
IEEE International Symposium on Performance Analysis of Systems and Software, March 2005

The Strong Correlation Between Code Signatures and Performance

Jeremy Lau† Jack Sampson† Erez Perelman† Greg Hamerly‡ Brad Calder†

†Department of Computer Science and Engineering, University of California, San Diego
‡Department of Computer Science, Baylor University

{jl,jsampson,eperelma,calder}@cs.ucsd.edu,{greg hamerly}@baylor.edu

Abstract
A recent study [1] examined the use of sampled hardware

counters to create sampled code signatures. This approach
is attractive because sampled code signatures can be quickly
gathered for any application. The conclusion of their study
was that there exists a fuzzy correlation between sampled code
signatures and performance predictability. The paper raises
the question of how much information is lost in the sampling
process, and our paper focuses on examining this issue.

We first focus on showing that there exists a strong cor-
relation between code signatures and performance. We then
examine the relationship between sampled and full code sig-
natures, and how these affect performance predictability. Our
results confirm that there is a fuzzy correlation found in re-
cent work for the SPEC programs with sampled code signa-
tures, but that a strong correlation exists with full code signa-
tures. In addition, we propose converting the sampled instruc-
tion counts, used in the prior work, into sampled code sig-
natures representing loop and procedure execution frequen-
cies. These sampled loop and procedure code signatures al-
low phase analysis to more accurately and easily find pat-
terns, and they correlate better with performance.

1 Introduction
In recent years, several studies have shown that there is a cor-
relation between code and performance predictability, con-
centrating mainly on the SPEC2000 programs [2, 6, 7, 8, 10,
13, 17, 18, 16, 3, 11, 14]. This analysis is based upon the
fact that as a program executes its behavior is structured into
repeating behaviors called phases. A phase is a set of inter-
vals within a program’s execution that have similar behavior,
regardless of temporal adjacency. Phase analysis shows that
both the code traversed and the underlying hardware perfor-
mance tend to change at the same time. Therefore, one can
capture a code signature for a phase, and then use the struc-
ture of the code to predict performance.

Recently, Annavaram et al. [1] examined the use of code
signatures obtained through periodic sampling to predict per-
formance for database applications and SPEC2000. The main
difference between [1] and prior work is the type of code sig-
natures used to perform the analysis. In [1], they propose
using a tool called VTune to sample the hardware counters
to create what we callsampled code signatures. The program
counter is sampled once everyN instructions executed, andN

ranges from 100,000 instructions to one million instructions.
Code signatures are formed for every interval of 10 million
or 100 million consecutive instructions. They call these code
signaturesExtended Instruction Pointer Vectors (EIPVs). The
advantage of this approach is that it can quickly create code
signatures for any application running on the machine, and no
binary instrumentation is required. The disadvantage is that
the sampled code signatures do not cover all of the code exe-
cuted, which may be necessary for predicting performance,
and sampling introduces additional variabilities in instruc-
tions executed and CPI due to other processes running on the
machine, including VTune itself.

Prior work determined that Basic Block Vectors (BBV) [8,
11] are one of the most accurate techniques for creating code
signatures. A BBV for an interval represents how many times
each basic block in the binary was executed during that inter-
val. We call this a full code signature, since it accounts for
every instruction - effectively, one sample is collected for ev-
ery basic block. The advantage of this approach is that the
code signatures accurately represent the complete execution
path, weighted by each basic block’s execution frequency.
We gather BBVs through binary instrumentation or functional
simulation. Compared to program counter sampling, the BBV
approach requires more profiling overhead to gather code sig-
natures, but the result is a lossless profile with no variability.

In [1], the authors concluded that there was a weak corre-
lation between code signatures and performance predictabil-
ity for some database applications. One possible explanation
for this result is that the behavior of a database is highly data
dependent; the queries issued determine what code gets ex-
ecuted, and the performance of each query is highly depen-
dent on the contents of the query itself and the structure of
the queried data. For these reasons, it is understandable that
databases exhibit weaker correlations between code and per-
formance.

However, the paper [1] also claims that many of the
SPEC2000 benchmarks exhibit weak correlations between
code signatures and performance. This claim contradicts the
results found in other recent work, such as [8, 13, 16, 11]. One
possible explanation for this contradiction is the use of sam-
pled code signatures instead of full code signatures, but this
issue was not addressed in [1]. The focus of our paper is to
answer the questions raised in [1]: Do full code signatures ex-
hibit a strong or weak correlation with performance, and what

1



is the relationship between sampled and full code signatures?
Our paper makes the following contributions:

• We present new results showing that there is a strong cor-
relation between code and performance predictability for
the SPEC2000 programs using full code signatures (ba-
sic block vectors [17]). We show this strong correlation
through direct examination of the code signatures, and
through off-line phase analysis.

• We show that there is a fuzzy relationship between EIPVs
and BBVs. This is shown by (a) comparing the dimension-
ality of EIPVs and BBVs, (b) receiver operating character-
istics, (c) coefficients of variation of CPI, and (d) SimPoint
error rates.

• Finally we show that EIPVs can be significantly improved
by mapping each EIP to its corresponding loop or proce-
dure.

2 Full Code Signatures and Perfor-
mance Predictability

The focus of this section is to examine the correlation be-
tween code signatures and performance for the full SPEC
2000 benchmark suite for off-line phase analysis. Most of this
analysis is the foundation for our prior work [18, 16, 3, 11],
but it has not been published before.

We first provide a brief summary of phase behavior
and basic block vectors. We then summarize prior work
that shows relationships between code signatures and perfor-
mance. This section concludes with results quantifying the
correlation between code and performance.

2.1 Phase Behavior
Programs exhibit large scale repeating behavior; we call this
phase behavior [18]. To identify phases, we break a pro-
gram’s execution into contiguous non-overlapping intervals.
An interval is a continuous portion of execution (a slice in
time) of a program. For our studies we have used inter-
val sizes of 1 million, 10 million and 100 million instruc-
tions [16]. A phase is a set of intervals within a program’s
execution with similar behavior, regardless of temporal adja-
cency. This means that a phase may appear many times as a
program executes.Phase classification partitions a set of in-
tervals into phases with similar behavior. The phases that we
discover are specific to the input used to run the program.

The key observation for phase recognition is that any ar-
chitectural metric is a function of the paths a program takes
through its code. We can identify phase behavior and classify
it by examining the proportions in which different regions of
code are executed over time. Accurately capturing phase be-
havior by only examining program or ISA-level metrics, in-
dependent of the underlying architectural details and perfor-
mance, allows us to partition a program’s execution into ar-
chitecture independent phases. This means that it is possible
to use phase information for the same binary and input when

performing a design space search, and to guide many opti-
mizations and policy decisions across different architecture
configurations.

2.2 Full Code Signatures – Basic Block Vectors
The first step of phase analysis is to collect the frequency dis-
tribution of executed code to create signatures that represent
the program’s behavior at different times in its execution. We
perform clustering analysis on these code signatures to group
similar parts of the program’s execution into clusters based
on the similarity of the signatures with SimPoint [18]. Each
cluster is a phase.

Our approach uses the Basic Block Vector (BBV) [17] to
represent the code signature in order to capture information
about changes in a program’s behavior over time. A basic
block is a single-entry, single-exit section of code with no
internal control flow. ABasic Block Vector is a one dimen-
sional array, where each element in the array corresponds to
one static basic block in the program. We start with a BBV
containing all zeroes at the beginning of each interval. During
each interval, we count the number of times each basic block
in the program has been entered, and we record the count in
the BBV for that interval. For example, if the 50th basic block
is executed 15 times in an interval, then bbv[50] = 15 for that
interval. In addition, we multiply each count by the number
of instructions in the basic block, so basic blocks containing
more instructions will have more weight in the BBV. Finally,
at the end of each interval, we normalize the basic block vec-
tor by dividing each element by the sum of all the elements in
the vector.

The behavior of the program at a given time is directly
related to the code executed during that interval [17]. We per-
form clustering on BBVs, because each vector contains the
frequency distribution of code executed in each interval. By
comparing BBVs of two intervals, we can evaluate the simi-
larity of two intervals. If the distance between the two BBVs
is small (close to 0), then the two intervals spend about the
same amount of time in roughly the same code, and therefore
we expect the performance of those two intervals to be sim-
ilar. Code signatures grouped into the same cluster exhibit
similar CPI, numbers of branch mispredictions, numbers of
cache misses, etc.

2.3 Prior Work Relying on the Relationship Between
Code and Performance

Dhodapkar and Smith [6, 7, 8] found a relationship be-
tween phases and instruction working sets, and found that
phase changes tend to occur when the instruction working
set changes. They track the instruction working set with bit
vectors, with one bit for each basic block; a bit is set when
the corresponding basic block is executed. They detect phase
changes in hardware by comparing bit vectors. With their
approach, multi-configuration units can be re-configured in
response to phase changes. They use their working set analy-
sis for instruction cache, data cache and branch predictor re-
configurations to save energy. In [8] they do a detailed com-
parison of BBVs with their bit vector approach for on-line

2



I Cache 8k 2-way set-associative, 32 byte blocks, 1 cycle latency

D Cache
16k 4-way set-associative, 32 byte blocks, 2 cycle la-
tency

L2 Cache
1Meg 4-way set-associative, 32 byte blocks, 20 cycle la-
tency

Memory 150 cycle round trip access

Branch Pred
hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bi-
modal predictor

O-O-O Issue
out-of-order issue of up to 8 operations per cycle, 128
entry re-order buffer

Mem Disam load/store queue, loads may execute when all prior store
addresses are known

Func Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-integer
MULT/DIV, 2-FP MULT/DIV

Virtual Mem
8k byte pages, 30 cycle fixed TLB miss latency after
earlier-issued instructions complete

Table 1: Baseline Alpha Simulation Model.

phase classification, and found that BBVs are very accurate.
Their paper focused on the accuracy of on-line phase clas-
sification techniques, whereas this paper focuses on off-line
phase classification. We use some of their analysis to exam-
ine the correlation between code signatures and performance.

Huang et al. [10] associate changes in program behavior
with major subroutine changes. They show that code behav-
ior is quite homogeneous within each major subroutine, and
fairly heterogeneous across major subroutines. They show
that dynamic reconfiguration on major subroutine boundaries
effectively reduces power consumption. They also improve
the accuracy of sampled simulation by examining call graphs
to identify major subroutines for statistical simulation [13].

Patil et al. [14] use BBVs to characterize program behav-
ior on Itanium systems. With one set of BBVs, they exam-
ine the relationship between BBVs and performance on three
different implementations of the Itanium architecture. On av-
erage, the difference between actual performance and BBV
predicted performance was less than 10%. The authors also
show that BBVs can predict L3 misses and causes for stalls
with reasonable accuracy.

In [17, 18], we proposed that phase behavior in programs
can be automatically identified by profiling the code executed.
We used techniques from machine learning to classify the ex-
ecution of the program into phases (clusters). We found that
intervals of execution grouped into the same phase exhibit
similar behavior across all examined architecture metrics. We
extended this approach to perform hardware phase classifica-
tion and prediction [19, 12]. Our prior work is missing de-
tailed analysis showing the strong correlation between code
and performance predictability for our off-line phase analysis
approach, which we focus on in this section.

2.4 Methodology
For the analysis in this section we simulated all of the SPEC
2000 benchmarks compiled for the Alpha ISA over multi-
ple inputs. We provide results for 45 program/input com-
binations. Compiler flags and binaries can be found at
http://www.simplescalar.com/. For these bench-
marks, SimpleScalarsim-outorder was used for full de-
tailed simulation of each program and collection of BBV code
signatures. At every interval of execution, architecture statis-
tics are printed along with a BBV. The baseline microarchitec-

ture model we simulate is detailed in Table 1. We simulate an
aggressive 8-way dynamically scheduled microprocessor with
a two level cache. Simulation is execution-driven, including
execution down any speculative path until the detection of a
fault, TLB miss, or branch misprediction.

2.5 Correlation of Code Signatures with Performance
To show the relationship between code signatures and per-
formance predictability, we use the approach of Dhodapkar
et al. [8]. The idea is to evaluate the relationship between
significant CPI changes and significant vector changes be-
tween every pair of consecutive intervals. Clearly this analy-
sis depends on the definition of “significant,” so we define two
thresholds:ct, the CPI significance threshold, andvt, the vec-
tor significance threshold. These thresholds determine which
intervals have significant CPI changes, and which intervals
have significant code signature changes.

To determine ifCPIn for an interval is significantly dif-
ferent from theCPIn−1 for the previous interval, we deter-
mine if |CPIn − CPIn−1|/CPIn−1 > ct. If ct is .05, the
current CPI is significantly different from the previous CPI
if it differs by at least 5%, compared to the CPI of the last
interval.

To determine if a vectorVn for an interval is significantly
different from the vectorVn−1 for the previous interval, we
determine ifManhattan distance(Vn−1, Vn)/2 > vt. The
Manhattan distance is the sum of the absolute values of pair-
wise differences as described in [18]. All vectors are normal-
ized so their elements sum to 1, so the minimum Manhattan
distance is 0, and the maximum Manhattan distance is 2. So if
vt is .05, the current code signature significantly differs from
the previous signature if it executes at least 5% of its code dif-
ferently (either completely different code, or the same code
in different proportions). For these experiments, we use full
basic block vectors - the vectors are not projected to reduce
their dimensionality, so each basic block vector contains the
full basic block profile for each interval of execution.

Given a CPI significance threshold and a vector signifi-
cance threshold, we look at three quantities: the number of
true positives, the number of false positives, and the number
of significant CPI changes. These quantities are described in
detail below.

True positives are the fraction of intervals with significant
CPI changes that are successfully detected by code signatures.
To calculate the true positives, we count the number of inter-
vals where both significant CPI changeand significant vector
difference are detected, and divide by the number of intervals
with significant CPI change.

False positives are the fraction of intervals without sig-
nificant CPI changes for which the code vectorsdo report a
significant change. To calculate the false positives, we count
the number of intervals whereno significant CPI change is de-
tected and significant vector differenceis detected, and divide
by the number of intervals with no significant CPI change.
Note that a false positive is not necessarily a mistake in this
case, since a program can perform two completely different

3



calculations that exhibit very different microarchitectural be-
havior, but happen to have very similar CPI. In addition, inter-
vals with different code signatures, but similar CPI can exhibit
diverse CPI if we change the architecture, as shown in Sec-
tion 2.6. What is more important is that the intervals grouped
together have similar performance, which we examine in Sec-
tion 2.7.

In the extreme case, ifvt is 0%, then almost every interval
transition will appear to be a significant vector change (except
when the vectors are exactly the same), so we expect nearly
100% true positives and nearly 100% false positives, since
everything will appear different, regardless of the CPI signif-
icance threshold. At the other extreme, ifvt is 100%, then no
significant vector changes will ever appear, and we will have
0% true positives and 0% false positives.

Figure 2 shows the percentage of intervals that are con-
sidered significant CPI changes for 10 million interval size.
Figure 2 shows that 20% of the interval transitions resulted in
a CPI change greater than 10%, and only 5% of the program’s
interval transitions had a CPI change greater than 50%. Dho-
dapkar and Smith [8] used thresholds of 2% and 10% forct,
whereas we examine a much larger range ofct. We are inter-
ested in identifying large CPI changes in addition to smaller
CPI changes, because applications such as SimPoint are more
interested in large-scale program behavior.

Figure 1 shows theReceiver Operating Characteris-
tic (ROC) [15] curves at a variety of CPI significance
thresholds and vector significance thresholds. There is one
data series for each CPI significance threshold, and each
data point represents one vector significance threshold from
{5%, 10%, 15%, . . .95%} from right to left. Each point is the
average over 45 benchmark and input pairs from SPEC2000.
Results are shown for four CPI significance thresholds (ct) of
10%, 30%, 50% and 90%, when using a 10 million (10m)
interval size.

Figure 1 shows the trade-off between true and false posi-
tives for different vector significance thresholds. With a CPI
significance threshold (ct) of 50% and a BBV significance
threshold (vt) of 35%, BBVs accurately track 90% (y-axis)
of the interval transitions with at over 50% change in CPI.
In addition, BBVs falsely detected a significant code change
in 13% (x-axis) of the intervals with less than 50% change
in CPI. This shows that it is possible to predict CPI changes
with high accuracy (high true positives and low false posi-
tives) across a wide range of significance thresholds just by
looking for changes in code signatures. The graph also shows
that it is easier to predict larger CPI changes than smaller CPI
changes.

2.6 Phase Behavior in Programs with Small and Large
CPI Variance

Annavaram et al. [1] classify benchmarks into four quadrants:
(Q-I) for benchmarks with low CPI variance and weak phase
behavior, (Q-II) for those with low CPI variance and strong
phase behavior, (Q-III) for those with high CPI variance and
weak phase behavior, and (Q-IV) for those with high CPI

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50%

% False Positives

%
 T

ru
e 

P
os

iti
ve

s

10m ct .10

10m ct .30

10m ct .50

10m ct .90

Figure 1: Receiver operating characteristic curves for differ-
ent CPI significance thresholds and BBV significance thresh-
olds. Each point represents a vector significance threshold
decreasing from left to right. Results are shown for a 10 mil-
lion interval size for four different CPI significance thresh-
olds. “10m ct .10” means 10m granularity, and 10% CPI
significance threshold.

0%

5%

10%

15%

20%

25%

30%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100
%

Different CPI Thresholds (%)

%
 In

te
rv

al
s 

w
ith

 C
P

I C
ha

ng
e.

 

Figure 2: For each CPI significance threshold, we show the
percentage of intervals with significant CPI change. Results
are shown for a 10m interval size.

variance and strong phase behavior. For our use of phase
analysis, it is not clear to us how meaningful it is to classify
benchmarks based upon CPI variance, since the CPI variance
changes depending on the architecture configuration exam-
ined and the interval size used. To illustrate this, Figure 3
shows the range of CPI variances across 18 different memory
hierarchy configurations and interval sizes of 1, 10, 100, and
1000 million instructions. It is clear thatgcc-166 has a wide
range of CPI variances which depend on machine configura-
tion, and the CPI variance ofart-110 changes depending
upon the interval size used.

In addition, [1] classifiesgzip andart into Q-I, and
gcc into Q-III, stating that they have weak phase behavior.
The reasons we believe they did not find phase behavior are
(a) their use of sampled code signatures, which we examine

4



2.45 2.062.61

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1m 10
m

10
0m 1b 1m 10
m

10
0m 1b 1m 10
m

10
0m 1b

art/110 gcc/166 gzip/graphic

C
P

I V
ar

ia
nc

e

min

median

max

Figure 3: CPI Variance at different granularities, with differ-
ent memory hierarchy configurations for 3 programs. Each
program was run at the specified granularity on 18 differ-
ent memory hierarchy configurations to completion in Sim-
pleScalar. The architecture configuration results with mini-
mum, median, and maximum CPI variance are shown for each
program.

in more detail in Section 3, (b) if the overall CPI variance of
a program is low, their approach will not detect many phases
because they build their clusters based on CPI variance - in [1]
they state that if CPI variance is already low, it does not make
sense for them to split the execution into more clusters, (c)
before performing their clustering, they filter out infrequently
used dimensions - this can distort code signatures if the fil-
tered out data was not evenly distributed across many inter-
vals. In comparison, our analysis uses full code signatures for
classification, without examining CPI data, and we use ran-
dom projection [5] to reduce dimensionality.

We have found that it is important to project randomly in-
stead of filtering out infrequently used dimensions, because
dimensions that account for a small percentage of overall ex-
ecution can be very important indicators of program behavior
if they occur with high temporal locality. For example, if a
program executes ten million instructions inprintf, but the
program runs for ten billion instructions,printf accounts
for just 0.1% of the program’s execution, but if the program
only callsprintf at the end of execution to display results,
then those ten million instructions are highly indicative of the
program’s behavior - they should not be thrown away. If this
information is discarded, it will be difficult to correctly clas-
sify the behavior of the program when it callsprintf.

To illustrate some issues with classifying applications to
specific quadrants, Figure 4 shows the ROC graph forgcc-
166 and Figure 6 showsgcc-166’s time varying CPI and
BBV distance graphs. The time varying graph shows time in
units of 10 million instructions executed on the x-axis, and
CPI or BBV distance on the y-axis. The CPI time-varying
graph shows how thegcc’s CPI changes over time. Simi-
larly, the BBV distance graph plots the Manhattan distance
from each vector to the whole program target vector. The

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40

% False Positives

%
 T

ru
e 

P
os

iti
ve

s

10m ct .10

10m ct .30

10m ct .60

10m ct .80

Figure 4: gcc-166 - Receiver operating characteristic curves
for gcc-166 on the memory hierarchy configuration with max-
imum CPI variance from our 18 memory hierarchy configura-
tions.

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50

% False Positives

%
 T

ru
e 

P
os

iti
ve

s

10m ct .03

10m ct .05

10m ct .07

Figure 5: gzip-graphic - Receiver operating characteristic
curves for gzip-graphic on the memory hierarchy configura-
tion with minimum CPI variance from our 18 memory hierar-
chy configurations.

whole program target vector is the BBV if the whole program
is viewed as a single interval: it represents the program’s over-
all basic block profile. The BBV distance to the target vector
shows how much a program’s code profile for a 10m slice
of execution differs from its overall code profile. The same
information is also provided forgzip in Figures 5 and 7.
The time-varying graphs visibly show that changes in CPI
have corresponding changes in code signatures, which indi-
cates strong phase behavior for these applications.

Figure 4 shows that BBVs forgcc-166 track CPI
changes of 30% or more with 90% accuracy and only 5% false
positives. This shows that code signatures have astrong corre-
lation to CPI changes. This can also be seen in Figure 6 where
you can see over time that the CPI changes are mirrored with
a high accuracy by changes seen in the BBV distance graph.

In Figure 1 we used CPI thresholds of 10% to 80%, since
those found the dominating phase behavior if one had to pick
a standard set of thresholds. Figure 7 shows the CPI and BBV
distance time varying graphs forgzip-graphic on the ar-

5



0.0

1.0

2.0

3.0

4.0

5.0

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

C
P

I

 0

 0.2

 0.4

 0.6

 0.8

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

B
B

V
 D

is
ta

nc
e

Figure 6: Time varying graphs for CPI and distance of the BBV to the target vector for each interval of execution in gcc-166 at
10m granularity. To produce the target vector, we sum all the BBVs, and normalize the counts so they add up to 1. The target
vector is a profile of the program’s overall behavior. The x-axis shows execution time, in tens of millions of instructions.

0.0

0.2

0.4

0.6

0.8

1.0

 0  2000  4000  6000  8000  10000

C
P

I

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  2000  4000  6000  8000  10000

B
B

V
 D

is
ta

nc
e

Figure 7: Time varying graph of CPI and BBV distance to the target vector from each interval of execution for gzip-graphic at
10m interval size.

chitecture configuration withlowest CPI variance out of our
18 configurations. This graph shows that phase behavior can
be found by examining very small CPI changes. This is why it
is important to perform the phase analysis by clustering code
signatures in an architecture-independent manner, instead of
relying on CPI thresholds. To show this, Figure 5 plots the
ROC curves for CPI thresholds of 3%, 5% and 7% forgzip
in the same low CPI variance configuration. The results show
that even thoughgzip has very small CPI changes (less than
0.01 CPI variance), the CPI changes are still strongly corre-
lated to BBV changes.

The results in this section show a strong correlation be-
tween code signatures and performance, which contradicts the
quadrant classification forgzip andgcc in [1]. It also em-
phasizes the importance of performing classification based on
code signatures, which are independent of the underlying ar-
chitecture. Because the CPI variance can change depending
on the architecture, it is easier to find phase behavior in pro-
grams with low CPI variance by examining code signatures.

2.7 Clustering Performance

This section has shown that there is a strong relationship be-
tween CPI changes and code signature changes. We are also
interested in the homogeneity of phases after clustering simi-
lar code signatures. We measure homogeneity by examining
the CPI data for each phase.

SimPoint [18] is a tool that uses thek-means algorithm
from machine learning to group code signatures into clusters
based on signature similarity. The single most representative
code signature from each group is selected for detailed simu-
lation, and the results of each detailed simulation are extrapo-
lated to estimate the program’s overall behavior.

We present two metrics for our SimPoint results: coeffi-
cient of variation (CoV) of CPI, and estimated CPI error. The
coefficient of variation is the standard deviation divided by
the average. In other words, it is the standard deviation ex-
pressed as a fraction of the average. To calculate the whole
program CoV of CPI, we take the CPI data for each interval,
calculate the standard deviation and the average, and divide.

6



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

am
m

p/
re

f

ap
pl

u/
re

f

ap
si

/r
ef

ar
t/1

10

ar
t/4

70

bz
ip

2/
gr

ap
hi

c

bz
ip

2/
pr

og
ra

m

bz
ip

2/
so

ur
ce

cr
af

ty
/r

ef

eo
n/

co
ok

eo
n/

ka
jiy

a

eo
n/

ru
sh

m
ei

er

eq
ua

ke
/r

ef

fa
ce

re
c/

re
f

fm
a3

d/
re

f

ga
lg

el
/r

ef

ga
p/

re
f

gc
c/

16
6

gc
c/

20
0

gc
c/

ex
pr

gc
c/

in
te

gr
at

e

gc
c/

sc
ila

b

gz
ip

/g
ra

ph
ic

gz
ip

/lo
g

gz
ip

/p
ro

gr
am

gz
ip

/r
an

do
m

gz
ip

/s
ou

rc
e

lu
ca

s/
re

f

m
cf

/r
ef

m
es

a/
re

f

m
gr

id
/r

ef

pa
rs

er
/r

ef

pe
rlb

m
k/

di
ffm

ai
l

pe
rlb

m
k/

m
ak

er
an

d

pe
rlb

m
k/

pe
rf

ec
t

pe
rlb

m
k/

sp
lit

m
ai

l

si
xt

ra
ck

/r
ef

sw
im

/r
ef

tw
ol

f/r
ef

vo
rt

ex
/o

ne

vo
rt

ex
/th

re
e

vo
rt

ex
/tw

o

vp
r/

pl
ac

e

vp
r/

ro
ut

e

w
up

w
is

e/
re

f

A
V

G

C
oV

 o
f C

P
I

whole-program simpoint

200%

Figure 8: Coefficient of variation for CPI. CoV = stddev/avg. To calculate the SimPoint CoV, we compute the CoV for each
phase, then compute the weighted average CoV across all phases. Each per-phase CoV is weighted by the number of intervals
in its phase.

0%

1%

2%

3%

4%

5%

6%

am
m

p/
re

f

ap
pl

u/
re

f

ap
si

/r
ef

ar
t/1

10

ar
t/4

70

bz
ip

2/
gr

ap
hi

c

bz
ip

2/
pr

og
ra

m

bz
ip

2/
so

ur
ce

cr
af

ty
/r

ef

eo
n/

co
ok

eo
n/

ka
jiy

a

eo
n/

ru
sh

m
ei

er

eq
ua

ke
/r

ef

fa
ce

re
c/

re
f

fm
a3

d/
re

f

ga
lg

el
/r

ef

ga
p/

re
f

gc
c/

16
6

gc
c/

20
0

gc
c/

ex
pr

gc
c/

in
te

gr
at

e

gc
c/

sc
ila

b

gz
ip

/g
ra

ph
ic

gz
ip

/lo
g

gz
ip

/p
ro

gr
am

gz
ip

/r
an

do
m

gz
ip

/s
ou

rc
e

lu
ca

s/
re

f

m
cf

/r
ef

m
es

a/
re

f

m
gr

id
/r

ef

pa
rs

er
/r

ef

pe
rlb

m
k/

di
ffm

ai
l

pe
rlb

m
k/

m
ak

er
an

d

pe
rlb

m
k/

pe
rf

ec
t

pe
rlb

m
k/

sp
lit

m
ai

l

si
xt

ra
ck

/r
ef

sw
im

/r
ef

tw
ol

f/r
ef

vo
rt

ex
/o

ne

vo
rt

ex
/th

re
e

vo
rt

ex
/tw

o

vp
r/

pl
ac

e

vp
r/

ro
ut

e

w
up

w
is

e/
re

f

A
V

G

%
 C

P
I E

rr
or

 U
si

ng
S

im
P

oi
nt

Figure 9: Estimated CPI error using SimPoint at 10m interval size.

To calculate the SimPoint CoV of CPI, we perform the CoV
of CPI calculation for each cluster (phase), and then compute
the weighted average of the per-cluster CoVs of CPI. Each
per-cluster CoV is weighted by the number of intervals in its
cluster.

Figure 8 shows the whole program and SimPoint CoV
of CPI. The SimPoint CoVs are significantly lower than the
whole program CoVs, which shows that clustering the inter-
vals based only on code signatures successfully groups the
intervals into phases with low intra-phase CoV of CPI. This
shows a strong correlation between code and performance,
since our clusters are built by examining only code similari-
ties, yet each cluster contains intervals with very similar CPIs.

Figure 9 shows the amount of error in SimPoint estimated
CPI. If the error is 5%, that means the program CPI we esti-
mate is±5% different from the CPI of a complete simulation
of the program. These results also indicate a strong correla-
tion between code and performance, because the representa-
tives for each cluster chosen by SimPoint (by examining only
code signatures) have CPIs that are highly representative of
their cluster’s average CPI.

I Cache
64k 2-way set-associative, 64 byte blocks, 3 cycle la-
tency

D Cache
64k 2-way set-associative, 64 byte blocks, 3 cycle la-
tency

L2 Cache
2Meg 16-way set-associative, 64 byte blocks, 20 cycle
latency

Memory 275 cycle round trip access

Branch Pred
hybrid - 16K Meta, 8K entry Bimodal, 8K 8-bit history
L2. 16KB BTB and 16 entry RAS

O-O-O Issue out-of-order issue of up to 4 instructions/cycle, 32 entry
ROB

Mem Disam
32 entry load/store queue, loads may execute when all
prior store addresses are known

Func Units 4-integer ALU, 4-load/store units, 3-FP adders, 1-integer
MULT/DIV, 1-FP MULT/DIV

Table 2: Baseline x86 Simulation Model.

3 Sampled Code Signatures
To track program behavior, we create code signatures by pro-
filing basic blocks, loops, and procedures. All of these ap-
proaches account for every instruction executed [11]. Alterna-
tive approaches, such as performance counter sampling, avoid
the overheads of full code profiling. The performance counter
approach uses processor performance counters to gather code
samples at a rate set relative to the frequency of some chosen
processor event, such as instruction commit.

3.1 Sampling with VTune
The recent paper by Annavaram et al. [1] used VTune to
gather performance counter data to guide phase analysis. In

7



this section we examine using the same mechanism to cre-
ate sampled vectors for phase analysis and compare the sam-
pled vectors to full non-sampled vectors. To gather our re-
sults, we used the Remote Data Collector for VTune 7.2 with
driver kit 3.2. We gathered instruction retirement events on
a 3.06 GHz Intel Xeon processor with 512KB cache running
RedHat Linux kernel 2.6.1. We performed runs sampling ev-
ery 100 thousand instructions, over a set of SPEC CPU2000
benchmarks. The binaries were compiled with gcc 3.2.2,
optimized with the -O3 flag and statically linked. For pur-
pose of comparison, we gather detailed simulation results and
full BBV traces for the same benchmarks with SimpleScalar-
x86(v4.0) [4]. Not all of the SPEC programs currently run on
SimpleScalar-x86, and we provide results for all of the pro-
gram/input pairs that ran to completion. The baseline micro-
architectural model we simulate is detailed in Table 2.

VTune produces a sample trace for each program run.
Sample data is obtained via VTune’ssf5dump utility, which
post-processes a trace to produce an output file where ev-
ery sample has an instruction address (Extended Instruction
Pointer, or EIP), cycle count, process ID, CPU ID, thread ID,
and process name. The output fromsf5dump was passed
through a filtering and coalescing tool, which removes sam-
ples that belong to processes other than the one we were pro-
filing and samples with kernel-space EIPs. Filtering of kernel
samples removed at most 0.5% of the samples for any bench-
mark examined. We found that removing the kernel samples
made it easier to identify user program phase behavior.

After the filtering step, the post-processing tool forms vec-
tors of EIPs (EIPVs) by accumulating consecutive sequences
of the EIPs that passed the filtering requirements until they
account for the desired instruction length for the vector. We
used vectors of 10 million instructions. Timing information
for each vector was gathered by summing the differences in
cycle counts between each sample in the vector and the sam-
ple, filtered or otherwise, immediately preceding it.

This method slightly differs from the filtering scheme
used in [1]. In that work, infrequently used EIPs of the pro-
gram are filtered out as a means to reduce dimensionality prior
to vector formation. This technique may distort the program
code signatures in two ways: (a) removing the infrequent EIP
dimensions can overlook significant program behavior, and
(b) filtering out EIPs prior to vectorization will result in a in-
complete instruction count of the program since the missing
EIPs will not be represented in the vectors.

One concern with VTune’s current sampling approach is
that it uses a uniform sampling rate. Uniform sampling is vul-
nerable to synchronization problems with repetitive portions
of a program’s execution. In such cases a repeating region
may be sampled at the same point multiple times, and the rep-
resentation of the region will lack robustness. If the region is
executed again later, a different EIP may be repeatedly sam-
pled and it will not carry any similarity to the previous sam-
pling from the same region.

3.2 Sampled Code Signatures
An EIPV is a record of which instructions were captured dur-
ing periodic sampling of the instruction stream over a given
interval of execution. In this sense, its structure is similar to
that of a BBV, but the sampled nature of its construction leads
to the entries having different meanings; the BBV entries are
records of all basic blocks that have executed during an inter-
val, thereby accounting for all executed instructions, whereas
EIPV entries represent which instruction addresses were sam-
pled during that interval of execution.

There are two main issues with using EIPVs. The first
is that sampling 1 EIP out of every 100,000 EIPs does not
fully characterize a program’s behavior, especially for pro-
grams with large code bases, such asgcc. The other issue is
that the clustering approach we used and the one used in [1]
are based upon grouping vectors (intervals) together based on
their similarity across the vector dimensions. When sampling
EIPs, two EIPs in the same basic block can be sampled dif-
ferent numbers of times. Instructions in the same basic block
are always executed the same number of times, due to the
single-entry single-exit nature of basic blocks. Because sam-
pled EIPs in the same basic block can have different sample
counts, EIPVs may appear farther apart than they should be.

To address these two issues we propose mapping EIP sam-
ple data to larger code structures. To accomplish this, we use
Pin [14] to find the range of EIPs that correspond to the start
and end of each loop and procedure in each program. We
examine results for two sampled code signatures based on
mapping EIPs to only procedures and mapping EIPs to loops
and procedures. For the procedure only sampled code signa-
tures, each vector has one dimension for every executed pro-
cedure in the program. The EIPs for an interval are mapped to
their corresponding procedure dimension, which is the proce-
dure they are from. Therefore, the final normalized sampled
vtune-proc vector represents the percent of sampled exe-
cution that occurred in each procedure during that interval.

We also examine a sampled code signature mapping the
EIPs to loops and procedures. This is calledvtune-loop
in the results below. For this code signature sample, each
dimension represents either a loop or procedure in the pro-
gram’s execution. The loops and procedures are treated as
static nesting levels in the binary, and the EIP is mapped to
the most deeply nested structure that has its start and end PC
range cover the PC of the EIP sample. In other words, each
EIP maps to the most deeply nested loop/procedure that con-
tains it. In [11] we showed that creating full code signatures
with vectors of loops and procedures performed better than
only using procedures, because some programs spend most of
their time in a small number of procedures, and loops provide
more information about a program’s control flow. In addition,
we found the loop-and-procedure vectors perform just as well
as the full BBVs [11].

3.3 Dimensionality of Full and Sampled Code Signatures
VTune is an attractive data gathering tool for EIPVs because
the imposed overhead is small enough that the impact on the

8



1

10

100

1000

10000

bz
ip2

/g
ra

ph
ic

bz
ip2

/p
ro

gr
am

gc
c/1

66

gc
c/2

00

gc
c/e

xp
r

gc
c/i

nte
gr

ate

gc
c/s

cil
ab

gz
ip/

gr
ap

hic

gz
ip/

log

gz
ip/

pr
og

ra
m

gz
ip/

ra
nd

om

gz
ip/

so
ur

ce

m
cf/

re
f

pe
rlb

mk/d
iffm

ail av
g

A
ve

ra
ge

 #
 o

f N
on

-z
er

o 
D

im
en

si
on

s 
pe

r 
V

ec
to

r
vtune-eipv-10m-100k vtune-loop-10m-100k vtune-proc-10m-100k full-bbv-10m

Figure 10: Average number of unique non-zero dimensions per vector per interval of execution for 10m instructions per interval.
The y-axis is a logarithmic scale. “vtune-eipv-10m-100k” are EIPVs collected at 10m granularity with VTune sampling every
100k instructions. “vtune-loop-10m-100k” results from mapping each EIP to its corresponding loop or procedure. “vtune-
proc-10m-100k” results from mapping each EIP to its corresponding procedure. “full-bbv-10m” are full BBVs collected from
SimpleScalar x86. All subsequent graphs use this naming scheme.

program under analysis is low for sample sizes of every 100
thousand instructions to every 1 million instructions. The av-
erage increase in execution time when running VTune with
sampling at every 100K instructions was 5.6% and at every 1
million instructions was 1.5%. Increasing the sampling fre-
quency will incur more overhead and eventually bias the ob-
served performance of the application significantly.

The acceptable sampling rate places a limitation on the
EIPV: it will always provide a sparse representation of pro-
gram execution. This limitation may not be a handicap for
programs with small working sets that can be represented with
a few samples. Complex programs, however, such asgcc and
perlbmk, generally have larger working sets of instructions.
These complex programs often execute a substantial number
of distinct instructions within an interval, and sparsely sam-
pling such an interval will not effectively represent it.

Figure 10 shows the average number of non-zero dimen-
sions per vector for several different vector types, sampling
rates, and granularities. Results are provided for EIPVs
(vtune-eipv), sampled loops plus procedures based on the
EIPVs (vtune-loop), sampled procedures based on the EIPVs
(vtune-proc), and the BBVs (full-bbv) from SimpleScalar. We
dynamically count the number of non-zero dimensions per
vector, which is the number of unique EIPs, loops, or pro-
cedures sampled for the VTune results. For the SimpleScalar
x86 results, the number of non-zero dimensions per vector
counts the average number of unique basic blocks executed in
each interval. This metric provides a rough measurement of
code complexity found in each interval for the different vector
types. The comparison between the number of basic blocks
from the sampled EIPVs and from the full BBVs is a compar-
ison of the degree of code coverage provided by sampling. As
seen in Figure 10, a comparison between sampled EIPVs and
full BBVs for gcc shows that the actual number of executed
basic blocks per interval is more than ten times larger than that

reported by the sampled EIPVs, which is in terms of instruc-
tions and the number of dimensions in terms of instructions
should be significantly larger than basic blocks. Even for less
complex programs, the differences in dimensionality are still
notable.

We also wanted to examine the ranking of the dimensions
between the sampled data and full profiling to see how well
they matched. To do this we generated two profiles for each
code construct examined. We gathered a profile of the com-
plete program’s execution using the sampled data with VTune
and a full count profile using Pin [14]. We then plot in Fig-
ure 11 how well these two profiles match in terms of percent
of executed instructions seen in their accumulative profiles.

For the eip results, we sort the full instruction count profile
by each instruction’s execution frequency. Starting with the
most frequently executed instruction of the full profile, we ac-
cumulate the instruction’s execution counts until we reach 5%
of the total number of dynamic instructions executed. This
percentage is represented on the x-axis in Figure 11. We take
these same static instructions from the accumulative EIP pro-
file, and accumulate their dynamic instruction count and plot
it on the y-axis. The process is then repeated for other x-
axis values. The same is done for loops. Figure 11 therefore
shows the difference in dynamic instruction count between
the sampled and full instruction and loop profiles. The results
show that the relative ranking of EIPs is off by up to 5% from
the full profile, whereas when looking at the sampled data in
terms of loops plus procedures it is almost an exact match
with perfect. This shows that creating sampled vtune-loop
vectors provides a representation closer to the full profile than
using EIPVs.

3.4 Correlating Code Signatures and CPI Changes
Figure 12 shows the Receiver Operating Characteristic (ROC)
curves as described in Section 2.5. These plots show that

9



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Actual Dynamic Execution Coverage

V
T

un
e 

R
ep

or
te

d 
D

yn
am

ic
 

E
xe

cu
tio

n 
C

ov
er

ag
e

eip

loop

perfect

Figure 11: VTune sample coverage in terms of instructions
executed. We collect two profiles of program behavior: a full
instruction-level profile using Pin, and a sampled instruction-
level profile using VTune, sampling every 100K instructions.
The X-axis represents the amount of dynamic execution cov-
ered by the most frequently executed instructions (eip) or
loops from the full profile. The Y-axis shows the amount of
dynamic execution covered from the sampled profile using the
same set of EIPs or loops that accounted for the top X% from
the Pin coverage. Results closer to the “perfect” line are bet-
ter. Results above the perfect line are over represented, and
results below the line are under represented.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50%

% False Positives

%
 T

ru
e 

P
os

iti
ve

s

vtune-eipv-10m-100k ct .30
vtune-eipv-10m-100k ct .90
vtune-loop-10m-100k ct .30
vtune-loop-10m-100k ct .90
full-bbv-10m ct .30
full-bbv-10m ct .90

Figure 12: Receiver operating characteristic at 10m interval
size. The number after “ct” in the series name is the CPI
threshold used to identify a significant change in CPI.

EIPVs can be used to predict CPI changes, but not as accu-
rately as full BBVs. Converting EIPVs to sampled loops plus
procedures improves predictability as shown in Figure 12.
Larger CPI changes are easier to predict, independent of vec-
tor type, which is consistent with previous results. Recall
that our ROC curves are clustering-independent: these results
were produced just by examining the change in CPI between
adjacent intervals of execution and the differences between
unprojected vectors from adjacent intervals of execution. The

ROC curves show correlations between significant vector dif-
ferences and significant performance changes for various CPI
and vector significance thresholds.

3.5 Clustering Performance
In this section we apply SimPoint [9] to the VTune sampled
code signatures and the full BBV signatures. Figure 13 shows
the coefficient of variation of CPI after clustering with Sim-
Point as described in Section 2.7. Figure 14 shows SimPoint
CPI estimation accuracy. Results are shown using a 10 million
interval size. For the sampled code signatures, samples were
taken every 100K instructions. To make a more fair com-
parison across all of the techniques, we fixedk, which is the
number of clusters (phases) formed in SimPoint using thek-
means algorithm, tok = 61 for each of the techniques. This
value is based on the average number of clusters chosen by
SimPoint for the full BBV results across all the benchmarks.

The results show that using the full BBV information has
a much lower CoV of CPI and estimated CPI error rate, com-
pared to sampled vectors. In particular,gcc andgzip have
high variations due to insufficient data in the EIPV signatures
to correctly cluster the intervals into homogeneous phases.
Using sampled loops and procedures reduces estimated CPI
error and CoV of CPI overall, and significantly helpsgcc
andperl. The results also show that mapping EIP samples
to procedures (vtune-proc) has significantly worse error
rates for a fewgcc inputs, whereas mapping to loops and
procedures (vtune-loop) consistently performs well.

Figure 15 shows the absolute percent CPI error over the
program’s execution. This is a different way of looking at
CPI error than in Figure 14. Sometimes, SimPoint selects
representatives that over- or under-estimate the average CPI
for their phase. When these CPI estimates are combined
to produce an estimate for the program’s overall CPI, an
over-estimated CPI can hide (“cancel out”) another under-
estimated CPI, resulting in a low error rate, even when the
representatives are not well chosen. To address this problem,
Figure 15 shows the absolute CPI error over the complete exe-
cution of the program, without allowing positive and negative
per-phase estimated CPI errors to cancel each other out. In
other words, Figure 14 shows how well SimPoint estimates a
program’s overall CPI, and Figure 15 shows how well Sim-
Point estimates the average CPI ofeach phase.

For example, Figure 14 shows that SimPoint estimates
gcc-200’s overall CPI with 1% error with EIPVs, but if we
look at the per-phase CPI estimates in Figure 15, the error is
25%. In this case, the representatives selected by SimPoint
were actually not very representative, even though the over-
all estimated CPI error is low, because the per phase errors
in estimated CPI canceled each other out when calculating an
overall CPI estimate. In contrast,gcc-166 was not so lucky
where it had absolute error of 45% when using EIPVs, and
these did not cancel each other out as well, and the overall
CPI error was 33% as shown in Figure 14.

The results show that full-bbvs tend to have fairly consis-
tent behavior when looking at overall CPI error and absolute

10



0%

10%

20%

30%

40%

50%

bz
ip2

/g
ra

ph
ic

bz
ip2

/p
ro

gr
am

gc
c/1

66

gc
c/2

00

gc
c/e

xp
r

gc
c/i

nte
gr

ate

gc
c/s

cil
ab

gz
ip/

gr
ap

hic

gz
ip/

log

gz
ip/

pr
og

ra
m

gz
ip/

ra
nd

om

gz
ip/

so
ur

ce

m
cf/

re
f

pe
rlb

mk/d
iffm

ail av
g

C
oV

 o
f C

P
I

vtune-eipv-10m-100k vtune-loop-10m-100k vtune-proc-10m-100k full-bbv-10m

Figure 13: Coefficient of variation of CPI after clustering with 61 clusters at 10m granularity.

0%

10%

20%

30%

40%

bz
ip2

/g
ra

ph
ic

bz
ip2

/p
ro

gr
am

gc
c/1

66

gc
c/2

00

gc
c/e

xp
r

gc
c/i

nt
eg

ra
te

gc
c/s

cil
ab

gz
ip/

gr
ap

hic

gz
ip/

log

gz
ip/

pr
og

ra
m

gz
ip/

ra
nd

om

gz
ip/

so
ur

ce

mcf/
re

f

pe
rlb

m
k/d

iffm
ail av

g

%
 C

P
I E

rr
or

vtune-eipv-10m-100k

vtune-loop-10m-100k

vtune-proc-10m-100k

full-bbv-10m

Figure 14: SimPoint estimated CPI error with 61 clusters at 10 million instructions per interval.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

bz
ip2

/g
ra

ph
ic

bz
ip2

/p
ro

gr
am

gc
c/1

66

gc
c/2

00

gc
c/e

xp
r

gc
c/i

nte
gr

ate

gc
c/s

cil
ab

gz
ip/

gr
ap

hic

gz
ip/

log

gz
ip/

pr
og

ra
m

gz
ip/

ra
nd

om

gz
ip/

so
ur

ce

m
cf/

re
f

pe
rlb

mk/d
iffm

ail av
g

C
P

I A
bs

ol
ut

e 
E

rr
or

vtune-eipv-10m-100k

vtune-loop-10m-100k

vtune-proc-10m-100k

full-bbv-10m

Figure 15: SimPoint absolute error after clustering with 61 clusters at 10 million instructions per interval.

11



CPI error. Thus, the representatives for each phase selected by
SimPoint based on full-bbv data not only represent the whole
program well, but also represent each phases well. The results
show that the absolute error for full non-sampled basic block
vectors is below 15% for all programs, with an average of 2%
across all programs examined.

4 Summary
In this paper, we demonstrated that a strong correlation exists
between code and performance for SPEC2000 programs. This
was shown in three ways:

• The high correlation between CPI changes and code signa-
ture changes seen in receiver operating characteristic plots
(Figure 1). The correlation seen in the ROC curves is in-
dependent of projection and the clustering algorithm used.

• The low intra-phase coefficient of variation of CPI, com-
pared to the high whole-program coefficient of variation of
CPI, when intervals are grouped into phases by examining
only the code signatures (Figure 8).

• The low error rates when predicting overall CPI with code
signature phase analysis (Figure 9).

We also show a weaker correlation between EIPVs and
performance. EIPVs show weaker correlations between CPI
changes and code signature changes in ROC curves, higher
intra-phase CoV of CPI, and higher absolute CPI error rates.
The primary reason for this is the loss of information due to
sampling. This was shown in the differences in dimension-
ality, wheregcc had 10 times the number of unique basic
blocks profiled compared to the number of unique EIPs de-
tected.

Finally, we showed that EIPVs can be converted to sam-
pled vectors of loops and procedures by mapping each EIP
to its corresponding code construct using a tool like Pin [14],
and building new vectors which track loop or procedure dis-
tributions instead of basic block distributions. Mapping sam-
pled EIP code signatures to loops improves results because
combining samples taken from the same code structure re-
duces noise introduced by sampling. We found that mapping
EIP code signatures to procedures does not always improve
results, because some programs do not use very many pro-
cedures, which makes it difficult to detect phase behavior at
the procedure level. In general, mapping EIPVs to loop plus
procedure vectors improves ROC curves, decreases CoV of
CPI, and decreases estimated CPI error rates, but not enough
to make the results as good as full code profiling.

Acknowledgments
We would like to thank the anonymous reviewers for provid-
ing helpful comments on this paper. This work was funded in
part by NSF grant No. CCR-0311710, NSF grant No. ACR-
0342522, UC MICRO grant No. 03-010, and a grant from
Intel and Microsoft.

References
[1] M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hankins, and

B. Davies. The fuzzy correlation between code and performance pre-
dictability. In International Symposium on Microarchitecture, December
2004.

[2] R. Balasubramonian, D. Albonesi,
A. Buyuktosunoglu, and S. Dwarkada. Memory hierarchy reconfigur-
tion for energy and performance in general-purpose processor architec-
tures. In33th Annual International Symposium on Microarchitecture,
December 2000.

[3] M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix
to guide simultaneous multithreading simulation. InIEEE International
Symposium on Performance Analysis of Systems and Software, March
2004.

[4] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison,
June 1997.

[5] S. Dasgupta. Experiments with random projection. InUncertainty in
Artificial Intelligence: Proceedings of the Sixteenth Conference (UAI-
2000), pages 143–151, 2000.

[6] A. Dhodapkar and J. E. Smith. Dynamic microarchitecture adaptation
via co-designed virtual machines. InInternational Solid State Circuits
Conference, February 2002.

[7] A. Dhodapkar and J. E. Smith. Managing multi-configuration hardware
via dynamic working set analysis. In29th Annual International Sympo-
sium on Computer Architecture, May 2002.

[8] A. Dhodapkar and J. E. Smith. Comparing program phase detection
techniques. In36th Annual International Symposium on Microarchitec-
ture, December 2003.

[9] G. Hamerly, E. Perelman, and B. Calder. How to use SimPoint to pick
simulation points.ACM SIGMETRICS Performance Evaluation Review,
31(4), March 2004.

[10] M. Huang, J. Renau, and J. Torrellas. Positional adaptation of proces-
sors: Application to energy reduction. In30th Annual International
Symposium on Computer Architecture, June 2003.

[11] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classifi-
cation. InIEEE International Symposium on Performance Analysis of
Systems and Software, March 2004.

[12] J. Lau, S. Schoenmackers, and B. Calder. Transition phase classification
and prediction. In11th International Symposium on High Performance
Computer Architecture, February 2005.

[13] W. Liu and M. Huang. EXPERT: Expedited simulation exploiting pro-
gram behavior repetition. InInternational Conference on Supercomput-
ing, June 2004.

[14] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi.
Pinpointing representative portions of large Intel Itanium programs with
dynamic instrumentation. InInternational Symposium on Microarchi-
tecture, December 2004.

[15] M. S. Pepe. The statistical evaluation of medical tests for classification
and prediction.Oxford University Press, 2003.

[16] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and
early simulation points. InInternational Conference on Parallel Archi-
tectures and Compilation Techniques, September 2003.

[17] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analy-
sis to find periodic behavior and simulation points in applications. InIn-
ternational Conference on Parallel Architectures and Compilation Tech-
niques, September 2001.

[18] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-
cally characterizing large scale program behavior. In10th International
Conference on Architectural Support for Programming, October 2002.
http://www.cs.ucsd.edu/users/calder/simpoint/.

[19] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In
30th Annual International Symposium on Computer Architecture, June
2003.

12


