
1

Deterministic Memory-Efficient String Matching
Algorithms for Intrusion Detection

Nathan Tuck† Timothy Sherwood‡ Brad Calder† George Varghese†

†Department of Computer Science and Engineering, University of California, San Diego
‡Department of Computer Science, University of California, Santa Barbara

Abstract

Intrusion Detection Systems (IDSs) have become
widely recognized as powerful tools for identifying, de-
terring and deflecting malicious attacks over the network.
Essential to almost every intrusion detection system is the
ability to search through packets and identify content that
matches known attacks. Space and time efficient string
matching algorithms are therefore important for identify-
ing these packets at line rate.

In this paper we examine string matching algorithms
and their use for Intrusion Detection. In particular, we fo-
cus our efforts on providing worst-case performance that
is amenable to hardware implementation. We contribute
modifications to the Aho-Corasick string-matching algo-
rithm that drastically reduce the amount of memory re-
quired and improve its performance on hardware imple-
mentations. We also show that these modifications do
not drastically affect software performance on commod-
ity processors, and therefore may be worth considering in
these cases as well.
Keywords: System Design, Network Algorithms

I. INTRODUCTION

With each passing day there is more critical data ac-
cessible in some form over the network. Any publicly
accessible system on the Internet today will be rapidly
subjected to break-in attempts. These attacks can range
from email viruses, to corporate espionage, to general de-
struction of data, to attacks that hijack servers from which
to spread additional attacks. Even when a system cannot
be directly broken into, denial of service attacks can be
just as harmful to individuals, and can cause nearly equal
damage to the reputations of companies that provide ser-
vices over the Internet. Because of the increasing stakes
held by the various users of the internet, there has been
widespread interest in combating these attacks at every
level, from end hosts and network taps to edge and core
routers.

Intrusion Detection Systems (or IDSs) are emerging as
one of the most promising ways of providing protection
to systems on the network. The IDS market has been es-
timated at $100 million by the Aberdeen Group, with ex-
pectations that it will double in 2004 and keep growing in
future years. By automatically monitoring network traffic
in real time, intrusion detection systems can alert admin-
istrators of suspicious activities, keep logs to aid in foren-
sics, and assist in the detection of new worms and denial
of service attacks.

As with firewalls, intrusion detection systems are grow-
ing in popularity because they provide a site resilience to
attacks without modifying end-node software. While fire-
walls only limit entry to a network based on packet head-
ers, intrusion detection systems go beyond this by iden-
tifying possible attacks that use valid packet headers that
pass through firewalls. Intrusion detection systems gain
this capability by searching both packet headers and pay-
loads to identify attack signatures.

To define suspicious activities, an IDS makes use of a
set of rules which are applied to matching packets. A rule
consists at minimum of a type of packet to search, a string
of content to match, a location where that string is to be
searched for, and an associated action to take if all the con-
ditions of the rule are met. An example rule might match
packets that look like a known buffer overflow exploit in
a web server; the corresponding action might be to log the
packet information and alert the administrator.

Because of the utility of IDSs they are beginning to be
deployed in a wide range of operating environments. End-
hosts use them to monitor and prevent attacks from incom-
ing traffic. They can be found in network-tap devices that
are inserted into key points of the network for diagnos-
tic purposes. They will soon even find their way into edge
and core routers to protect the network infrastructure from
distributed attacks.

The challenge is that increasing line-rates and an explo-
sion in the number of attacks mounted as well as plummet-

2

ing unit costs have made cost-effective deployment a seri-
ous issue. In addition, as IDSs move from end-hosts into
edge and core routers, the needs placed on algorithms for
intrusion detection will change. While common-case per-
formance can be an acceptable metric for end-hosts that
are based on commodity processors, in order to be suc-
cessful inside the network infrastructure, algorithms must
satisfy stringent worst-case performance bounds and tight
constraints on memory.

At the heart of almost every modern intrusion detec-
tion system is a string matching algorithm. String match-
ing is crucial because it allows detection systems to base
their actions on the content that is actually flowing to a
machine. From this sea of packets, the string identifies
those packets that contain data matching the fingerprint of
a known attack. Essentially, the string matching algorithm
compares the set of strings in the rule-set to the data seen
in the packets that flow across the network.

String matching is computationally intensive. For ex-
ample, the string matching routines in Snort account for
up to 70% of total execution time and 80% of instructions
executed on real traces [2]. Because string matching dom-
inates the performance in this and many other IDS, in this
paper we concentrate our efforts on building smaller and
faster string matching algorithms.

We present optimized techniques for matching large
sets of strings in incoming packets in the context of net-
work intrusion detection. Our optimizations draw upon
parallels between the well-studied problem of IP lookup
and the nascent problem of detecting suspicious strings in
packets. We show that most of the memory used by mod-
ern string matching algorithms goes towards the storage
of pointers, which is similar to IP lookup.

By formulating a novel compressed pointer methodol-
ogy for string matching data structures, we can reduce the
amount of memory required to be 2% of the original (from
53.1 MB down to 1.09 MB) for a current rule set used in a
modern IDS. This result is important because we provide
this compression while at the same time providing worst
case performance guarantees for the string matching algo-
rithm.

We present the results of our techniques as applied to
the open-source IDS software Snort [14]. We characterize
the properties of a real set of IDS string matching rules
and examine both how the rules have changed over time,
and the effect of those changes on the data structures used.
These characteristics are then exploited to produce a new
string matching technique within an actual implementa-
tion of Snort.

We examine the amount of memory saved by our string
matching memory optimizations and the improvement in

throughput that we obtain for both commodity hardware
and for proposed next generation network processors. By
addressing worst case performance in both the algorithms
and architecture we ensure that it is impossible for an ad-
versary to construct an attack based on flooding the IDS
with packets that it performs poorly on. An important con-
tribution of this work is the development of an algorithm
that performs well, requires little memory, and has useful
bounds on worst case performance.

The contributions of this paper can be summarized
as:

• Characterization: We characterize the need for and
use of string matching in intrusion detection systems,
and show how certain properties of the data lend
themselves well to optimizations somewhat similar
to those applied to IP-lookup. We also characterize
the growth and properties of the database of known
attacks.

• New Algorithms: Based on these characterizations,
we design two new string matching algorithms that
can reduce the memory usage to as low as 2% of
that required by existing algorithms while maintain-
ing bounded worst case performance.

• Evaluation: We evaluate these new algorithms in
two operational contexts, first by examining worst-
case performance of hardware implementations and
secondly in a commonly used intrusion detection
system, Snort, running on a commodity processor for
an example trace. We show hardware performance
more than 30% greater that other algorithms and only
slightly degraded software performance.

We begin by characterizing the place of string matching
in intrusion detection systems such as Snort and discuss
relevant prior work in string matching algorithms in Sec-
tion II. We then discuss our proposed optimizations based
on these observations in Section III. A detailed evaluation
of the results of our techniques can be found in Section IV.
Our contributions are summarized in Section V.

II. STRING MATCHING FOR INTRUSION DETECTION

In the Introduction we motivated the need for string
matching in Intrusion Detection Systems. In this section
we further demonstrate how string matching is used in an
actual intrusion detection system. We also examine the
state of the art in string matching as it relates to intrusion
detection, and note some interesting parallels between the
problem of string matching and the problem of IP-lookup.

A. Quantifying the Use of String Matching

We asserted earlier that string matching is the most crit-
ical component of an Intrusion Detection System (IDS). It

3

is important to further examine exactly how the matching
is being exercised. To do this analysis we use the freely
available and widely used IDS tool, Snort.

1) Snort - An Intrusion Detection System: Snort uses
a set of rules that are derived from known attacks or other
suspicious behavior. The rules are generated manually by
experts who extract relevant (presumably unusual) con-
tent strings from the payload and header of known attacks.
If all the conditions of the rule are met (which include
matching the string, its location within the packet, and
several other possible conditions) then the action specified
by the rule is applied. This action can include logging the
packet, alerting a system administrator via email, ignoring
the packet, or dynamically activating other rules.

The distribution of Snort includes a set of rules which
cover known attacks such as the exploit that allowed
CodeRed [5] to spread or buffer overflows in POP3
servers. Rules are usually added to Snort as new vulnera-
bilities are discovered. Each of these rules contains a con-
tent string, associated rules for its location, and the type of
packet it can appear in. To the best of our knowledge, this
default rule set is used in most production uses of Snort
with minor modifications, as it represents best practices
and knowledge of the internet community.

2) Scalability of the Intrusion Detection System
Database: An Instruction Detection System (IDS) con-
tains a set of rules with corresponding actions; the set of
rules supported by the IDS is called a database. In or-
der to understand the hardware issues behind building an
IDS we need to first understand the scalability of the IDS
database over time.

We begin by examining the actual data within the
strings contained in the rules of a typical IDS. The current
standard distribution of Snort comes with over 1500 rules
enabled by default. Figure 1 shows a histogram of the
number of bytes in the character portion of each unique
rule in the default database.

Rules can match non-letter characters such as IP ad-
dresses; this partially explains the large number of 4-byte
rules. As can be seen in Figure 1, the bulk of the rules
have length on the order of 15 bytes but there is a large
distribution above and below. We also see from this fig-
ure that there are many rules with very long lengths. This
implies that it is beneficial to avoid any string-matching
technique which has run-time proportional to the length
of the rules in the database.

New attacks are being created all of the time, and as
they are, new rules are being added to the Snort database
to detect or combat them. Figure 2 shows how the size
of the Snort rule database has grown over time. We char-
acterize the size of the database in terms of the number

1 5 10 15 20 25 30 35 40 45 50+

Length of String in Rule

0

20

40

60

80

100

N
u

m
b

er
 o

f
R

u
le

s

Fig. 1. Distribution of the lengths of the unique strings found in the
default Snort database.

N
ov 2000

Jun 2001

A
pr 2002

Jun 2002

O
ct 2002

Feb 2003

M
ay2003

Jun 2003

1.0X

1.5X

2.0X

2.5X

3.0X

In
cr

ea
se

 in
 N

u
m

b
er

 (
fr

o
m

 N
ov

 2
00

0)

Number of Characters
Number of Unique Strings 1533

19124

Fig. 2. The growth of the Snort rule database over the last three years.

W
u-M

anber

A
ho-C

orasick

S
F

K
search

B
itm

apped

P
ath C

om
pr

0

20

40

60

To
ta

l D
at

a
S

tr
u

ct
u

re
 S

iz
e

(M
B

) Nov 2000
Jun 2003

17.6

29.1

40.2

53.1

0.8 1.2 2.0 2.8
0.7 1.1

Fig. 3. Sizes of string matching data structures for known algorithms
and our work.

4

of unique strings (multiple rules may use the same string,
but we do not include these duplicates as they should have
little effect on determining a string match), and the total
number of bytes in unique strings. It can be seen that the
number of rules and the number of bytes in these rules
is increasing quite quickly. Over the last three years the
number of rules has increased by over a factor of 2.75
while the total number of bytes in these rules has increased
by almost a factor of 2.5.

This data leads to three conclusions. First, the simple
technique of linearly searching through the set of rules is
becoming increasingly infeasible. Second, the database is
growing at a rate that is well within Moore’s Law, which
implies that the increase in the size of the rule database
has thus far been compensated for by increased transis-
tor count on chips and has thus gotten easier to imple-
ment in a single chip rather than harder. The third con-
clusion is that we need a technique with run-time perfor-
mance, excluding data structure construction costs, that
is independent of the size of the rule database. Luckily,
such algorithms already exist today, one example being
the Aho-Corasick algorithm [1]. We ignore construction
costs because building the data structure in all of the al-
gorithms we consider is quite fast and is only performed
when loading a new ruleset, restarting the IDS, or for a
very few dynamic rules.

B. State of the Art in String Matching

To understand the heart of a modern IDS system, we
must now explain the core string matching algorithms.
The first thing worth noting is that the relevant body of lit-
erature for this problem is the multi-pattern string match-
ing problem, which is somewhat different from the single-
pattern string matching solutions that many people are fa-
miliar with such as Boyer-Moore [3]. For single-pattern
string matching, there is a large body of work in which a
single string is to be searched for in the text. This may
come up in word processing applications, e.g., in search-
and-replace operations.

On the other hand, the multi-pattern string matching
problem searches a body of text (in our case a packet
stream) for a set of strings. One can trivially extend a
single pattern string matching algorithm to be a multiple
pattern string matching algorithm by applying the single
pattern algorithm to the search text for each search pat-
tern. Obviously this does not scale well to larger sets
of strings to be matched. Instead, multi-pattern string
matching algorithms generally preprocess the set of in-
put strings, and then search all of them together over
the body of text. Previous work in precise multi-pattern

string matching includes Aho-Corasick [1], Commentz-
Walter[6], Wu-Manber [21], and others.

There has also been even more recent work in imprecise
string matching algorithms using hashing and signature-
based techniques [13], [9]. Although these methods may
meet the criteria of having deterministic execution time
per packet, there is the problem that positive matches must
be reverified using a precise string matching algorithm.
Thus, the performance of the underlying precise matching
algorithm is still important, albeit at a reduced level.

Imprecise string matching also introduces the possi-
bility that certain innocent data streams may introduce a
rate of sequential false positives that overwhelm the exact
matching algorithm unless it is capable of processing at
line rate. We do not address the open question of whether
imprecise methods are completely appropriate for use in
situations where worst-case performance is an important
metric, but assert that in any case the underlying precise
multi-pattern string matcher performance is still impor-
tant.

We now describe some of the multi-pattern string
matching algorithms that appear in the current version
of Snort and extend this with some further discussion of
other string matching algorithms.

1) Bad Character Heuristics: The bad character
heuristic should be familiar to those who have seen Boyer-
Moore string matching before. Given a single pattern of
length n to match, one can look ahead in the input string
by n characters. If the character at this position is not
a character from our pattern, we can immediately move
the search pointer ahead by n + 1 characters without ex-
amining the characters in between. If the character we
look-ahead to does appear in the string, but is not the last
character in the search string, we can skip ahead by the
largest amount that ensures that we have not missed an
instance of our pattern.

This bad character heuristic is adapted in a straight-
forward manner to most implementations of multi-pattern
string matching algorithms. In order to make it work, one
must be conservative. The algorithm can only look ahead
by the length of the shortest pattern to be matched and the
skip ahead values for any character must be the minimum
of the skip ahead values for that character in any of the
individual truncated patterns.

The basic problem with using the bad character heuris-
tic as part of an algorithm in an IDS is that it yields sub-
linear performance only in the average case, a fact that is
easily exploitable by attackers. If the underlying pattern
matching algorithm is not fast enough to keep up with line
rate, it is quite easy for an adversary to hide his attack
by first swamping the IDS with packets that defeat the

5

...
Current Node

a b y z

Child

x

!x
SiblingCurrent Node

x

bar

fo

ba

ca

foo for

cat car

Hash

a 1

c 2

r 0

o 0

x 3

z 3

c)

a)

b)

Shift

Modified Wu-Manber

SFK Search

Aho-Corasick

Next Node

Fig. 4. High Level Data Structures for String Matching Algorithms

bad character heuristic. This is particularly true with the
growing size of rule sets, as the adversary has an increas-
ing language of packets to work with that both defeat the
bad character heuristic and yet are perhaps valid enough
not to be noticed as a deliberate attack.

We mention the bad character heuristic in its own
section because it is a very common mechanism in
most multi-pattern matching algorithms to achieve perfor-
mance. Implementors should think very carefully about
the extent to which they rely on a heuristic if it affects the
security of their network.

2) Aho-Corasick: One of the earliest algorithms in
precise multi-pattern string matching is due to Aho-
Corasick [1], which is able to match strings in worst-
case time linear in the size of the input. Aho-Corasick
works by constructing a state machine from the strings to
be matched. The state machine starts with an empty root
node which is the default non-matching state. Each pat-
tern to be matched adds states to the machine, starting at
the root and going to the end of the pattern. The state ma-

struct aho_state {
struct aho_state * next_state[256];
struct rule * rule_list;

};

Fig. 5. Base Optimized Aho-Corasick Data

struct aho_state {
struct aho_state * next_state[256];
struct rule * rule_list;
struct aho_state * fail_ptr;

};

Fig. 6. Base Un-optimized Aho-Corasick Data

chine is then traversed and failure pointers are added from
each node to the longest prefix of that node which also
leads to a valid node in the trie. We show a single node of
the state machine in Figure 4 (a).

Beyond this basic notion, there are two choices for the
algorithm. We can optimize the data structure further by
using the failure pointers to precompute the next state for
every character from every state in the machine (see Fig-
ure 5), or we can leave these transitions undefined and
traverse the failure pointers at run-time (see Figure 6).
If the data structure is optimized, then Aho-Corasick re-
quires only a single memory reference (albeit a very wide
memory reference) per character in the input. If the data
structure is left unoptimized, one can show via amortized
analysis that only two (again wide) memory references per
character of input string are required to traverse the data
structure.

The default implementation of Aho-Corasick in Snort
uses the optimized data structure. We use the unopti-
mized data structure because the undefined pointers allow
us significant opportunity for space optimizations. Wat-
son [18], [19] previously showed that the unoptimized
Aho-Corasick (AC-FAIL in his terminology) could be
more space efficient than optimized Aho-Corasick, but he
compressed his data into a tabular state machine which
we believe is not compatible with our goal of an efficient
hardware implementation that can be easily altered as rule
sets change.

3) SFKSearch: SFKSearch is the algorithm used for
low memory situations in Snort. The algorithm builds a
trie, a node of which we show in Figure 4 (b). Each level
in the trie is a sequential list of sibling nodes that con-
tain a pointer to matching rules, a character that must be
matched to traverse to their child node, and a pointer to
the (next) sibling node. The algorithm uses a bad charac-
ter shift table to advance through search text until it en-
counters a possible start of a match string, at which point
it traverses the trie looking for matches. If there is a match

6

between the character in the current node and the current
character in the packet, the algorithm follows the child
pointer and increments the character packet pointer. Oth-
erwise, it follows the sibling pointer until it reaches the
end of the list, at which point it recognizes that no fur-
ther matches are possible. In the case that matching fails,
the algorithm backtracks to the point at which the match
started, and now considers matches starting from the next
character in the packet.

In the worst case, this algorithm can make L · P mem-
ory references where L is the length of the longest pattern
string and P is the length of the packet. This worst-case
performance is quite poor compared to algorithms like
Aho-Corasick that take roughly P memory references. In-
deed, with the default ruleset, we can find character com-
binations that would require the traversal of 20 nodes in
the datastructure per character examined.

4) Wu-Manber: The Wu-Manber algorithm [21] was
developed by Wu and Manber for use in agrep [20] and
glimpse [12] – two text searching applications. It is also
used with small modifications in Snort as the default pat-
tern matching algorithm. The algorithm is again an al-
gorithm designed for average-case rather than worst-case.
The implementation in Snort is slightly less sophisticated
that the original paper describing the algorithm.

The algorithm starts by precomputing two tables, a bad
character shift table, and a hash table. When the bad char-
acter shift fails, the first two characters of the string are in-
dexed into a hash table to find a list of pointers to possible
matching patterns. These patterns are compared in order
to find any matches and then the input is shifted ahead by
one character and the process repeats.

Figure 4 (c) shows an excerpt of the modified Wu-
Manber data structure, assuming that the strings to be
searched for include cat, car, bar foo, and for. Note that
character such as x and z which do not appear in any of
the strings have the maximum shift values. In compari-
son, characters in the middle of the strings have reduced
shift values, and those that are at the end of the strings,
such as r and o must be resolved by indexing into the hash
table.

Overall the algorithm achieves a worst case perfor-
mance that is no better than naive string matching, but the
average case performance is among the best of all multi-
pattern string matching algorithms. In the worst case the
algorithm requires for every character of input a memory
access to the shift and hash table, followed by as many
string compares as there are patterns to be matched (this
can only happen if the hash fails). The algorithm is widely
used and achieves very good average-case performance,
but we feel that it is likely not a good candidate for hard-

ware implementations that have more precise worst-case
requirements.

C. Applying IP Lookup Techniques to String Matching

While on the surface the problems of IP-lookup and
String Matching looks very distinct, as has been noted
previously [15], [4] they are very much analogs of one
another in that both are longest prefix matching problems.
IP-lookup takes as input a set of patterns to match and is
tasked with finding the longest possible match for a set of
IP address that are streaming by. String matching takes as
input a set of strings to match and is tasked with finding
all of the places in the input stream where there is a match.
Modern algorithms for both problems rely on limited pre-
processing of the set of input patterns/strings, build large
tree-like data structures for traversal at run-time, and suf-
fer from a high degree of fanout from each edge.

We claim that many of the optimizations that were re-
sponsible for the speeding up of IP-lookup have analogs in
the string matching world. Our optimizations take a cue
from these optimizations; thus it is worth describing the
IP-lookup optimizations that we draw inspiration from.

1) Unibit and Multibit Tries: Unibit and multibit trie
schemes improve on linear search by placing data in a
trie. Each node in an n-bit trie consists of a descriptor
of any rules that are matched at this point, and 2n point-
ers to next nodes. Traversal of the trie requires starting at
the root and at each node considering the next n bits of
the trie to select a pointer to the next trie node, while re-
membering the longest node matched thus far. Using this
scheme, one can perform IPv4 lookup in logn(32) steps.
To save space and avoid building a full trie, only nodes
that match rules or which have children that match rules
must be populated. Multibit tries have similar structure to
the Aho-Corasick data structure except that they have no
failure nodes. When multibit tries increase in fanout by at-
tempting to traverse more bits at a time, they waste a great
deal of space with pointers to non-existent destinations,
just as Aho-Corasick wastes space with null pointers or
pointers that are optimized failure paths. The two follow-
ing algorithms were adopted to address this shortcoming;
our analogy suggests that we can use similar techniques
to improve Aho-Corasick.

2) Lulea Algorithm: The Lulea algorithm [8] uses the
concepts of leaf pushing and bitmaps to compress the size
of the IP lookup database. By pushing routing informa-
tion down to the leaves of the trie, Lulea prevents internal
nodes from having to contain routing information. Tra-
ditional leaf-pushing creates a great deal of duplication
in the leaf nodes, which is reduced by using a bitmap
that compresses subsequent redundant entries. In order

7

to figuring out which routing information corresponds to
a given leaf in the trie amounts to counting the bits set
prior to that index in the bitmap. In order to add efficiency
to the counting of what can be very large bitmaps, Lulea
adds occasional summaries of the count up to a certain bit
position to the bitmap data.

3) Eatherton Algorithm: The Eatherton tree-bitmap
algorithm [11] improves upon Lulea by creating a data
structure which does not require leaf-pushing and which
can be traversed with a single wide memory access per
node. For a tree-bitmap implementation that attempts to
traverse n bits at a time; the nodes contain two bitmaps,
the internal bitmap which is size 2n and the external
bitmap which is size 2n − 1, a pointer to an array of chil-
dren and a pointer to an array of matching rules.

Traversing the datastructure is performed by checking
for the most specific matching rule in the internal bitmap
and if there is one, noting the offset that it corresponds
to, and then checking to see whether there is a matching
part of the tree in the external bitmap. We do not detail
the correspondence between the internal bitmap and off-
sets into the routing array per node (see the paper [10] for
a good explanation). The external bitmap correspondence
is more straightforward though. One considers the next
n bits to be traversed in the IP address as an integer and
determines whether that integer’s bit position in the exter-
nal bitmap is set to one. If it is not set to one, then there
is no corresponding entry in the child array. If it is set to
one, then the offset of that entry from the child pointer is
given by the sum of all bits prior to that bit in the external
bitmap.

The Eatherton tree-bitmap algorithm is now reaching
wide deployment in industry routers, indicating that the
methods it employs are significant wins in hardware and
achieve good compression on real IP lookup databases.
More significantly for our paper, this means that the com-
putations required for it, such as performing a population
count, are likely to be made fast by network processor
vendors, so there is significant incentive for us to also
use such computations to compress string matching data
structures.

III. OPTIMIZATIONS FOR STRING MATCHING

Having now discussed previous work on string match-
ing and the relationship to existing algorithms from the
domain of IP-lookup, we now propose two new data stor-
age methods for string matching and describe the com-
plexities and tradeoffs involved.

A. Bitmap Compression

Bitmap compression applied to Aho-Corasick uses a
bitmap to achieve the same functionality that the external

bitmap achieves in the Eatherton algorithm. To perform
this optimization, we start with the unoptimized version of
the Aho-Corasick data structure with failure pointers de-
scribed earlier. Instead of every state in the Aho-Corasick
state machine having 256 next state pointers, we now use
a single pointer to point to the first valid next state and
maintain a 256 bit bitmap indicating whether a traversal
with a given character is valid or requires traversing along
the failure pointer path. C-like pseudo code for our bitmap
data structure can be seen in Figure 7 and a correspond-
ing diagram of the datastructure can be seen in Figure 8.
If the next state is valid, then the pointer to it is obtained
in similar fashion to the Eatherton algorithm, by summing
all the bits prior to that bit number and adding them to the
base next node pointer.

Thus, to give an example from Figure 8, if we assume
an alphabet where A=1, B=2, ... Z=26, if the next charac-
ter in question is “D”, then we transition from the current
state by first checking to see if the fourth bit from the left
in the bitmap is set. Finding that it is, we know that there
is a valid transition at some offset from the next pointer.
We then count all the set bits prior to bit four in the bitmap,
and find that there is only one of them and therefore our
offset from the next pointer is one. We add the size of
one node to our next state pointer, jump to that datastruc-
ture which is the correct node for our “D” transition, and
examine the next character in our packet. If on the other
hand, our next character was “C”, we would look in the
bitmap and see that “C” was disabled. We would then fol-
low the failure pointer and repeat the check with “C” on
whatever node it pointed to.

On a machine with 32-bit pointers, the original opti-
mized Aho-Corasick implementation creates a data struc-
ture with 1028 byte nodes, while our bitmapped version
requires only 44 bytes. This decreased memory require-
ment improves cache-behavior of software implementa-
tions and makes it possible for hardware implementations
to store the entire Aho-Corasick data structure in SRAM.

Using bitmaps incurs two costs though. First, the com-
pression requires the unoptimized data structure, which as
mentioned earlier doubles the worst case amount of work
per character in the input. The second main cost is that
traversal from node to node requires checking a bit in a
bitmap and then performing a sum (or popcount) up to
256 prior bits in the bitmap. We attempt to minimize this
in our software implementation by maintaining running
sums of every 32 bits in the bitmap similar to Lulea, but
that does not save us from doing at least a single 32-bit
wide popcount per successful node traversed. On the x86
based systems that we tested on, performing a 32-bit pop-
count is very expensive, requiring more cycles than an L2

8

struct bitmap_state {
struct bitmap_state * next_state;
bitmap next_state_valid : 256;
struct bitmap_state * failure_state;
struct rule * rule_list;

};

Fig. 7. Bitmap Compressed Aho-Corasick Data Structure

Rule 1 Rule 2

0101nextptr

failptr ruleptr

B Node D Node

Bitmapped Aho-Corasick

Fig. 8. Bitmap Compressed Data Structure Illustration

cache hit. We expect that it is much less expensive in most
network processors, which as noted earlier are attempting
to optimize the Lulea and Eatherton algorithms, as well
as other networking algorithms which require similar bit
manipulation operations.

B. Path Compression

Our next data optimization does not decrease the size
per node or improve worst-case performance, but it does
again decrease the total space required by the Snort
database. In spirit, this optimization can be likened to
the end-node optimizations performed in Eatherton’s tree-
bitmap or other IP lookup algorithms. We note that the
Aho-Corasick state machine applied to the Snort database
constructs a data structure with two regimes. Near the root
of the state machine, the nodes are very dense, whereas
further away they become long sequential strings with
only one valid next state each. Bitmap compression works
well for the top of the state machine, but even the bitmap
itself is largely wasted information at the bottom nodes.
To address this, we introduce path compression to han-
dle nodes lower in the tree by squeezing as many of these
sequential nodes as possible into a single node.

First, we recognize that bitmap compression funda-
mentally works because the elements represented by the
bitmap are all equal size. Thus any path compressed nodes
that are to be slipped into our bitmap compressed structure
must also be equal in size to bitmapped nodes. In order to
distinguish between the two nodes, we must add an extra

bit to both data structures that differentiates between the
two. The path compressed nodes consist of an array of
characters, matching rules, and failure pointers which are
traversed sequentially until either the end of the node is
reached (in which case the next state pointer is taken) or
a mismatch is found (in which case the appropriate fail-
ure pointer is taken). We give pseudo code for our data
structure in Figure 9 and show graphically the relevant
structure in Figure 10. In Figure 10 the current node is
path compressed and recognizes the sequence ABCD as
being necessary to traverse to the D node. In the interest
of drawing simplicity, we have omitted the fact that mul-
tiple failure pointers and rule pointers that correspond to
each character are within the node.

As previously shown in Figure 3, this optimization de-
creases the size of the Aho-Corasick data structure signif-
icantly from the already reduced size achieved by bitmap
compression. However, as with bitmap compression, it
comes with additional costs. In addition to the single
bit to differentiate between path compressed and non-path
compressed nodes, the size of bitmapped nodes increases
slightly because the failure pointer becomes more com-
plex. Rather than simply being a pointer to the node to fail
to, failure pointers must also include an offset within that
node to account for the possibility that the failure tran-
sitions into the middle of a path compressed node. In a
software implementation these two additions to the data
structures increase the size of the underlying structure by
approximately two bytes, depending upon how the com-
piler aligns structures. In a hardware implementation, the
overhead would be three bits.

A second penalty for software implementations is the
increased complexity of the search algorithm. Rather
than traversing across well-known data structures, there
are now a number highly unpredictable, data dependent
branches in the code which execute one set of code or
another based on whether the current node under exami-
nation is a bitmap node or a path compressed node.

On a 32-bit pointer machine, a single path compressed
node can contain data equivalent to 4 bitmap compressed
nodes, giving us a maximum compression ratio of 4:1. In
practice, we find that we achieve a 2.54:1 compression
ratio on the snort ruleset versus our bitmapped implemen-
tation.

IV. RESULTS

In this section we examine the area and performance of
the different algorithms in two operational environments.
First we consider the speed of the various algorithms as
applied to specialized network hardware for which worst-
case bounds are the best metric of performance. We fur-

9

struct path_state_ptr {
struct state_ptr *state;
unsigned char offset;

};

struct path_state {
struct rule *rule_array[PATH_NODE_SIZE];
struct path_state_ptr

failure_array[PATH_NODE_SIZE];
unsigned char array_length;
unsigned char carray[PATH_NODE_SIZE];

};

struct node {
bool is_bitmap;
union {
path_state p;
bitmap_state b;

};
};

Fig. 9. Path Compressed Aho-Corasick Data Structure

BA C D

Rule 1 Rule 2

nextptr

failptr

Path Compressed Aho-Corasick Node

D Node

ruleptr

is_bitmap=0 size=4

Fig. 10. Path Compressed Data Structure Illustration

ther examine how these algorithms fare on modern com-
modity hardware for both real packet traces and rule sets
and for carefully crafted examples that demonstrate worst
case behavior.

A. Instruction Detection in Hardware

The first constraint on any algorithm that is supposed to
find it’s way into a router is that it have a small memory
footprint. The required amount of memory needs to be
as small as possible to fit on-chip in fast memory (e.g.,
SRAM) and to reduce chip costs. If the algorithm cannot
fit completely into on-chip memory it greatly complicates
the timing analysis when it comes time to analyze its worst
case performance.

Figure 3 shows the area used by Wu-Manber, SFK
Search, default Aho-Corasick and our two optimized
derivatives of Aho-Corasick (Bitmapped and Path Com-
pressed). The sizes shown are generated by applying the

different algorithms to the default Snort rule sets pro-
vided. Data is shown for both the oldest/smallest dataset
(November 2000) and the most current and largest dataset
(June 2003). The results show that our compression opti-
mizations resulted in a 20 times savings in database size
over Wu-Manber, and 50 times reduction in database size
over the default Aho-Corasick. For current routers, it
would be feasible to store the database for SFK Search,
Bitmapped, and Path Compressed on-chip, but not the
other two algorithms. In addition, over the past 3 years
the number of rules has gone up by over a factor of 2.5,
whereas the size of the memory footprint for our algo-
rithms has only gone up by 30% giving us confidence in
the continued scaling of our techniques.

We now turn our attention towards the performance of
our algorithms. As intrusion detection algorithms find
their way into routers, it is important that they perform
well, even in the face of worst case situations. If the worst
case is not considered, the router can be attacked with a
worst case packet stream allowing a crafty adversary to
slip the real data through while the IDS is overloaded.

In terms of performance, we examine the bandwidths
achievable from the different algorithms assuming both
an ASIC and Programmable router design. Both of these
designs assume an accessible memory width of 128 bytes,
which is easily implementable on-chip in modern ASICs.
We assume that the full rules database, can be stored
on-chip even though this is not the case for Wu-Manber
and default Aho-Corasick and we do not assess any la-
tency penalty for the memory shuffling that these two al-
gorithms would inevitably be forced to do with off-chip
SRAMs.

The reason for leveling the playing field and giving
other algorithms the benefit of the doubt is that we want
to focus our attention on the worst-case performance dif-
ferences between algorithms that are purely a function
of data structure width and arrangement. These differ-
ences are fundamental to efficient hardware implementa-
tions and to penalize the other algorithms for their lack
of space efficiency would only obscure the fact that their
width and number of independent accesses required are
more important limiters to their performance.

Again using the Snort 2003 rule set, we analyzed the
data structures of each algorithm and derived a worst-
case sequence of characters from that rule set that trig-
gers a maximal number of memory references for each
algorithm. As mentioned earlier, we were able to find a
character sequence that traverses 20 nodes per character
in SFKsearch and over 80 rules every other character for
Wu-Manber. For Wu-Manber, we gave the algorithm the
benefit of the doubt and assumed that the 80 rules could

10

be compressed into one long sequential memory access,
rather than charging for 80 random accesses. The worst
case for all variations of Aho-Corasick is the default case,
one or two nodes traversed per character of input.

We then explore tradeoffs in SRAM memory widths,
sizes and numbers of ports using a version of CACTI
3.0 [17] modified to correlate closely with the results
generated by 130 nm memory generators. We use the
methodology of [16] to find a Pareto optimal design for a
pipelined wide-word unified memory subsystem for each
algorithm. This subsystem would be representative of
what an ASIC designer would attempt to include in a
piece of dedicated hardware that executed each algorithm.
We also find a design that achieves the highest geomet-
ric mean of performance on this algorithm and other net-
working algorithms. We hold that this tradeoff subsystem
would be representative of what would be desired in a gen-
eral purpose programmable network processor.

As shown in Figure 11, even giving Wu-Manber and
default Aho-Corasick the unfair advantage of assuming
perfect cost-free on-chip memory, we find that there is
a substantial advantage to the bitmapped and path com-
pressed versions of Aho-Corasick. For the ASIC design,
the decreased width of the data structure allows us a 31%
performance advantage in the most advantageous design
examined. If we create a Programmable router that can be
used to implement many network-related algorithms (IP
lookup, Classification, etc.), we find that performance of
our bitmap compressed Aho-Corasick improves to twice
the performance of of the non-bitmap compressed Aho-
Corasick. In comparing Wu-Manber and SFK Search to
Bitmapped, the Bitmapped algorithm is able to achieve
8 times more throughput than SFK Search and over 3.25
times more throughput than Wu-Manber.

B. Intrusion Detection in Software

In this section we measure the performance of an im-
plementation of Snort that has been augmented with the
various string matching algorithms discussed. We exam-
ine the results of running this program on a variety of dif-
ferent real machines, including a 1 GHz Pentium 3, a 2.5
GHz Pentium 4 and a 1.3 GHz Pentium M. For all results,
we show the execution time (in seconds) of two separate
packet streams. We examine both average-case and worst-
case performance through use of two different traces.

For the average case results, we use the most current
(June 2003) Snort default database with a trace from the
Capture the Flag game held at the Defcon9 conference.
The Capture the Flag game has the objective of trying to
break into the computers of other teams while protect-
ing your own and running a server with several security

ASIC Programmable
0

2

4

6

8

Pe
rfo

rm
an

ce
 (G

b/
s)

Wu-Manber
SFKsearch
Aho-Corasick

Bitmapped
Path Compressed

Fig. 11. Hardware Performance of the Algorithms in Terms of the
network bandwidth that it will be able to handle in Gigabits per Sec-
ond. The ASIC design shows the string matching throughput tailoring
the implementation to only string matching. Programmable shows the
performance assuming an implementation that can be used for many
different type of router applications.

holes [7]. Therefore the trace includes both innocuous
activity and attempts to break in. Figure 12 shows perfor-
mance results when using this trace.

Figure 13 shows results for a synthetic trace consist-
ing of a worse case packet stream. The worse case packet
stream exercises the weaknesses in both the Wu-Manber
and SFK Search algorithms. We did this by adding a
rule to the snort database which consists of merely a long
string of the same character with a single different char-
acter in the middle of the string (either towards the begin-
ning of the string for Wu-Manber or towards the end for
SFKsearch). We then construct a stream of “attack” pack-
ets that contain a payload of the starting/ending character.
Because the packets defeat the bad character heuristic, the
algorithms are forced into their worst-case of performing
a string-compare every character. Although it may seem
somewhat contrived to add a rule to the database, there are
already several rules like this in it that possess the same
property. For instance, there is an icmp packet rule in
snort for the “ICMP PING Cyberkit” that matches con-
tent ’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’. This is a rule
that is trivial to exploit nearly as effectively as our syn-
thetic rule on both algorithms.

The results show that worst-case execution time is 3 to
4 times faster using Aho-Corasick, Bitmapped, and Path
Compressed over Wu-Manber and SFK Search. However,
for average-case execution in Figure 12, Wu-Manber is
about twice as fast as Aho-Corasick and our Bitmapped
algorithms. This is because the bad character heuristics in
Wu-Manber usually work quite well and on the occasions

11

Pentium3 Pentium4 PentiumM
0

20

40

60

80
E

xe
cu

tio
n

Ti
m

e
(s

ec
on

ds
)

Wu-Manber
SFKsearch
Aho-Corasick
Bitmapped
Path Compressed

Fig. 12. Average-Case Software Performance of Algorithms on Def-
con9 Trace.

Pentium3 Pentium4 PentiumM
0

200

400

600

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Wu-Manber
SFKsearch
Aho-Corasick
Bitmapped
Path Compressed

Fig. 13. Software Performance of Algorithms on Synthetic Worst-
Case.

when they fail, the hash lookup is actually quite fast in
software. Our algorithms require variable size shifts, per-
form a population count, and generally have bad branch
behavior; all of which contribute to poor average case per-
formance on modern general purpose processors. How-
ever, we are optimistic that our average-case performance
would be better on a processor that was more tailored to-
wards networking (e.g., including popcount instructions),
as these are all well understood problems with many net-
working codes.

V. SUMMARY

Up until recently, most IDSs were deployed using com-
modity processors. However, as link speeds increase and
rule sets become larger, there is increasing pressure to
place IDS systems in hardware so that they can run on

routers, thereby catching attacks as close to the edge of
the network as possible. Current software IDSs largely
rely on common-case optimizations (such as bad charac-
ter heuristics) to gain speed. However, as IDSs migrate
to hardware with a useful life of 2 to 5 years, with corre-
sponding growth in uncertainty as to the characteristics of
future strings that will be added, there is considerable in-
centive to design string matching engines that can enable
real-time intrusion detection with guaranteed worst-case
performance.

Guided by the analogy between IP lookup and string
matching, our paper builds on the worst-case guaran-
tees of the classical Aho-Corasick string matching algo-
rithm. As with multibit tries, Aho-Corasick is the only
string matching algorithm we know of that has determin-
istic worst-case lookup times and a data structure friendly
enough to use for wire speed hardware matching. Unfor-
tunately, the classical Aho-Corasick data structure takes
more storage than is likely to fit in on-chip SRAM or the
cache of a commodity processor.

The principal contribution of our paper is to apply
bitmap node compression and path compression to Aho-
Corasick to gain both compact storage and worst-case per-
formance. In particular, we show that the use of such com-
pression gains factors of almost 50 times in database size
reductions on current rule sets. While the case is less clear
for software implementations unless more predictable per-
formance is desired; we believe that our compressed Aho-
Corasick algorithms are the best choice for hardware im-
plementations of string matching for IDS using an FPGA,
ASIC or network processor designs of the future.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
providing useful comments on this paper. We would like
to thank employees of Sourcefire for their comments on
drafts of the paper after its acceptance. We would also like
to thank Kostas Anagnostakis for enlightening discussions
on this paper and other issues associated with worst-case
IDS performance. This work was funded in part by NSF
grant CRR-0311712, and a grant from Intel Corporation.

REFERENCES

[1] A. V. Aho and M. J. Corasick. Efficient string matching:
An aid to bibliographic search. Communications of the ACM,
18(6):333–340, 1975.

[2] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos. Generat-
ing realistic workloads for network intrusion detection systems.
In ACM Workshop on Software and Performance, 2004.

[3] R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):761–772, 1977.

12

[4] A. L. Buchsbaum, G. S. Fowler, B. Krishnamurthy, K. Vo, and
J. Wang. Fast prefix matching of bounded strings. In Fifth Work-
shop on Algorithm Engineering and Experiments (ALENEX03),
2003.

[5] CERT/CC. Code Red worm exploiting buffer overflow in IIS
indexing service DLL. CERT Advisory CA-2001-19, Jan 2002.

[6] B. Commentz-Walter. A string matching algorithm fast on the
average. Proceedings of ICALP, pages 118–132, July 1979.

[7] C. Cowan, S. Arnold, S. Beattie, C. Wright, and J. Viega. Defcon
capture the flag: Defending vulnerable code from intense attack.
In DARPA DISCEX III Conference, Washington DC, April 2003.

[8] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small for-
warding tables for fast routing lookups. In Proceedings of SIG-
COMM, pages 3–14, 1997.

[9] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lock-
wood. Deep packet inspection using parallel bloom filters. In
11th Symposium on High Performance Interconnects, August
2003.

[10] W. Eatherton. Hardware-based internet protocol prefix lookups.
Washington University Electrical Engineering Department (MS
Thesis), May 1999.

[11] W. Eatherton, Z. Dittia, and G. Varghese. Tree bitmap : Hard-
ware/software ip lookups with incremental updates. Unpub-
lished, 2002.

[12] U. Manber and S. Wu. GLIMPSE: A tool to search through entire
file systems. In Proceedings of the USENIX Winter 1994 Tech-
nical Conference, pages 23–32, San Fransisco, CA, USA, 17–21
1994.

[13] E.P. Markatos, S. Antonatos, M. Polychronakis, and K.G. Anag-
nostakis. Exclusion-based signature matching for intrusion de-
tection. In Proceedings of the IASTED International Conference
on Communications and Computer Networks (CCN), pages 146–
152, November 2002.

[14] M. Roesch. Snort – lightweight intrusion detection for networks.
In Proceedings of LISA’99: 13th Systems Administration Confer-
ence, pages 229–238, November 1999.

[15] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxon-
omy of IP address lookup algorithms. IEEE Network Magazine,
15(2):8–23, 2001.

[16] T. Sherwood, G. Varghese, and B. Calder. A pipelined mem-
ory architecture for high throughput network processors. In 30th
International Symposium on Computer Architecture, June 2003.

[17] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache
timing, power, and area model. Technical Report 2001/2, Com-
paq Western Research Laboratory, August 2001.

[18] B. W. Watson. The performance of single-keyword and multiple-
keyword pattern matching algorithms. Technical Report 94/19,
Eindhoven University of Technology, 1994.

[19] B. W. Watson and G. Zwaan. A taxonomy of keyword pattern
matching algorithms. In H. A. Wijshoff, editor, Proceedings
Computing Science in the Netherlands 93, pages 25–39, SION,
Stichting Mathematish Centrum, 1993.

[20] S. Wu and U. Manber. Agrep – a fast approximate pattern-
matching tool. In Proceedings USENIX Winter 1992 Technical
Conference, pages 153–162, San Francisco, CA, 1992.

[21] S. Wu and U. Manber. A fast algorithm for multi-pattern search-
ing. Technical Report TR-94-17, Department of Computer Sci-
ence, University of Arizona, 1994.

