -
. . . prior store addresses are known
whole program CoVs, Wh|Ch shows that clustering the interf Func Units | 4-integer ALU, 4-Toad/sfore units, 3-FP adders, I-integer
vals based only on code signatures successfully groups the MULT/DIV, 1-FP MULT/DIV
intervals into phases with low intra-phase CoV of CPI. This Table 2: Baseline x86 Simulation Model.

shows a strong correlation between code and performancg, Samp|ed Code Signatures
since our clusters are built by examining only code similari-

ties, yet each cluster contains intervals with very similar CPIsTO track program behavior, we create code signatures by pro-
filing basic blocks, loops, and procedures. All of these ap-
proaches accountfor every instruction executed [11]. Alterna-

Figure 9 shows the amount of error in SimPoint estimate(ya’e approaches, suchas perfo'r.mance counter sampling, avoid

CPI. If the error is 5%, that means the program CPI we estin® overheads of full code profiling. The performance counter

mate ist+5% different from the CPI of a complete simulation approach Uses processor performance counters to gather code

of the program. These results also indicate a strong correléf’lmples at a rate set relat_lve to the frequency of some chosen

tion between code and performance, because the represen‘?&gcessor event, such as instruction commit.

tives for each cluster chosen by SimPoint (by examining only8.1  Sampling with VTune

code signatures) have CPlIs that are highly representative ®he recent paper by Annavaram et al. [1] used VTune to

their cluster’s average CPI. gather performance counter data to guide phase analysis. In



this section we examine using the same mechanism to cr8:2 Sampled Code Signatures

ate sampled vectors for phase analysis and compare the safh EIPV is a record of which instructions were captured dur-
pled vectors to full non-sampled vectors. To gather our reing periodic sampling of the instruction stream over a given
sults, we used the Remote Data Collector for VTune 7.2 withnterval of execution. In this sense, its structure is similar to
driver kit 3.2. We gathered instruction retirement events onhat of a BBV, but the sampled nature of its construction leads
a 3.06 GHz Intel Xeon processor with 512KB cache runningo the entries having different meanings; the BBV entries are
RedHat Linux kernel 2.6.1. We performed runs sampling evrecords of all basic blocks that have executed during an inter-
ery 100 thousand instructions, over a set of SPEC CPU200g, thereby accounting for all executed instructions, whereas
benchmarks. The binaries were compiled with gcc 3.2.2g|PV entries represent which instruction addresses were sam-
optimized with the -O3 flag and statically linked. For pur-pled during that interval of execution.
pose of comparison, we gather detailed simulation results and There are two main issues with using EIPVs. The first
full BBV traces for the same benchmarks with SimpleScalarig that sampling 1 EIP out of every 100,000 EIPs does not
x86(v4.0) [4]. Not all of the SPEC programs currently run onfy|ly characterize a program’s behavior, especially for pro-
SimpleScalar-x86, and we provide results for all of the Programs with large code bases, suctyas. The other issue is
gram/input pairs that ran to completion. The baseline microthat the clustering approach we used and the one used in [1]
architectural model we simulate is detailed in Table 2. are based upon grouping vectors (intervals) together based on
VTune produces a sample trace for each program ruriheir similarity across the vector(_jimensions. When samplin_g
Sample data is obtained via VTune®5dunp utility, which ~ E!PS: two EIPs in the same basic block can be sampled dit-
post-processes a trace to produce an output file where elprent numbers of times. Instructions in the same basic block
ery sample has an instruction address (Extended Instructigif® @lways executed the same number of times, due to the
Pointer, or EIP), cycle count, process ID, CPU ID, thread I[),smgle-entry single-exit natl_Jre of basic blocks. .Because sam-
and process name. The output frah5dunp was passed pled EIPs in the same basic block can have different sample
through a filtering and coalescing tool, which removes samc0UNts, EIPVs may appear farther apart than they should be.
ples that belong to processes other than the one we were pro- 10 @ddress these two issues we propose mapping EIP sam-
filing and samples with kernel-space EIPs. Filtering of kernePl€ data to larger code structures. To accomplish this, we use
samples removed at most 0.5% of the samples for any benchin [14] to find the range of EIPs that correspond to the start
mark examined. We found that removing the kernel sample@nd end of each loop and procedure in each program. We

made it easier to identify user program phase behavior. examine results for two sampled code signatures based on
mapping EIPs to only procedures and mapping EIPs to loops

After thefiltering step, the post-processing tool forms vec- and procedures. For the procedure only sampled code signa-
tors of EIPs (EIPVs) by accumulating consecutive sequencagres, each vector has one dimension for every executed pro-
of the EIPs that passed the filtering requirements until thegedure in the program. The EIPs for an interval are mapped to
account for the desired instruction |ength for the vector. the|r Corresponding procedure dimension, which is the proce-
used vectors of 10 million instructions. Timing information dure they are from. Therefore, the final normalized sampled
for each vector was gathered by summing the differences iat une- pr oc vector represents the percent of sampled exe-
cycle counts between each sample in the vector and the sagstion that occurred in each procedure during that interval.
ple, filtered or otherwise, immediately preceding it. We also examine a sampled code signature mapping the

This method slightly differs from the filtering scheme E!PS to loops and procedures. This is calidine- | oop
used in [1]. In that work, infrequently used EIPs of the pro-In the results below. For this code signature sample, each
gram are filtered out as a means to reduce dimensionality pri&'me':'s'on represents either a loop or procedure in the pro-
to vector formation. This technique may distort the progranram's execution. The loops and procedures are treated as

code signatures in two ways: (a) removing the infrequent EIStatic nesting levels in the binary, and the EIP is mapped to
dimensions can overlook significant program behavior, andhe most deeply nested structure that has its start and end PC

(b) filtering out EIPs prior to vectorization will result in a in- '@nge cover the PC of the EIP sample. In other words, each

complete instruction count of the program since the missing!P Maps to the most deeply nested loop/procedure that con-
EIPs will not be represented in the vectors. ains it. In [11] we showed that creating full code signatures

with vectors of loops and procedures performed better than
One concern with VTune’s current sampling approach issnly using procedures, because some programs spend most of
that it uses a uniform sampling rate. Uniform sampling is vul-their time in a small number of procedures, and loops provide
nerable to synchronization problems with repetitive portiongnore information about a program’s control flow. In addition,

of a program’s execution. In such cases a repeating regiage found the loop-and-procedure vectors perform just as well
may be sampled at the same point multiple times, and the regs the full BBVs [11].

resentation of the region will lack robustness. If the region is

executed again later, a different EIP may be repeatedly sard-3 Dimensionality of Full and Sampled Code Signatures

pled and it will not carry any similarity to the previous sam-VTune is an attractive data gathering tool for EIPVs because
pling from the same region. the imposed overhead is small enough that the impact on the
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Figure 10: Average number of unigque non-zero dimensions per vector per interval of execution for 10minstructions per interval.
They-axisis a logarithmic scale. “ vtune-eipv-10m-100k” are EIPVs collected at 10m granularity with VTune sampling every
100k instructions. “ vtune-loop-10m-100k” results from mapping each EIP to its corresponding loop or procedure. “vtune-
proc-10m-100K” results from mapping each EIP to its corresponding procedure. “ full-bbv-10m” are full BBVs collected from
SmpleScalar x86. All subsequent graphs use this naming scheme.

program under analysis is low for sample sizes of every 108eported by the sampled EIPVs, which is in terms of instruc-
thousand instructions to every 1 million instructions. The aviions and the number of dimensions in terms of instructions
erage increase in execution time when running VTune witlshould be significantly larger than basic blocks. Even for less
sampling at every 100K instructions was 5.6% and at every tomplex programs, the differences in dimensionality are still
million instructions was 1.5%. Increasing the sampling fre-notable.
quency will incur more overhead and eventually bias the ob- We also wanted to examine the ranking of the dimensions
served performance of the application significantly. between the sampled data and full profiling to see how well
The acceptable sampling rate places a limitation on théhey matched. To do this we generated two profiles for each
EIPV: it will always provide a sparse representation of pro-code construct examined. We gathered a profile of the com-
gram execution. This limitation may not be a handicap foplete program’s execution using the sampled data with VTune
programs with small working sets that can be represented withnd a full count profile using Pin [14]. We then plot in Fig-
a few samples. Complex programs, however, sugtasand ure 11 how well these two profiles match in terms of percent
per | bnk, generally have larger working sets of instructions.of executed instructions seen in their accumulative profiles.
These complex programs often execute a substantial number For the eip results, we sort the full instruction count profile
of distinct instructions within an interval, and sparsely samby each instruction’s execution frequency. Starting with the
pling such an interval will not effectively represent it. most frequently executed instruction of the full profile, we ac-
Figure 10 shows the average number of non-zero dimersumulate the instruction’s execution counts until we reach 5%
sions per vector for several different vector types, samplingf the total number of dynamic instructions executed. This
rates, and granularities. Results are provided for EIPVpercentage is represented on the x-axis in Figure 11. We take
(vtune-eipv), sampled loops plus procedures based on tlibese same static instructions from the accumulative EIP pro-
EIPVs (vtune-loop), sampled procedures based on the EIPM#e, and accumulate their dynamic instruction count and plot
(vtune-proc), and the BBVs (full-bbv) from SimpleScalar. Weit on the y-axis. The process is then repeated for other x-
dynamically count the number of non-zero dimensions peraxis values. The same is done for loops. Figure 11 therefore
vector, which is the number of unique EIPs, loops, or proshows the difference in dynamic instruction count between
cedures sampled for the VTune results. For the SimpleScaléite sampled and full instruction and loop profiles. The results
x86 results, the number of non-zero dimensions per vectawhow that the relative ranking of EIPs is off by up to 5% from
counts the average number of unigue basic blocks executedtine full profile, whereas when looking at the sampled data in
each interval. This metric provides a rough measurement dérms of loops plus procedures it is almost an exact match
code complexity found in each interval for the different vectorwith per f ect . This shows that creating sampled vtune-loop
types. The comparison between the number of basic blocksctors provides a representation closer to the full profile than
from the sampled EIPVs and from the full BBVs is a compar-using EIPVSs.
ison of the degree of code coverage provided by sampling. As
seen in Figure 10, a comparison between sampled EIPVs asgt  Correlating Code Signaturesand CPI Changes
full BBVs for gcc shows that the actual number of executedrigure 12 shows the Receiver Operating Characteristic (ROC)
basic blocks per interval is more than ten times larger than thaurves as described in Section 2.5. These plots show that



ROC curves show correlations between significant vector dif-
ferences and significant performance changes for various CPI

100%
90% -

Qo
§ % 80% | and vector significance thresholds.
AT 70% :
= 2 60% 3.5 Clustering Performance
20 o In this section we apply SimPoint [9] to the VTune sampled
pply p
o C . . .
oS 40% - code signatures and the full BBV signatures. Figure 13 shows
% § 30% - —O=cip the coefficient of variation of CPI after clustering with Sim-
S 5 20% == 00p Point as described in Section 2.7. Figure 14 shows SimPoint
g 10% - A—perfect CPIl estimation accuracy. Results are shown using a 10 million
0% ‘ ‘ ‘ interval size. For the sampled code signatures, samples were
p g p
0% 20%  40%  60%  80%  100% taken every 100K instructions. To make a more fair com-
Actual Dynamic Execution Coverage parison across all of the techniques, we fixedvhich is the

number of clusters (phases) formed in SimPoint usingkthe
Figure 11: VTune sample coverage in terms of instructions ~ means algorithm, té¢ = 61 for each of the techniques. This
executed. We collect two profiles of program behavior: afull ~ value is based on the average number of clusters chosen by
instruction-level profile using Pin, and asampledinstruction- ~ SimPoint for the full BBV results across all the benchmarks.
level profile using VTune, sampling every 100K instructions. The results show that using the full BBV information has
The X-axis represents the amount of dynamic execution cov-  a much lower CoV of CPI and estimated CPI error rate, com-
ered by the most frequently executed instructions (eip) or  pared to sampled vectors. In particulge,c andgzi p have
loops from the full profile. The Y-axis shows the amount of  high variations due to insufficient data in the EIPV signatures
dynamic execution covered fromthe sampled profileusingthe  to correctly cluster the intervals into homogeneous phases.
same set of EIPs or loops that accounted for the top X% from  Using sampled loops and procedures reduces estimated CPI
the Pin coverage. Results closer to the“ perfect” linearebet-  error and CoV of CPI overall, and significantly helgsc
ter. Results above the perfect line are over represented, and  andper | . The results also show that mapping EIP samples
results below the line are under represented. to proceduresut une- pr oc) has significantly worse error
rates for a fewgcc inputs, whereas mapping to loops and
procedures\t une- | oop) consistently performs well.
100% Figure 15 shows the absolute percent CPI error over the
program’s execution. This is a different way of looking at
. CPI error than in Figure 14. Sometimes, SimPoint selects

(%]
L 0% | representatives that over- or under-estimate the average CPI
§ 60% - for their phase. When these CPI estimates are combined
o 50% - to produce an estimate for the program’s overall CPI, an
5 40% - == vtune-eipv-10m-100k ct .30 over-estimated CPI can hide (“cancel out”) another under-
= 30% —O—WUne-lteipv-igm-iggl; ct .gg estimated CPI, resulting in a low error rate, even when the
== vtune-loop-10m- t. . ;
S 20% - —o—vtuine-1o0p-10m-100K ot .90 representatives are not well chosen. To address this problem,
10% ¢ == full-bbv-10m ct .30 Figure 15 shows the absolute CPI error over the complete exe-
o - ==>é=full-bbv-10m ct .90 . . . L. .
0% - w : : ‘ : cution of the program, without allowing positive and negative
0% 10% 20% 30% 40% 50% per-phase estimated CPI errors to cancel each other out. In
% False Positives other words, Figure 14 shows how well SimPoint estimates a

program'’s overall CPI, and Figure 15 shows how well Sim-
Figure 12: Receiver operating characteristic at 10minterval ~ Point estimates the average CPkaéh phase.
size. The number after “ ct” in the series name is the CPI For example, Figure 14 shows that SimPoint estimates
threshold used to identify a significant change in CPI. gcc- 200’s overall CPI with 1% error with EIPVs, but if we
look at the per-phase CPI estimates in Figure 15, the error is
25%. In this case, the representatives selected by SimPoint
EIPVs can be used to predict CPI changes, but not as accwere actually not very representative, even though the over-
rately as full BBVs. Converting EIPVs to sampled loops plusall estimated CPI error is low, because the per phase errors
procedures improves predictability as shown in Figure 12in estimated CPI canceled each other out when calculating an
Larger CPI changes are easier to predict, independent of veaverall CPI estimate. In contragicc- 166 was not so lucky
tor type, which is consistent with previous results. Recallvhere it had absolute error of 45% when using EIPVs, and
that our ROC curves are clustering-independent: these resutt¥ese did not cancel each other out as well, and the overall
were produced just by examining the change in CPI betwee@P! error was 33% as shown in Figure 14.
adjacent intervals of execution and the differences between The results show that full-bbvs tend to have fairly consis-
unprojected vectors from adjacent intervals of execution. Th&ent behavior when looking at overall CPI error and absolute
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Figure 13: Coefficient of variation of CPI after clustering with 61 clusters at 10m granularity.
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Figure 15: SmPoint absolute error after clustering with 61 clusters at 10 million instructions per interval.
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