Interactive Real-Time BRDF Editing under Environment Lighting

Ailie Fraser
Pixel Café
March 6th, 2015
Question

How do graphic artists and designers create a scene and edit its appearance?
How do graphic artists and designers create a scene and edit its appearance?

- Draw objects
- Define material properties and reflectance of objects (BRDF)
- Lighting (point lights or environment maps)
Motivation

How do graphic artists and designers create a scene and edit its appearance?

- Draw objects
- Define material properties and reflectance of objects (BRDF)
- Lighting (point lights or environment maps)
Material Reflectance

The BRDF (Bidirectional Reflectance Distribution Function) of a surface determines how that surface reflects light.
Material Reflectance

The BRDF (Bidirectional Reflectance Distribution Function) of a surface determines how that surface reflects light.

How do we edit an object’s BRDF?

Motivation

How to make the teapot shinier?

Or edit just the teapot’s handle?

BRDF: (Ashikhmin-Shirley)

\[
\rho_{AS} = \frac{\sqrt{(n_u+1)(n_v+1)} \left(\cos \theta_h \right)^{n_u} \cos^2 \phi_h + n_v \sin^2 \phi_h}{8\pi \theta_d \max (\cos \theta_i, \cos \theta_v)} F(\theta_d)
\]

Ben-Artzi et al., 2006
Motivation

Goal:
- Real-time interactive BRDF editing system
Motivation

Goal:

- Real-time interactive BRDF editing system
- Paint edits directly on material
Motivation

Goal:

• Real-time interactive BRDF editing system
• Paint edits directly on material
• Show objects under environment lighting
Goal:
• Real-time interactive BRDF editing system
• Paint edits directly on material
• Show objects under environment lighting
Motivation

Goal:

- Real-time interactive BRDF editing system
- Paint edits directly on material
- Show objects under environment lighting
- Edit intuitive material properties
Motivation

Goal:

• Real-time interactive BRDF editing system
• Paint edits directly on material
• Show objects under environment lighting
• Edit intuitive material properties
• Give artistic freedom while maintaining photorealism
Overview

- Background
- Environment Mapping
- Implementation
- Next Steps
Background: Interactively Editing Lighting & Effects
Interactive Shadow Editing

- Move, rescale or rotate shadows
- System inversely computes new light or object positions
- User can define constraints
- Uses shadow mapping

Pellacini et al., “A User Interface for Interactive Cinematic Shadow Design”, 2002
Background: Interactively Editing Lighting & Effects

Illumination Brush

• Draw colour on object
• Inversely calculate lighting
• Separate brushes for diffuse and specular
• Lights are synthetic and low-frequency

Okabe et al., “Illumination Brush: Interactive Design of Image-Based Lighting”, 2006
Background: Interactively Editing Lighting & Effects

envyLight

- Editing real-world illumination
- Change contrast, position or blur of lighting effects
- Splits environment map into foreground and background

Pellacini, “envyLight: An Interface for Editing Natural Illumination”, 2010
Background: Interactively Editing Lighting & Effects

Bending/Redirecting Light Rays

- **BendyLights**: lets light rays be nonlinear
- User can drag the light “tube” to edit

Kerr et al., “BendyLights: Artistic Control of Direct Illumination by Curving Light Rays”, 2010
Background: Interactively Editing Lighting & Effects

Bending/Redirecting Light Rays
- Edit complex lighting effects interactively

Schmidt et al., “Path-Space Manipulation of Physically-Based Light Transport”, 2013
Background: Interactively Editing Lighting & Effects

Bending/Redirecting Light Rays

- Interactive reflection editing
- Redirect the mirror reflection direction in real-time

Ritschel et al., “Interactive Reflection Editing”, 2009
Background: Interactive BRDF Editing
BRDF-Shop

- Interactively position and manipulate specular highlights
- Brush modes: create, edit roughness, streaking, intensify
- Edit on sphere, scene updates in real-time

Background: Interactive BRDF Editing

Background: Interactive BRDF Editing

BRDF-Shop

Background: Interactive BRDF Editing

BRDF-Shop

Advantages:
- Intuitive editing options
- Allows editing right on the surface

Disadvantages:
- Cannot paint on the object, must paint on sphere
- Editing limited to positioning and manipulating highlights

Background: Interactive BRDF Editing

Appwand
- User draws a stroke on the object to edit
- Changes are automatically propagated to similar regions
- Edit parameters of any BRDF model

Appwand

Advantages:
• Allows for many different BRDF models
• User can draw directly on the object

Disadvantages:
• Still need to specify values of BRDF parameters
• Mainly for global edits – local editing less intuitive

Background: Interactive BRDF Editing

Real-time BRDF Editing
- Use any BRDF
- User edits curves to specify parameters
- Rendered scene updates in real-time

Ben-Artzi et al., “Real-Time BRDF Editing in Complex Lighting”, 2006
Background: Interactive BRDF Editing

Ben-Artzi et al., “Real-Time BRDF Editing in Complex Lighting”, 2006
Real-time BRDF Editing

Advantages:
- Support for any kind of BRDF and complex lighting
- Can parameterize BRDF in physically meaningful way

Disadvantages:
- Have to know what parameters mean or use trial-and-error
- Cannot paint directly on scene

Background: Interactive BRDF Editing

Ben-Artzi et al., “Real-Time BRDF Editing in Complex Lighting”, 2006
Overview

• Background
• Environment Mapping
• Implementation
• Next Steps
Environment Mapping

Miller & Hoffman, 1984
Environment Mapping

Paul Debevec, http://www.pauldebevec.com
Environment Mapping: Spherical coordinates
Environment Mapping: Spherical coordinates

\[
x = -\sin \theta \sin \varphi \\
y = -\cos \theta \\
z = \sin \theta \cos \varphi
\]

\[
\begin{align*}
\theta &= \arccos(-y) & \in [0, \pi] \\
\varphi &= \arctan\left(\frac{x}{-z}\right) + \pi & \in [0, 2\pi]
\end{align*}
\]

\[
\begin{align*}
u &= \frac{\varphi N}{2\pi} & \in [0, N] \\
v &= \frac{\theta M}{\pi} & \in [0, M]
\end{align*}
\]
Environment Mapping: Perfect Mirror

\[\vec{m} = -\vec{s} + (2\vec{s} \cdot \vec{n})\vec{n} \]

\[= (x, y, z) \]

\[\theta = \arccos(-y) \quad \in [0, \pi] \]

\[\varphi = \arctan\left(\frac{x}{-z}\right) + \pi \quad \in [0, 2\pi] \]

\[u = \frac{\varphi N}{2\pi} \quad \in [0, N] \]

\[v = \frac{\theta M}{\pi} \quad \in [0, M] \]
Environment Mapping: The Reflection Equation

\[I(x, \bar{w}_o) = \int_\Omega L(x, \bar{w}_i) \rho(\bar{w}_i, \bar{w}_o) \max(0, \bar{w}_i \cdot \bar{n}) d\bar{w}_i \]

- \(L = \) Incident lighting
- \(\rho = \) BRDF
- \(\bar{n} = \) Surface normal at \(x \)
- \(\bar{w}_i, \bar{w}_o = \) Incident and outgoing directions

Ramamoorthi & Hanrahan, 2001
Environment Mapping: Implementation

\[I(x, \omega_o) = \int_{\Omega} L(x, \omega_i) \rho(\omega_i, \omega_o) \max(0, \omega_i \cdot \hat{n}) \, d\omega_i \]

\[E = M \text{ by } N \text{ environment map} \]

\[I(x) = \sum_{u \in [0,N]} \sum_{v \in [0,M]} E(u, v) \rho(\omega_i, \omega_o) \max(0, \omega_i \cdot \hat{n}) \sin\left(\frac{v\pi}{M}\right) \frac{\pi}{M} \frac{2\pi}{N} \]
Environment Mapping: BRDFs

Diffuse

\[\rho(\vec{\omega}_i, \vec{\omega}_o) = k_d \]
Environment Mapping: BRDFs

Diffuse

\[\rho(\vec{\omega}_i, \vec{\omega}_o) = k_d \]
Environment Mapping: BRDFs

Specular: Normalized Phong

\[\rho(\vec{\omega}_i, \vec{\omega}_o) = \left(\frac{1 + \sigma}{2\pi} \right) \cdot k_s \cdot \frac{\max(0, \vec{\omega}_o \cdot \vec{m})^\sigma}{\vec{\omega}_i \cdot \vec{n}} \]

(Ramamoorthi & Hanrahan, 2001)
Specular: Normalized Phong

\[\rho(\vec{\omega}_i, \vec{\omega}_o) = \left(\frac{1 + \sigma}{2\pi} \right) \cdot k_s \cdot \frac{\max(0, \vec{\omega}_o \cdot \vec{m})^\sigma}{\vec{\omega}_i \cdot \vec{n}} \]

(Ramamoorthi & Hanrahan, 2001)
Environment Mapping: BRDFs

Specular: Torrance-Sparrow (simplified)
(Ramamoorthi & Hanrahan, 2001)

\[
\rho(\theta_i, \theta_o) = k_s \frac{S}{4 \cos \theta_i \cos \theta_o}, \quad S = \frac{1}{\pi \sigma^2} e^{-(\frac{\theta_h}{\sigma})^2}
\]

\[\theta_h = \text{half angle between } \theta_i \text{ and } \theta_o\]
Environment Mapping: BRDFs

Specular: Torrance-Sparrow (simplified)

\[
\rho(\theta_i, \theta_o) = k_s \frac{S}{4 \cos \theta_i \cos \theta_o}, \\
S = \frac{1}{\pi \sigma^2} e^{-\left(\frac{\theta_h}{\sigma}\right)^2}
\]

\(\sigma = 0.01\) \hspace{1cm} \(\sigma = 0.1\) \hspace{1cm} \(\sigma = 0.2\)

(Ramamoorthi & Hanrahan, 2001)
Overview

- Background
- Environment Mapping
- Implementation
- Next Steps
Implementation: Real-time editing

- Pre-render images of the sphere under environment and point source lighting
- Vary values of k_d, k_s and σ
- At runtime, add pre-rendered components together
- Interface to interactively edit diffuse colour and specular properties
Overview

- Background
- Environment Mapping
- Implementation
- Next Steps
Goal:

• Real-time interactive BRDF editing system
• Paint edits directly on material
• Show objects under environment lighting
• Edit intuitive material properties
• Give artistic freedom while maintaining photorealism
Next Steps

Give artistic freedom while maintaining photorealism

- Artistic freedom: allow the user to paint whatever they want
- How to guarantee this will be photorealistic?
- How to solve for BRDF based on the painted edits?
Next Steps

Give artistic freedom

• Simple BRDFs are limited in the kinds of materials they can represent, and the edits that can be done
• The image with the “closest matching” BRDF parameters may not look like what the user painted
Next Steps

Edit intuitive material properties

• How to extend such a system to arbitrary BRDFs?
• What editing options should the user have?
Next Steps

Edit intuitive material properties
Example: Real-Time BRDF Editing
• Factor BRDF such that coefficients have meaningful effects when edited
Next Steps

Edit intuitive material properties

Example: A data-driven reflectance model (Matusik, 2003)

- Treat each BRDF as a high-dimensional vector
- Define a set of descriptive parameters (e.g. shiny, plastic)
- Classify a large set of BRDFs based on these
- Derive “trait vector” for each category
- Make edits based on these traits
Thank you!

Questions?