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ABSTRACT
Greedy algorithms are practitioners’ best friends—they are intu-
itive, simple to implement, and often lead to very good solutions.
However, implementing greedy algorithms in a distributed setting
is challenging since the greedy choice is inherently sequential, and
it is not clear how to take advantage of the extra processing power.

Our main result is a powerful sampling technique that aids in
parallelization of sequential algorithms. We then show how to
use this primitive to adapt a broad class of greedy algorithms to
the MapReduce paradigm; this class includes maximum cover and
submodular maximization subject to p-system constraints. Our
method yields efficient algorithms that run in a logarithmic num-
ber of rounds, while obtaining solutions that are arbitrarily close to
those produced by the standard sequential greedy algorithm. We
begin with algorithms for modular maximization subject to a ma-
troid constraint, and then extend this approach to obtain approxima-
tion algorithms for submodular maximization subject to knapsack
or p-system constraints. Finally, we empirically validate our algo-
rithms, and show that they achieve the same quality of the solution
as standard greedy algorithms but run in a substantially fewer num-
ber of rounds.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Theory
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1. INTRODUCTION
Greedy algorithms have been very successful in practice. For a

wide range of applications they provide good solutions, are com-
putationally efficient, and are easy to implement. A typical greedy
algorithm repeatedly chooses an action that maximizes the objec-
tive given the previous decisions that it has made. A common ap-
plication of greedy algorithms is for (sub)modular maximization
problems, such as the MAXCOVER1 problem. For this rich class
of problems, greedy algorithms are a panacea, giving near-optimal
solutions.

Submodular maximization. Submodular maximization has re-
ceived a significant amount of attention in optimization; see [8]
and [38] for pointers to relevant work. Examples of its numer-
ous applications include model-driven optimization [21], skyline
representation [36], search result diversification [1, 9], string trans-
formations [2], social networks analysis [11, 12, 23, 28, 31], the
generalized assignment problem [8], and auction theory [3]. In sub-
modular maximization, we are given a submodular function f and
a universe U , with the goal of selecting a subset S ⊆ U such that
f(S) is maximized. Typically, S must satisfy additional feasibil-
ity constraints such as cardinality, knapsack, matroid, or p-systems
constraints (see Section 2).

Maximizing a submodular function subject to these types of
constraints generalizes many well-known problems such as the
maximum spanning tree problem (modular maximization subject
to a single matroid constraint), the maximum weighted matching
problem in general graphs (modular maximization subject to a 2-
system), and MAXCOVER (submodular maximization subject to a
cardinality constraint). For this class of problems there is a nat-
ural greedy algorithm: iteratively add the best feasible element
to the current solution. This simple algorithm turns out to be a
panacea for submodular maximization. It is optimal for modu-
lar function maximization subject to one matroid constraint [17]
and achieves a (1/p)-approximation for p matroid constraints [26].
For the submodular coverage problem, it achieves a (1 − 1/e)-
approximation for a single uniform matroid constraint [33], and a
(1/(p+1))-approximation for pmatroid constraints [8, 20]; for these
two cases, it is known that it is NP-hard to achieve an approxima-
tion factor better than (1− 1/e) and Ω( log p

p
), respectively [19, 25].

The case of big data. Submodular maximization arises in data
management, online advertising, software services, and online in-
ventory control domains [7, 13, 14, 30, 35], where the data sizes are
1In the MAXCOVER problem we are given a universe U and a fam-
ily of sets S. The goal is to find a set S′ ⊂ S of size k that maxi-
mizes the total union, | ∪X∈S′ X|.



routinely measured in tens of terabytes. For these problem sizes,
the MapReduce paradigm [16] is standard for large-scale parallel
computation. An instantiation of the BSP model [37] for paral-
lel computing, a MapReduce computation begins with data ran-
domly partitioned across a set of machines. The computation then
proceeds in rounds, with communication between machines taking
place only between successive rounds. A formal model of compu-
tation for this paradigm was described in [27]. It requires both the
number of machines and the memory per machine to be sublinear
in the size of the input, and looks to reduce the total number of
rounds necessary.

The greedy algorithm for submodular maximization does not ap-
pear to be useful in this setting due to its inherently sequential na-
ture. The greedy choice made at each step critically depends on
the its previous actions, hence a naive MapReduce implementation
would perform one action in each round, and gain little advantage
due to parallelism. A natural question arises: is it possible to re-
alize an efficient version of the greedy algorithm in a distributed
setting? The challenge comes from the fact that to reduce the num-
ber of rounds, one is forced to add a large number of elements
to the solution in every round, even though the function guiding
the greedy selection can change dramatically with every selection.
Moreover, the selection must be done in parallel, without any com-
munication between the machines. An affirmative answer to this
question would open up the possibility of using these algorithms
for large-scale applications. In fact, the broader question looms:
which greedy algorithms are amenable to MapReduce-style paral-
lelization?

There have been some recent efforts to find efficient algorithms
for submodular maximization problems in the parallel setting.
For the MAXCOVER problem Chierichetti et al. [13] obtained a
MapReduce algorithm that achieves a factor of 1−1/e−ε by adapt-
ing an algorithm for parallel set cover of Berger et al. [6]; the latter
was improved recently by Blelloch et al. [7]. Cormode et al. [14]
also consider improving the running time of the natural greedy al-
gorithm for large datasets in the sequential setting. For the dens-
est subgraph problem, Bahmani et al. [4] obtained a streaming and
MapReduce algorithm by adapting a greedy algorithm of Charikar
[10]. Lattanzi et al. [30] considered the vertex cover and maximal
matching problems in MapReduce. The recent work Ene et al. [18]
adapted the well-known greedy algorithm for the k-center problem
and the local search algorithm for the k-median problem to MapRe-
duce. Beyond these, not much is known about maximizing gen-
eral submodular functions under matroid/knapsack constraints—in
particular the possibility of adapting the greedy algorithm—in the
MapReduce model.

1.1 Main contributions
We show that a large class of greedy algorithms for non-negative

submodular maximization with hereditary constraints can be effi-
ciently realized in MapReduce. (We note that all of our results can
be extended to the streaming setting, but defer the complete proofs
to a full version of this paper.) We do this by defining an approxi-
mately greedy approach that selects a feasible element with benefit
at least 1/(1+ ε) of the maximum benefit. This ε-greedy algorithm
works almost as well as the standard algorithm for many impor-
tant problems (Theorem 5), but gives the algorithm designer some
flexibility in selecting which element to add to the solution.

We then show how to simulate the ε-greedy algorithm in a dis-
tributed setting. If ∆ is a bound on the maximum increase in the
objective any element can offer and k is the size of the optimal so-
lution, then the MapReduce algorithm runs in O( 1

εδ
log ∆) rounds

when the memory per machine isO(knδ) for any δ > 0. In fact, all

of the algorithms we propose display a smooth tradeoff between the
maximum memory per machine and the total number of rounds be-
fore the computation finishes. Specifically, when each machine has
roughly O(knδ) memory, the computation takes O(1/δ) rounds.
We present a summary of the results in Table 1. Recall that any
simulation of PRAM algorithms requires Ω(logn) rounds, we im-
prove on this bound whenever the memory per machine is ω(k).

At the heart of the simulation lies the main technical contribu-
tion of this paper. We describe a sampling technique called SAM-
PLE&PRUNE that is quite powerful for the MapReduce model. The
high level idea is to find a candidate solution to the problem on
a sample of the input and then use this intermediate solution to
repeatedly prune the elements that can no longer materially con-
tribute to the solution. By repeating this step we can quickly home
in on a nearly optimal (or in some cases optimal) solution. This
filtering approach was used previously in [30] for the maximal
matching problem, where it was argued that a matching on a sam-
ple of edges can be used to drop most of the edges from considera-
tion. Here we abstract and extend the idea and apply to a large class
of greedy algorithms. Unlike the maximal matching case, where it
is trivial to decide when an element can be discarded (it is adja-
cent to an already selected edge), this task is far less obvious for
other greedy algorithms such as for set cover. We believe that the
technique is useful for scaling other algorithms in the MapReduce
model and is one of the first rules of thumb for this setting.

Improvements on previous work. While we study parallelizations
of greedy algorithms and give the first results for general submodu-
lar function maximization, for some specific problems, we improve
over previous MapReduce algorithms provided that the memory
per machine is polynomial. In [13] an O(poly log(n,∆))-round
(1−1/e−ε)-approximate algorithm was given for the MAXCOVER
problem. In this work, the approximate greedy algorithm reduces
the number of rounds to O(log ∆) and achieves the same approx-
imation guarantees. Further, the algorithm for submodular max-
imization subject to 1-knapsack constraint implies an even faster
constant-round algorithm that achieves a slightly worse approxima-
tion ratio of 1/2 − ε. For the maximum weighted matching prob-
lem previously a 1/8-approximate constant-round algorithm was
known [30]. Knowing that maximum matching can be represented
as a 2-system, our algorithm for p-systems implies a constant-round
algorithm for the maximum matching problem that achieves an im-
proved approximation of 1

3+ε
.

Organization. We begin in Section 2 by introducing necessary def-
initions of the problems and the MapReduce model. In Section 3
we introduce the SAMPLE&PRUNE technique and bound its guar-
antees. Then we apply this technique to simulate a broad class of
greedy algorithms in Section 4. In Section 5 we introduce an O(1)
round algorithm for maximizing a modular function subject to a
matroid constraint. In Section 6 we consider maximizing a sub-
modular function subject to knapsack or matroid constraints. We
present an experimental evaluation of our algorithm in Section 8.

2. PRELIMINARIES
Let U be a universe of n = |U | elements, let f : 2U → R+ be

a function, and let I ⊆ 2U be a given family of feasible solutions.
We are interested in solving the following optimization problem:

max{f(S) | S ∈ I}. (1)

We will focus on the case when f and I satisfy some nice structural
properties. For simplicity, we use the notation f ′S(u) to denote the
incremental value in f of adding u to S, i.e., f ′S(u) = f(S∪{u})−
f(S).



Problem
Approximation Rounds Reference

Objective Constraint
Modular

1-matroid
1 O(1/δ) Section 5

Submodular

1/(2+ε) O( 1
εδ

log ∆) Section 4
1-knapsack 1/2− ε

O(1/δ)d-knapsacks Ω(1/d) Section 6

p-system
1
p+1
d1/δe−1

1
p+1+ε

O( 1
εδ

log ∆) Section 4

Table 1: A summary of the results. Here, n denotes the total number of elements and ∆, the maximum change of the function under
consideration. Our algorithms use O(n/µ) machines with µ, the memory per machine, µ = O(knδ logn), where k is the cardinality
of the optimum solution.

DEFINITION 1 (MODULAR AND SUBMODULAR FUNCTIONS).
A function f : 2U → R+ is said to be submodular if for every
S′ ⊆ S ⊆ U and u ∈ U \ S, we have f ′S′(u) ≥ f ′S(u); it is said
to be modular if f ′S′(u) = f ′S(u).

A function f is said to be monotone if S′ ⊆ S =⇒ f(S) ≥
f(S′). A family I is hereditary if it is downward closed, i.e., A ∈
I ∧ B ⊆ A =⇒ B ∈ I. The greedy simulation framework
we introduce will only be restricted to submodular functions for a
hereditary feasible family. We now define more specific types on
constraints on the feasible family.

DEFINITION 2 (MATROID). The pairM = (U, I) is a ma-
troid if I is hereditary and satisfies the following augmentation
property: ∀A,B ∈ I, |A| < |B| =⇒ ∃u ∈ B \A such that A ∪
{u} ∈ I.

Given a matroid (U, I), a set A ⊆ U is called independent if and
only if A ∈ I. Throughout the paper, we will often use the terms
feasible and independent interchangeably, even for more general
families I of feasible solutions. The rank of a matroid is the num-
ber of elements in a maximal independent set.

We next recall the notion of p-systems, which is a generalization
of intersection of p matroids (e.g., see [8, 26, 29]). Given U ′ ⊆
U and a hereditary family I, the maximal independent sets of I
contained in U ′ are given by B(U ′) = {A ∈ I | A ⊆ U ′ ∧ @A′ ∈
I, A ( A′ ⊆ U ′}.

DEFINITION 3 (p-SYSTEM). The pair P = (U, I) is a
p-system if I is hereditary and for all U ′ ⊆ U , we have
maxA∈B(U′) |A| ≤ p ·minA∈B(U′) |A|.

Given F = (U, I), where I is hereditary, we will use the nota-
tion F [X], for X ⊆ U , to denote the pair (X, I[X]), where I[X]
is the restriction of I to the sets over elements in X . We observe
that if F is a matroid (resp., p-system), then we have that F [X] is
a matroid (resp., p-system) as well.

2.1 Greedy algorithms
A natural way to solve (1) is to use the following sequential

greedy algorithm: start with an empty set S and grow S by iter-
atively adding the element u ∈ U such that greedily maximizes the
benefit:

u = arg max u′∈U
S∪{u′}∈I

f ′S(u′).

It is known that this greedy algorithm obtains a (1−1/e) approxi-
mation for the maximum coverage problem, a (1/p)-approximation
for maximizing a modular function subject to p-system constraints
[26] and a (1/(p+1))-approximation for maximizing a submodular
function [8, 20]. Recently, for p = 1, Calinescu et al. [8] obtained

a (1− 1/e)-approximation algorithm for maximizing a submodular
function; this result generalizes the maximum coverage result.

We now define an approximate greedy algorithm, which is a
modification of the standard greedy algorithm. Let 0 ≤ ε ≤ 1
be a fixed constant.

DEFINITION 4 (ε-GREEDY ALGORITHM). Repeatedly, add
an element u to the current solution S such that S ∪ {u} ∈ I and

f ′S(u) ≥ 1
1+ε

(
max u′∈U

S∪{u′}∈I
f ′S(u′)

)
, with ties broken in an

arbitrary but consistent way.

The usefulness of this definition is evident from the following.

THEOREM 5. The ε-greedy algorithm achieves a: (i) 1
2+ε

ap-
proximation for maximizing a submodular function subject to a ma-
troid constraint; (ii) 1−1/e

1+ε
approximation for maximizing a sub-

modular function subject to choosing at most k elements; and
(iii) 1

p+1+ε
(resp., 1

p+ε
) approximation for maximizing submodu-

lar (modular) function subject to a p-system.

The proof follows by definition and from the analysis of Calinescu
et al. [8]. Finally, without loss of generality, we assume that
for every S ⊆ U and u ∈ U such that f ′S(u) 6= 0, we have
1 ≤ f ′S(u) ≤ ∆, i.e., ∆ represents the “spread” of the non-zero
incremental values.

2.2 MapReduce
We describe a high level overview of the MapReduce computa-

tional model; for more details see [16, 18, 27, 30]. In this setting
all of the data is represented by 〈key; value〉 pairs. For each pair,
the key can be seen as the logical address of the machine that con-
tains the value, with pairs sharing the same key being stored on
the same machine.

The computation itself proceeds in rounds, which each round
consisting of a map, shuffle, and reduce phases. Semantically, the
map and shuffle phases distribute the data, and the reduce phase
performs the computation. In the map phase, the algorithm de-
signer specifies the desired location of each value by potentially
changing its key. The system then routes all of the values with
the same key to the same machine in the shuffle phase. The al-
gorithm designer specifies a reduce function that takes as input all
〈key; value〉 pairs with the same key and outputs either the final
solution or a set of 〈key; value〉 pairs to be mapped in a subse-
quent MapReduce round.

Karloff et al. [27] introduced a formal model, designed to capture
the real world restrictions of MapReduce as faithfully as possible.
Specifically, their model insists that the total number of machines
available for a computation of size n is at most n1−ε, with each



machine having n1−ε amount of memory, for some constant ε > 0.
The overall goal is to reduce the number of rounds necessary for the
computation to complete. Later refinements on the model [18, 30,
34] allow for a specific tradeoff between the memory per machine
the number of machines and the total number of rounds.

The MapReduce model of computation is incomparable to the
traditional PRAM model where an algorithm can use a polynomial
number of processors that share an unlimited amount of memory.
The authors of [27] have shown how to simulate T-step EREW
PRAM algorithms in O(T ) rounds of MapReduce. This result has
subsequently been extended by [22] to CRCW algorithms with
an additional overhead of logµM , where µ is the memory per
machine and M is the aggregate memory used by the PRAM al-
gorithm. We note that only a few special cases of the problems
we consider have efficient PRAM algorithms and, the MapReduce
simulation of these cases requires at least logarithmic factor larger
running time than our algorithms.

3. SAMPLE&PRUNE
In this section we describe a primitive that will be used in our

algorithms to progressively reduce the size of the input. A simi-
lar filtering method was used in [30] for maximal matchings and
in [18] for clustering. Our contribution is to abstract this method
and significantly expand the scope of its applications.

At a high level, the idea is to identify a large subset of the data
that can be safely discarded without changing the value of the op-
timum solution. As a concrete example, consider the MAXCOVER
problem. We are given a universe of elements U , and a family of
subsets S. Given an integer k, the goal is to choose at most k sub-
sets from S such that the largest number of elements are covered.
Say that the sets in U are S1 = {a, b, c}, S2 = {a}, S3 = {a, c},
and S4 = {b, d}. If S1 has been selected as part of the solution,
then both S2 and S3 are redundant and can be clearly removed thus
reducing the problem size. We refer to S1 above as a seed solution.
We show for a large family of optimization functions that a seed
solution computed on a sample of all of the elements can be used
to reduce the problem size by a factor proportional to the size of
the sample.

Formally, consider a universe U and a function Gk such that
for A ⊆ U , the function Gk(A) returns a subset of A of size at
most k and Gk(A) ⊆ Gk(B), for A ⊆ B. The algorithm SAM-
PLE&PRUNE begins by running Gk on a sample of the data to ob-
tain a seed solution S. It then examines every element u ∈ U and
removes it if it appears to be redundant under Gk given S.

SAMPLE&PRUNE(U,Gk, `)
1: X ← sample each point in U with probability min{1, `

|U|}
2: S ← Gk(X)
3: MS ← {u ∈ U \ S | u ∈ Gk(S ∪ {u})}
4: return (S,MS)

The algorithm is sequential, but can be easily implemented in the
MapReduce setting, since both lines (1) and (3) are trivially paral-
lelizable. Further, the set X at line (2) has size at most O(` logn)
with high probability. Therefore, for any ` > 0 the algorithm can
be implemented in two rounds of MapReduce using O(n/µ) ma-
chines each with µ = O(` logn) memory.

Finally, we show that the number |MS | of non-redundant ele-
ments is smaller than |U | by a factor of /̀k. Thus, a repeated
call to SAMPLE&PRUNE terminates after O(log`/k n) iterations,
as shown in Corollary 7.

LEMMA 6. After one round of SAMPLE&PRUNE with ` =
knδ logn, we have Pr

[
|MS | ≤ 2n1−δ] ≥ 1−2n−k when Gk(A)

is a function that returns a subset of A of size at most k and
Gk(A) ⊆ Gk(B), for A ⊆ B.

PROOF. First, observe that when n ≤ `, we have MS = ∅
and hence we are done. Therefore, assume n > `. Call the set S
obtained in step 2 a seed set. Fix a set S and let ES be the event
that S was selected as the seed set. Note that when ES happens, by
the hereditary property of Gk, none of the elements inMS is part of
the sample X , since any element x ∈ X discarded in step 2 would
be discarded in step 3 as well. Therefore, for each S such that
|MS | ≥ m = (2k/`)n logn, we have Pr[ES ] ≤

(
1− `

n

)|MS | ≤(
1− `

n

)m ≤ n−2k.
Since each seed set S has at most k elements, there are at most

2nk such sets, and hence
∑
S:|MS |≥m

n−2k ≤ 2nk · n−2k =

2n−k

COROLLARY 7. Suppose we run SAMPLE&PRUNE repeatedly
for T rounds, that is: for 1 ≤ i ≤ T , let (Si,Mi) =
SAMPLE&PRUNE(Mi−1,Gk, `), where M0 = U . If ` =
knδ logn and T > 1/δ, then we have MT = ∅, with probabil-
ity at least 1− 2Tn−k.

PROOF. By Lemma 6, assuming that Mi ≤ n(2n−δ)i we can
prove thatMi+1 ≤ n

(
2nδ
)i+1

with probability at least 1−2n−k.
The claim follows from a union bound.

We now illustrate how Corollary 7 generalizes some prior re-
sults [18, 30]. Note that the choice of the function Gk affects both
the running time and the approximate ratio of the algorithm. Since
Corollary 7 guarantees convergence, the algorithm designer can fo-
cus on judiciously selecting a Gk that offers approximation guar-
antees for the problem at hand. For finding maximal matchings,
Lattanzi et al. [30] set Gk(X,S) to be the maximal matching ob-
tained by streaming all of the edges in X , given that the edges in
S have already been selected. Setting k = n/2, as at most k edges
can ever be in a maximum matching, and the initial edge size to
m, we see that using nmδ memory, the algorithm converges af-
ter O( 1

δ
) rounds. For clustering, Ene et al. [18] first compute the

value v of the distance of the (roughly) nδth furthest point in X to
a predetermined set S and the function Gk(X,S) returns all of the
points that have distance to S further than v. Since Gk returns at
most k = nδ points, using n2δ memory, the algorithm converges
after O( 1

δ
) rounds.

In addition to these two examples, we will show below how to
use the power of SAMPLE&PRUNE to parallelize a large class of
greedy algorithms.

4. GREEDY ALGORITHMS
In this section we consider a generic submodular maximization

problem with hereditary constraints. We first introduce a simple
scaling approach that simulates the ε-greedy algorithm. The scal-
ing algorithm proceeds in phases: in phase i ∈ {1, . . . , log1+ε ∆},
only the elements that improve the current solution by an amount
in [ ∆

(1+ε)i+1 ,
∆

(1+ε)i
) are considered (recall that no element can im-

prove the solution by more than ∆). These elements are added one
at a time to the solution as the algorithm scans the input. We will
show that the algorithm terminates after O( log ∆

ε
) iterations, and

effectively simulates the ε-greedy algorithm. We note that some-
what similar scaling ideas have proven to be useful for submodular
problems such as in [5, 24]. We first describe the sequential al-
gorithm (GREEDYSCALING ) and then show how it can be paral-
lelized.



GREEDYSCALING

1: S ← ∅
2: for i = 1, . . . , log1+ε ∆ do
3: for all u ∈ U do
4: if S ∪ {u} ∈ I and f ′S(u) ≥ ∆

(1+ε)i
then

5: S ← S ∪ {u}
6: end if
7: end for
8: end for

LEMMA 8. For the submodular maximization problem with
hereditary constraints, GREEDYSCALING implements the ε-greedy
method.

PROOF. Given the current solution, call an element u feasible if
S∪{u} ∈ I. We use induction to prove the following claim: at the
beginning of phase i, the marginal benefit of any feasible element is
at most ∆

(1+ε)i−1 . The base case is clear. Suppose the claim is true
at the beginning of phase j. At the end of this phase, no feasible
element with a marginal benefit of more than ∆

(1+ε)j
to the solution

remains. By the hereditary property of I, the set of feasible ele-
ments at the end of the phase is a subset of feasible elements at the
beginning and, by submodularity of f , the marginal benefit of any
element could only have decreased during the phase. Therefore,
the marginal benefit of any element added by GREEDYSCALING is
within (1+ε) of that of the best element, completing the proof.

For realizing in MapReduce, we use SAMPLE&PRUNE in ev-
ery phase of the outer for loop to find all elements with high
marginal values. Recall that SAMPLE&PRUNE takes a function
Gk : 2U → Uk as input, and returns a pair of sets (S,M). Note
that k is a bound on the solution size. We will show how to define
Gk in each phase so that we can emulate the behavior of the scaling
algorithm. Our goal is to ensure that every element not returned by
SAMPLE&PRUNE was rightfully discarded and does not need to be
considered in this round.

Let τi = ∆
(1+ε)i

be the threshold used in the ith round. Let

GS,i : 2U → Uk be the function implemented in lines (3) through
(7) of GREEDYSCALING during the ith iteration of the outer loop.
In other words, the function GS,i(A) maintains a solution S′, and
for every element a ∈ A adds it to the solution if f ′S∪S′(a) ≥ τi
(the marginal gain is above the threshold), and S ∪ S′ ∪ {a} ∈
I (the resulting solution is feasible). Note that the procedure of
GS,i can change in each iteration of the loop since S can change
and GS,i may return a set of size less than k, but never larger than
k. Consider the algorithm GREEDYSCALINGMR that repeatedly
calls SAMPLE&PRUNE while adding the sampled elements into the
solution set.

GREEDYSCALINGMR(Phase i)
1: S ← ∅,M ← U
2: while M 6= ∅ do
3: (S′,M)← SAMPLE&PRUNE(M,GS,i, `)
4: S ← S ∪ S′
5: end while
6: return S

Observe that every element added to S has a marginal value of
at least τi by definition of GS,i. We show the converse below.

LEMMA 9. Let S be the result of the ith phase of
GREEDYSCALINGMR on U . For any element u 6∈ S either
S ∪ {u} 6∈ I or f ′S(u) ≤ τi.

PROOF. Suppose not, and consider the iteration of the algorithm
immediately before u is removed from M . We have sets S,M
with u ∈ M , but u 6∈ S′ ∪ M after an additional iteration of
SAMPLE&PRUNE. If u were removed, then u 6∈ GS,i(S′ ∪ {u})
and therefore the addition of S′ to the solution either resulted in u
being infeasible (i.e., S ∪ S′ ∪ {u} 6∈ I) or its marginal benefit
becoming inadequate (i.e., f ′S∪S′(u) ≤ τi). Since the constraints
are hereditary, once u becomes infeasible it stays infeasible, and the
marginal benefit of u can only decrease. Therefore, at the end of the
iteration, either S ∪ {u} 6∈ I or f ′S(u) ≤ τi, a contradiction.

The following is then immediate given Lemma 9, Corollary
7, and that SAMPLE&PRUNE can be realized in two rounds of
MapReduce.

THEOREM 10. For any hereditary family I and submodular
function f , GREEDYSCALING emulates the ε-greedy algorithm on
(U, f, I) and can be realized in O( 1

εδ
log ∆) rounds of MapRe-

duce using O(n/µ logn) machines with µ = O(knδ logn) mem-
ory, with high probability.

To put the above statement in perspective, consider the classical
greedy algorithm for the maximum k-coverage problem. If the
largest set covers ∆ = O(poly logn) elements, then by setting ` =√
n and k = O(poly logn), we obtain an 1− 1/e− ε approximate

algorithm that uses O(
√
n) machines each with

√
n logn memory

in O( log logn
ε

) rounds, improving on the comparable PRAM algo-
rithms [6, 7]. Further, in [13] anO(poly log(n,∆)) round MapRe-
duce algorithm for the maximum k-coverage problem was given
and our algorithm achieves the same guarantees while reducing the
number of rounds to be O(log ∆) when δ and ε are constants.

5. MODULAR MAXIMIZATION WITH A
MATROID CONSTRAINT

In this section we consider the problem of finding the maximum
weight independent set of a matroidM = (U, I) of rank k with
respect to a modular function f : U → R+. We assume that k
is given as input to the algorithm. Note that when the function is
modular, it is sufficient to define the function only on the elements,
as the value of a solution S is

∑
u∈S f(u). It is a well-known fact

that the greedy procedure that adds the maximum weight feasible
element at each step solves the problem optimally. Indeed, the set
obtained at the end of the ith step is an independent set that is max-
imum among those of size i. Henceforth, we will assume that f is
injective; note that this is without loss of generality, as we can make
f injective by applying small perturbations to the values of f . We
observe that when the weights are distinct, the greedy algorithm
has only one optimal choice at each step.

The following claim directly follows by the greedy property.

FACT 11. Let M = (U, I) be a matroid of rank k and f :
U → R+ be an injective weight function. Let S∗ = {s∗1, . . . , s∗k},
where f(s∗1) > · · · > f(s∗k) is the greedy solution. Then, for every
1 ≤ i < k and any u ∈ U \ {s∗1, . . . , s∗i+1}, we have that either
{s∗1, . . . , s∗i , u} /∈ I or f(u) < f(s∗i+1).

Our analysis will revolve around the following technical result,
which imposes additional structure on the greedy solution. Fix a
function f and consider a matroid, M = (U, I). Let S be the
greedy solution under f and consider an element u ∈ S. For any
X ⊆ U it is the case that u is in the greedy solution forM[X∪{u}]
under f . In other words, no element u in the (optimal) greedy
solution can be blocked by other elements in a submatroid. This
property of the greedy algorithm is known in the literature and, we
give a proof here for completeness.



LEMMA 12. LetM = (U, I) be a matroid of rank k and f :
U → R+ be an injective weight function. For any X ⊆ U , let
G(X) be the greedy solution for M[X] under f . Then, for any
X ⊆ U and u ∈ G(U), it holds that u ∈ G(G(X) ∪ {u}).

PROOF. Let u ∈ G(U) and let X be any subset of U such that
u ∈ X . Let A contain an element u′ ∈ U such that f(u′) > f(u)
and let A′ = A ∩X . We define r(S) to be the rank of the matroid
M [S] for any S ⊆ U and let r(S, u′) = r(S∪{u})−r(S) for any
u′ ∈ U . It can be easily verified that r(S) is a submodular function.
Notice that r(A, u) = 1 because u is in G(U). Knowing that r is
submodular and A′ ⊆ A we have that r(A′, u) ≥ r(A, u) = 1.
Thus, it must be the case that u ∈ G(X ∪ {u})

To find the maximum weight independent set in MapReduce we
again turn to the SAMPLE&PRUNE procedure. As in the case of
the greedy scaling solution, our goal will be to cull the elements
not in the global greedy solution, based on the greedy solution for
the sub-matroid induced by a set of sampled elements. Intuitively,
Lemma 12 guarantees that no optimal element will be removed dur-
ing this procedure.

MATROIDMR(U, I, f, `)
1: S ← ∅, M ← U
2: while M 6= ∅ do
3: (S,M)← SAMPLE&PRUNE(S ∪M,G, `)
4: end while
5: return S

Algorithm MATROIDMR contains the formal description. Given
the matroid M = (U, I), the weight function f , and a memory
parameter `, the algorithm repeatedly (a) computes the greedy so-
lution S on a submatroid obtained from M by restricting it to a
small sample of elements that includes the solution computed in
the previous iteration and (b) prunes away all the elements that
cannot individually improve the newly computed solution S. We
remark that, unlike in the algorithm for the greedy framework of
Section 4, the procedure G passed to SAMPLE&PRUNE is invari-
ant throughout the course of the whole algorithm and corresponds
to the classical greedy algorithm for matroids. Note that G always
returns a solution of size at most k, as no feasible set has size more
than the rank.

The correctness of the algorithm again follows from the fact that
no element in the global greedy solution is ever removed from con-
sideration.

LEMMA 13. Upon termination, the algorithm MATROIDMR
returns the optimal greedy solution S∗.

PROOF. It is enough to show inductively that after each call of
SAMPLE&PRUNE, we have S∗ ⊆ S ∪ M . Indeed, this implies
that after each call, the greedy solution of S ∪ M is exactly S∗.
Let s∗ ∈ S∗ ⊆ S ∪M , and suppose by contradiction that after a
call of SAMPLE&PRUNE(S ∪M,G, `), we have s∗ 6∈ S′ ∪M ′,
where (S′,M ′) is the new pair returned by the call. By definition
of SAMPLE&PRUNE and G, it must be that s∗ was pruned since
it was not a part of the greedy solution on S′ ∪ {s∗}. But then
Lemma 12 guarantees that s∗ is not part of the greedy solution of
S ∪M . By induction, s∗ /∈ S∗, a contradiction.

For the running time of the algorithm, we bound the number of
iterations of the while loop using a slight variant of Corollary 7.
The reason Corollary 7 is not directly applicable is that S is added
to M after each iteration of the while loop in MATROIDMR.

LEMMA 14. Let ` = knδ logn. Then, the while loop of the
algorithm MATROIDMR is executed at most T = 1 + 1/δ times,
with probability at least 1− 2Tn−k.

PROOF. Let (Si,Mi) be the pair returned by SAMPLE&PRUNE
in the ith iteration of the while loop, where S0 = ∅ and M0 = U .
Also, let ni = |Si ∪Mi| and γ = n−δ . Note that n0 = |U | =
n. We want to show that the sequence of ni decreases rapidly.
Assuming ni ≤ γin + k(1 + γ + · · · + γi−1), Lemma 6 implies
that, with probability at least 1− 2n−k,

ni+1 ≤ |Mi|+ |Si| ≤ γni+ |Si| ≤ γni+r ≤ γi+1n+k

i∑
j=0

γj .

Therefore, for every i ≥ 1, we have ni ≤ γin + k 1−γi
1−γ < γin +

k
1−γi , with probability at least 1− 2in−k. For i = T − 1 = 1

δ
, we

have nT−1 ≤ k
1−γ . Therefore, at iteration T , SAMPLE&PRUNE

will sample with probability one all elements in ST−1 ∪ MT−1,
and hence ST = G(ST−1 ∪MT−1). By Lemma 13, ST = S∗ and
therefore MT = ∅.

Given that SAMPLE&PRUNE is realizable in MapReduce the fol-
lowing is immediate from Lemma 14.

COROLLARY 15. MATROIDMR can be implemented to run in
O(1/δ) MapReduce rounds using O(n/µ logn) machines with µ =
O(knδ logn) memory with high probability.

6. MONOTONE SUBMODULAR MAXI-
MIZATION

In this section we consider the problem of maximizing a mono-
tone submodular function under a cardinality constraint, knapsack
constraints and p-system constraints. We first consider the spe-
cial case of a single cardinality constraint, i.e., 1-knapsack con-
straint with unit weights. In this case, we provide a (1/2 − ε)-
approximation using a simple threshold argument. Then, we ob-
serve that the same ideas can be applied to achieve a (1/d)-
approximation for d knapsack constraints. This is essentially the
best achievable as Dean et al. [15] show a (1/d(1−ε))-hardness.

6.1 Cardinality constraint
We consider maximizing a submodular function subject to a car-

dinality constraint. The general techniques have the same flavor as
the greedy algorithm described in Section 4. At a high level, we
observe that for these problems a single threshold setting leads to
an approximate solution and hence we do not need to iterate over
the log1+ε ∆ thresholds. We will show the following theorem.

THEOREM 16. For the problem of maximizing a submodular
function under a k-cardinality constraint, there is a MapReduce al-
gorithm that produces a ( 1

2
−ε)-approximation inO( 1

δ
) rounds us-

ing O(n/µ logn) machines with µ = O(knδ logn) memory, with
high probability.

Given a monotone submodular function f and an integer k ≥ 1,
we would like to find a set S ⊂ U of size at most k that maximizes
f . We show how to achieve a 1/2 − ε approximation in a constant
number of MapReduce rounds. Also our techniques will lead to a
one-pass streaming algorithms that use Õ(k) space. Details of the
streaming algorithm are omitted in this version of the paper. The
analysis is based on the following lemma.

LEMMA 17. Fix any γ > 0. Let OPT be the value of an
optimal solution S∗ and τ = OPT · γ

2k
. Consider any S =

{s1, . . . , st} ⊆ U ,|S| = t ≤ k, with the following properties.



(i) There exists an ordering of elements s1, . . . , st such that for
all 0 ≤ i < t, f ′{s1,...,si}(si+1) ≥ τ .

(ii) If t < k, then f ′S(u) ≤ τ , for all u ∈ U .

Then, f(S) ≥ OPT ·min
{
γ
2
, 1− γ

2

}
.

PROOF. If t = k, then f(S) =
∑k−1
i=0 f

′
Si

(si+1) ≥
∑k−1
i=0 τ =

kτ = OPTγ/2. If t < k, we know that f ′S(u∗) ≤ τ , for any
element u∗ ∈ S∗. Furthermore, since f is submodular, f(S ∪
S∗) − f(S) ≤ τ · |S∗ \ S| ≤ γOPT/2. We have f(S) ≥ f(S ∪
(S∗ \ S)) − γOPT

2
≥ OPT − γOPT

2
=
(
1− γ

2

)
OPT, where the

third step follows from the monotonicity of f .

We now show how to adapt the algorithm to MapReduce. We
will again make use of the SAMPLE&PRUNE procedure. As in
the case of the greedy scaling solution, our goal will be to prune
the elements with marginal gain below τ with respect to a current
solution S. Moreover, only elements with marginal gain above τ
will be added to S, so that Lemma 17 can be applied.

The algorithm THRESHOLDMR shares similar ideas with the
MapReduce algorithm for greedy framework. In particular, the
procedure GS,τ,k passed to SAMPLE&PRUNE changes throughout
different calls, and is defined as follows: GS,τ,k(X) maintains a
solution S′ and for every element u ∈ X adds it to the solution
S′ if f ′S∪S′(u) ≥ τ (the marginal gain is above the threshold) and
|S ∪ S′| < k (the solution is feasible). The output of GS,τ,k(X) is
the resulting set S ∪ S′.

Algorithm 1 THRESHOLDMR(U, f, k, τ, `)

1: S ← ∅, M ← U
2: while M 6= ∅ do
3: (S′,M)← SAMPLE&PRUNE(M,GS,τ,k, `)
4: S ← S ∪ S′
5: end while
6: return S

Observe that all of the elements that were added to S had their
marginal value at least τ by definition of GS,τ,k. The following
claim guarantees the applicability of Lemma 17. The proof is sub-
stantially a replica of that of Lemma 9 and is omitted.

LEMMA 18. Let S be the solution returned by the algorithm
THRESHOLD. Then, either |S| = k, or f ′S(u) ≤ τ , for all u ∈ U .

Finally, observe that an upper bound on ∆ (and therefore on OPT)
can be computed in one MapReduce round. Hence, we can eas-
ily run the algorithm in parallel on different thresholds τ . This
observation along with Lemma 18, Corollary 7 and the fact that
SAMPLE&PRUNE can be implemented in two rounds of MapRe-
duce, yield the following corollary.

COROLLARY 19. THRESHOLD produces ( 1
2
− ε)-

approximation and can be implemented to run in O( 1
δ
) rounds

using O(n logn/µ) machines with µ = O(knδ logn) memory with
high probability.

6.2 Knapsack constraints
For the case of d knapsack constraints we are given a submodular

function f and would like to find a set S ⊆ U of maximum value
with respect to f with the property that its characteristic vector xS
satisfies CxS ≤ b. Here, Ci,j is the “weight” of the element
uj with respect to the ith knapsack, and bi is the capacity of the
ith knapsack, for 1 ≤ i ≤ d. Our goal is to show the following
theorem. Let k be a given upper bound on the size of the smallest
optimal solution.

Algorithm 2 THRESHOLDSTREAM(f, k, τ)

1: S ← ∅
2: for all u ∈ U do
3: if |S| < k and f ′S(u) ≥ τ then
4: S ← S ∪ {u}
5: end if
6: end for
7: return S

THEOREM 20. For the problem of maximizing a submodular
function under d knapsack constraints, there exists a MapReduce
algorithm that produces a Ω(1/d)-approximation in O( 1

δ
) rounds

usingO(n/µ logn) machines with µ = O(knδ logn) memory with
high probability.

Without loss of generality, we will assume that there is no ele-
ment that individually violates a knapsack constraint, i.e., there is
no uj such that ci,j > bi, for every 1 ≤ i ≤ d. We begin by
providing an analog of Lemma 17.

LEMMA 21. Fix any γ > 0. Let OPT be the value of an op-
timal solution S∗ and τi = γOPT

2bid
, for 1 ≤ i ≤ d. Consider any

feasible solution S ⊆ U with the following properties:

(i) There exists an ordering of its elements aj1 , . . . , ajt such
that for all 0 ≤ m < t and 1 ≤ i ≤ d, it holds that
f ′Sm

(ajm+1) ≥ τici,jm+1 , where Sm = {aj1 , . . . , ajm}.

(ii) Assuming that for all 1 ≤ i ≤ d,
∑t
m=1 ci,jm ≤

bi
2

, then
for all aj ∈ U there exists an index 1 ≤ h(j) ≤ d such that
f ′S(aj) ≤ τh(j)ch(j),j .

Then, f(S) ≥ OPT ·min
{

γ
4(d+1)

, 1− γ
2

}
.

PROOF. Consider first the case that the solution S fills at least
half of a knapsack, i.e., for some 1 ≤ i ≤ d,

∑t
m=1 ci,jm ≥

bi
2

;
since each element ajm ∈ S added a marginal value of at least
τici,jm , we have f(S) ≥ τi

∑t
m=1 ci,jm = γOPT

4d
.

Now assume that the solution S does not fill half of any knap-
sack. Then, using (ii), define S∗i to be the set of elements aj ∈
S∗ \S such that h(j) = i, for 1 ≤ i ≤ d. Because of the knapsack
constraints, submodularity, and the fact that f ′S(aj) ≤ τh(j)ch(j),j ,
we must have that f(S∪S∗i )−f(S) ≤ γOPT

2d
, for every 1 ≤ i ≤ d.

Therefore, we have f(S ∪ (S∗ \ S)) − f(S) ≤ γOPT
2

. There-
fore, by monotonicity of f , we have f(S) ≥ f(S∗) − γOPT

2
=

(1− γ
2

)OPT.

Now we show how the algorithm can be implemented in MapRe-
duce. We assume the algorithm is given an estimate γOPT to com-
pute all τi’s for some γ and an upper bound k on the size of the
smallest optimal solution. The algorithm will simulate the pres-
ence of an extra knapsack constraint stating that no more than k
elements can be picked. (Note that the value of the optimum value
for this new system is not changed, as S∗ is feasible in this new
system.)

We say that an element aj ∈ U is heavy profitable if ci,j ≥ bi
2

and f({aj}) ≥ τici,j for some i. The algorithm works as follows:
if there exists a heavy profitable element (which can be detected
in a single MapReduce round), the algorithm returns it as solution.
Otherwise, the algorithm is identical to THRESHOLD, except for
the procedure GS,τ,k which is now defined as follows: GS,τ,k(X)
maintains a solution S′ and for every element aj ∈ X adds it to S′

if, for all 1 ≤ i ≤ d, f ′S∪S′(aj) ≥ τici,j , and S ∪ S′ ∪ {aj} is



feasible w.r.t. the knapsack constraints; the output of GS,τ,k(X) is
the resulting set S ∪ S′.

We now analyze the quality of the solution returned by the al-
gorithm. In the presence of a heavy profitable element, then the
returned solution has value at least γOPT

4d
. Otherwise, we argue that

S satisfies the properties of Lemma 17: the first property is satisfied
trivially by definition of the algorithm and the second property is
valid by submodularity and the fact that there is no heavy profitable
element.

Similarly to the algorithm THRESHOLD, we can run the algo-
rithm in parallel on different values of the estimate γOPT. We can
conclude the following.

THEOREM 22. There exists a MapReduce algorithm that pro-
duces a Ω(1/d) approximation in O( 1

δ
) rounds using O(n logn/µ)

machines with µ = O(knδ logn) memory with high probability.

6.3 p-system constraints
Finally, consider the problem of maximizing a monotone sub-

modular function subject to a p-system constraint. This generalizes
the question of maximizing a monotone submodular function sub-
ject to p matroid constraints. Although one could try to extend the
threshold algorithm for submodular functions to this setting, sim-
ple examples show that the algorithm can result in a solution whose
value is arbitrarily smaller than the optimal due to the p-system
constraint. The algorithms in this section are more closely related
to the algorithm for the modular matroid; however, in this case,
we will need to store all of the intermediate solutions returned by
SAMPLE&PRUNE and choose the one with the largest value. Our
goal is to show the following theorem.

THEOREM 23. SUBMODULAR-P-SYSTEM can be imple-
mented to run in O( 1

δ
) rounds of MapReduce using O(n/µ logn)

machines with memory µ = O(knδ logn) with high probability,
and produces a ( 1

p+1
d 1
δ
e−1)-approximation.

The algorithm SUBMODULAR-P-SYSTEM is similar to the al-
gorithm for the modular matroid as the procedure G passed to
SAMPLE&PRUNE is simply the greedy algorithm. However, unlike
MATROIDMR, all intermediate solutions are kept and the largest
one is chosen as final solution. The following lemma provides a
bound on the quality of the returned solution.

LEMMA 24. If T is the number of iterations of the while loop
in SUBMODULAR-P-SYSTEM, then SUBMODULAR-P-SYSTEM
gives a 1

(1+p)T
-approximation.

PROOF. Let Ri be the elements of U that are removed during
the ith iteration of the while loop of SUBMODULAR-P-SYSTEM.
LetO denote the optimal solution andOi := O∩Ri. Let Si be the
set returned by SAMPLE&PRUNE during the ith iteration. Note that
the algorithm G used in SUBMODULAR-P-SYSTEM is known to be
a 1/(p+1)-approximation for maximizing a monotone submodular
function subject to a p-system if the input to G is the entire universe
[8].

Let Ii denote the p-system induced on only the elements inRi∪
Si. Note that by definition of p-systems Ii exists. By definition
of G and SAMPLE&PRUNE, an element e is in the set Ri because
the algorithm G with input Ii and f returns Si and e /∈ Si. This
is because for each element e ∈ Ri, SAMPLE&PRUNE runs the
algorithm G on the set (Si ∪ {e}) and e was not chosen to be in
the solution. Thus if we run G on S ∪ Ri still no element in Ri
will be chosen to be in the output solution. Therefore, f(Si) ≥

1
p+1

f(Oi) since G is a 1/(p+ 1) approximation algorithm for the

instance consisting of Ii and f . By submodularity we have that∑t
i=1 f(Si) ≥ 1

p+1

∑t
i=1 f(Oi) ≥ 1

p+1
f(O). Since there are

only T such sets Si if we return the set arg maxS∈F f(S) then
this must give a 1

(1+p)T
-approximation. Further, by definition of

G, we know that for all i the set Si is in I, so the set returned must
be a feasible solution.

Algorithm 3 SUBMODULAR-P-SYSTEM(U, I, k, f, `)
1: For X ⊆ U , let G(X, k) be the greedy procedure running on

the subsetX of elements: that is, start withA := ∅, and greed-
ily add to A the element a ∈ X \ A, with A ∪ {a} ∈ I,
maximizing f(A∪{a})− f(A). The output of G(X, k) is the
resulting set A.

2: F = ∅
3: while U 6= ∅ do
4: (S,MS)← SAMPLE&PRUNE(U,G, `)
5: F ← F ∪ {S}
6: U ←MS

7: end while
8: return arg maxS∈F f(S)

7. ADAPTATION TO STREAMING
In this section we discuss how the algorithms given in this pa-

per extend to the streaming setting. In the data stream model (cf.
[32]), we assume that the elements of U arrive in an arbitrary or-
der, with both f and membership in I available via oracle accesses.
The algorithm makes one or more passes over the input and has a
limited amount of memory. The goal in this setting is to minimize
the number of passes over the input and to use as little memory as
possible.

ε-greedy. We can realize each phase of GREEDYSCALING with a
pass over the input in which an element is added to the current solu-
tion if the marginal value of adding the element is above the thresh-
old for the phase. If k is the desired solution size, the algorithm will
require O(k) space and will terminate after O( log ∆

ε
) phases. The

approximation guarantees are given in Theorem 5. For the case of
modular function maximization subject to a p-system constraint,
the approximation ratio achieved by GREEDYSCALING is 1

p+ε
; we

show that the approximation ratio achieved in the streaming setting
cannot be improved without drastically increasing either the mem-
ory or the number of passes. The proof is omitted from this version
of the paper.

THEOREM 25. Fix any p ≥ 2 and ε > 0. Then any `-pass
streaming algorithm achieving a 1

p−ε approximation for maximiz-
ing a modular function subject to a p-system constraint requires
Ω(n/(`p2 log p)) space.

Matroid optimization. Lemma 12 leads to a very simple algorithm
in the streaming setting. The algorithm keeps an independent set
and, when a new element comes, updates it by running the greedy
algorithm on the current solution and the new element. Observe
that the algorithm uses only k + 1 space. Lemma 12 implies that
no element in the global greedy solution will be discarded when
examined. Therefore, we have:

THEOREM 26. Algorithm MATROIDSTREAM finds an optimal
solution in a single pass using k + 1 memory.

Submodular maximization. The algorithms and analysis for these
settings are omitted from this version of the paper.



THEOREM 27. There exists a one-pass streaming algorithm
that uses O(k/ε log(n∆)) (resp. O(k log(n∆)) memory and pro-
duces a 1

2
− ε (resp. (1/d)) approximation for the problem of maxi-

mizing a submodular function subject to a k-cardinality constraint
(resp. d knapsack constraints).

THEOREM 28. There exists a streaming algorithm that uses
O(knδ logn) memory and produces a 1

p+1
d 1
δ
e−1 approximation

in O( 1
δ
) passes, where k is the size of the largest independent set.

8. EXPERIMENTS
In this section we describe the experimental results for our algo-

rithm outlined in section 4 for the MAXCOVER problem. Recall
the MAXCOVER problem: given a family S of subsets and a bud-
get k, pick at most k elements from S to maximize the size of their
union. The standard (sequential) greedy algorithm gives a (1−1/e)-
approximation to this problem. We measure the performance of our
algorithm, focusing on two aspects: the quality of approximation
with respect to the greedy algorithm and the number of rounds;
note that the latter is k for the straightforward implementation of
the greedy algorithm. On real-world datasets, our algorithms per-
form on par with the greedy algorithm in terms of approximation,
while obtaining significant savings in the number of rounds.

For our experiments, we use two publicly available datasets
from http://fimi.ua.ac.be/data/: ACCIDENTS and
KOSARAK. For ACCIDENTS, |S| = 340, 183 and for KOSARAK,
|S| = 990, 002.

Figure 1 shows the performance of our algorithm for ε = δ =
0.5 for various values of k, on these two datasets. It is easy to see
that the approximation factor is essentially same as that of Greedy
once k grows beyond 40 and we obtain a significant factor savings
in the number of rounds (more than an order of magnitude savings
for KOSARAK.)
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Figure 1: Approximation and number of rounds with respect
to Greedy for KOSARAK and ACCIDENTS datasets as a function
of k.

The first pane of Figure 2 shows the role of ε (Theorem 5). Even
for large values of ε, our algorithm performs almost on par with
greedy in terms of approximation (note the scale on the y-axis),
while the number of rounds is significantly less. Though Theorem 5
only provides a weak guarantee of (1− 1/e)/(1 + ε), these results
show that one can use ε� 1 in practice without sacrificing much in
approximation, while gaining significantly in the number of rounds.
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Figure 2: Approximation and number of rounds with respect
to Greedy for KOSARAK datasets as a function of ε and δ.

Finally, the lower pane of Figure 2 shows the role of δ on the
number of rounds. Smaller values of δ require more iterations of
SAMPLE&PRUNE to achieve the memory requirement, thus requir-
ing a larger number of rounds overall. However even for δ = 1/2,
with memory requirement only k

√
n logn, is already enough to

achieve the best possible speedup. Once again, a higher value of δ
results in a larger savings in the number of rounds. The approxima-
tion factor is unchanged.

9. CONCLUSIONS
In this paper we presented algorithms for large-scale submodular

optimization problems in the MapReduce and streaming models.
We showed how to realize the classical and inherently sequential
greedy algorithm in these models and allow algorithms to select
more than one element at a time in parallel without sacrificing the
quality of the solution. We validated our algorithms on real world
datasets for the maximum coverage problem and showed that they
yield an order of magnitude improvement in reducing the number
of rounds, while producing solutions of the same quality. Our work
opens up the possibility of solving submodular optimization prob-
lems at web-scale.

Many interesting questions remain. Not all greedy algorithms
fall under the framework presented in this paper. For example the
augmenting-paths algorithm for maximum flow, or the celebrated
Gale-Shapley matching algorithm cannot be phrased as submodu-
lar function optimization. Giving efficient MapReduce or stream-
ing algorithms for those problems is an interesting open question.



More generally, understanding what classes of algorithms can and
cannot be efficiently implemented in the MapReduce setting is a
challenging open problem.
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