Towards Linear Algebra over Normalized Data

Lingjiao Chen1 \hspace{1cm} Arun Kumar2 \hspace{1cm} Jeffrey Naughton3 \hspace{1cm} Jignesh M. Patel1

1University of Wisconsin-Madison \hspace{1cm} 2University of California, San Diego \hspace{1cm} 3Google

\{lchen, jignesh\}@cs.wisc.edu, 2arunkk@eng.ucsd.edu, 3naughton@google.com

ABSTRACT

Providing machine learning (ML) over relational data is a mainstream requirement for data analytics systems. While almost all ML tools require the input data to be presented as a single table, many datasets are multi-table. This forces data scientists to join those tables first, which often leads to data redundancy and runtime waste. Recent works on “factorized” ML mitigate this issue for a few specific ML algorithms by pushing ML through joins. But their approaches require a manual rewrite of ML implementations. Such piecemeal methods create a massive development overhead when extending such ideas to other ML algorithms. In this paper, we show that it is possible to mitigate this overhead by leveraging a popular formal algebra to represent the computations of many ML algorithms: linear algebra. We introduce a new logical data type to represent normalized data and devise a framework of algebraic rewrite rules to convert a large set of linear algebra operations over denormalized data into operations over normalized data. We show how this enables us to automatically “factorize” several popular ML algorithms, thus unifying and generalizing several prior works. We prototype our framework in the popular ML environment R and an industrial R-over-RDBMS tool. Experiments with both synthetic and real normalized data show that our framework also yields significant speed-ups, up to 36x on real data.

1. INTRODUCTION

The data management industry and academia are working intensively on tools to integrate machine learning (ML) algorithms and frameworks such as R with data platforms \cite{2, 9, 10, 19, 20, 22, 37}. While almost all ML tools require the input data to be presented as a single table, many datasets are multi-table, typically connected by primary key-foreign key (PK-FK) or more general “M:N” dependencies \cite{32}, which forces data scientists to join those tables first. However, such joins often introduce redundancy in the data \cite{32}, leading to extra storage requirements and runtime inefficiencies due to redundancy in the computations of the ML algorithms.

A few recent works \cite{25, 31, 33, 34} aim to avoid such redundancy by decomposing the computations of some specific ML algorithms and pushing them through joins. However, a key limitation of such approaches is that they require manually rewriting each ML algorithm’s implementation to obtain a “factorized” version. This creates a daunting development overhead in extending the benefits of factorized ML to other ML algorithms. Moreover, the prior approaches are too closely tied to a specific data platform, e.g., an in-memory engine \cite{34} or an RDBMS \cite{25}. This state of the art is illustrated in Figure 1(a) and it raises an important question: Is it possible to generalize the idea of factorized ML and “automate” its application to a much wider variety of ML algorithms and platforms in a unified manner?

In this paper, we present the first systematic approach that takes a step towards generalizing and automating factorized ML. Our idea is to use a common formal representation language for ML algorithms: linear algebra (LA). Many popular ML algorithms such as linear regression, logistic regression, and K-Means clustering can be expressed succinctly using LA operators such as matrix multiplication and inversion \cite{9}. Moreover, data scientists often write new ML algorithms in popular LA-based frameworks such as R \cite{3}. The data management community has embraced LA and R as a key environment for ML workloads \cite{2, 4, 9}. For example, Oracle R Enterprise (ORE) lets users write LA scripts over an R “DataFrame” that is stored as an in-RDBMS table \cite{2}, while Apache SystemML provides an R-like language to scale to data on HDFS \cite{9}. While such systems provide scalability and sophisticated optimizations (e.g., SystemML’s hybrid parallelism \cite{5} and SPOOF \cite{17}), they do not optimize LA scripts over normalized data.

Our high-level approach is illustrated in Figure 1(c). Given an ML algorithm in LA (logistic regression in the figure) and the normalized schema, our middleware framework named MORPHEUS automatically creates the factorized version of the ML algorithm, i.e., one that operates on the base tables. As illustrated in Figure 1(b), this approach lets us factorize many ML algorithms with one framework, thus mitigating the development overhead. Furthermore, by decoupling how the ML algorithm is factorized from which platform it is run, MORPHEUS lets us leverage existing scalable LA systems.

Realizing a framework like MORPHEUS is technically challenging due to three crucial desiderata. First is generality, i.e., it should be able to handle a wide variety of ML algorithms expressible in LA, as well as both PK-FK and M:N...
Regression: \(d_a = w_b \) in 1:

\[Y \leftarrow \text{Our Proposed Approach} + R \]

Factorized ML: Prior Work

In 1:

\[\text{Oracle R Enterprise (ORE)} \]

Our Proposed Approach

GLMDS, OLSCP, K-Means, GNMF

Schema/Metadata Information

Original Logistic Regression

Input: Regular matrix \(T, Y, w, a \)

for i in 1: max_iter do

\[w = w + a(T^T \cdot Y) \]

end

MORPHEUS: Factorized Linear Algebra

Systems that support LA workloads

Factorized Logistic Regression

Input: Normalized matrix \((S, K); R\), Y, w, a

for i in 1: max_iter do

\[Y \leftarrow \text{Heuristic Decision Rule} \]

\[P = \left(1 + e^{\frac{w \cdot (1 + \sigma_r \cdot \text{Type})}}{1 + e^{\frac{w \cdot (1 + \sigma_r \cdot \text{Type})}}}
ight)^T \]

end

Factorized Logistic

Figure 1: (a) In contrast to prior approaches to factorized ML, which were ML algorithm- and platform-specific, (b) MORPHEUS provides a unified and generic framework to automatically factorize many ML algorithms over any platform that supports LA workloads. (c) Illustration of how MORPHEUS automatically rewrites the standard single-table version of logistic regression into the factorized version using the normalized schema information. The LA operators whose rewrite rules are invoked are highlighted. The heuristic decision rule uses input data statistics to predict if the factorized version will be faster.

joins. Second is closure, i.e., it should ideally rewrite an LA script only into a different LA script so that the internals of the LA system used need not be modified, which could make practical adoption easier. Third is efficiency, i.e., it should offer mechanisms to ensure that the factorized version is only used when it is faster than the single-table version.

As a step towards providing high generality, in this paper, we focus on a set of LA operations over the data matrix that are common for several popular ML algorithms. These LA operations are listed in Table 1. We introduce a new “logical” data type, the normalized matrix, to represent multi-table data inputs in LA. In a sense, our work brings the classical database notion of logical data independence \([32]\) to LA systems. To ensure tractability, we focus only on some join schemas that are ubiquitous in practice: “star schema” PK-FK joins and “chain schema” M:N joins. More complex join schemas are left to future work.

To provide closure, we devise an extensive framework of algebraic rewrite rules that transform an LA operation over a denormalized data matrix into a set of LA operations over the normalized matrix. In a sense, this is a first principles extension of the classical idea of pushing relational operations through joins \([12, 36]\) to LA. Some LA operations such as scalar-matrix multiplication and aggregations are trivial to rewrite and are reminiscent of relational optimization. But more complex LA operations such as matrix-matrix multiplication, matrix cross-product, and matrix inversion enable us to devise novel rewrites that exploit their LA-specific semantics with no known counterparts in relational optimization. We also handle matrix transpose. For exposition sake, we describe the rewrite rules for a PK-FK join and then generalize to star schema multi-table PK-FK joins and M:N joins. We apply our framework to four popular and representative ML algorithms to show how they are automatically factorized: logistic regression for classification, linear regression, K-Means clustering, and Gaussian Non-negative Matrix Factorization (GNMF) for feature extraction. Our automatic rewrites largely subsume the ideas in \([29, 33]\) for logistic and linear regression and produce the first known factorized versions of K-Means and GNMF.

Finally, we discuss the efficiency trade-offs involved in the rewrites of complex LA operations and present ways to optimize their performance. We also present simple but effective heuristic decision rules to predict when a factorized LA operation might cause slow-downs; this happens in some extreme cases depending on the dimensions of the base tables \([25]\).

We prototype MORPHEUS on standalone R, which is popular for ML-based analytics \([3, 2]\), and the R-over-RDBMS tool Oracle R Enterprise (ORE) \([2]\) (but note that our framework is generic and applicable to other LA systems as well). We present an extensive empirical evaluation using both real and synthetic datasets. Our experiments validate the effectiveness of our rewrite rules and show that MORPHEUS yields speed-ups of up to 36.x for popular ML algorithms over real data. Compared to a prior ML algorithm-specific factorized ML tool \([25]\), MORPHEUS achieves comparable or higher speed-ups, while offering higher generality. Finally, we also evaluate the scalability of MORPHEUS on ORE.

In summary, this paper makes the following contributions:

- To the best of our knowledge, this is the first paper on generalizing and automating the idea of factorized ML, focusing on ML algorithms expressed in LA.
- We present a mechanism to represent normalized data in LA and an extensive framework of rewrite rules for LA operations. Our framework provides high generality and closure with respect to LA, enabling us to automatically factorize several popular ML algorithms.
- We extend our framework to star schema multi-table PK-FK joins as well as M:N joins.
- We provide prototypes of our framework in both R and ORE and perform an extensive empirical analysis of their performance using both real and synthetic data.

Outline. Section 2 presents the problem setup and background. Section 3 introduces the normalized matrix, explains the architecture of MORPHEUS, and dives deep into the rewrite rules. Section 4 applies our framework to four ML algorithms. Section 5 presents the experiments and Section 6 presents the related work. We conclude in Section 7.

2. PRELIMINARIES AND BACKGROUND

Problem Setup and Notation. For simplicity of exposition, we start with a single PK-FK join. Multi-table joins and M:N joins will be discussed later in Section 3.

Consider two tables: \(S(Y, X_S, K) \) and \(R(RID, X_R) \), where \(X_S \) and \(X_R \) are the feature vectors, and \(Y \) is called the target (for supervised classification and regression). \(K \) is the foreign key and \(RID \) is the primary key of \(R \). Following \([25]\), we call \(S \) the entity table and \(R \) the attribute table. The output of the join-project query is denoted by \(T(Y, X) \leftarrow S \bowtie_K \rightarrow R \), wherein \(X \equiv [X_S, X_R] \) is the concatenation of the feature vectors. We adopt a standard convention on data representation: let \(R \cdot X_R \) (resp. \(S \cdot X_S, S \cdot Y, T \cdot X \)) correspond to the feature matrix \(R \) (resp. \(S, Y, T \)). Table 2 summarizes our notation.
Table 1: Operators and functions of linear algebra handled in this paper over a normalized matrix T.

<table>
<thead>
<tr>
<th>Op Type</th>
<th>Name</th>
<th>Expression</th>
<th>Output Type</th>
<th>Parameter X or x</th>
<th>Factorizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element-wise</td>
<td>Arithmetic Op $(\odot = +, -, \cdot, \div, \text{etc})$</td>
<td>$T \odot x$ or $x \odot T$</td>
<td>Normalized Matrix</td>
<td>A scalar</td>
<td></td>
</tr>
<tr>
<td>Scalar Op</td>
<td>Transpose</td>
<td>T^T</td>
<td>N/A</td>
<td>Parameters for f</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Scalar Function f (e.g., log, exp, sin)</td>
<td>$f(T)$</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregation</td>
<td>Row Summation</td>
<td>rowSums(T)</td>
<td>Column Vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Column Summation</td>
<td>colSums(T)</td>
<td>Row Vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summation</td>
<td>sum(T)</td>
<td>Scalar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplication</td>
<td>Left Multiplication</td>
<td>TX</td>
<td>Regular Matrix</td>
<td>$(d_S + d_R) \times d_X$ matrix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right Multiplication</td>
<td>XT</td>
<td></td>
<td>$n_X \times n_S$ matrix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-product</td>
<td>crossprod(T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversion</td>
<td>Pseudoinverse</td>
<td>ginv(T)</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Element-wise</td>
<td>Arithmetic Op $(\odot = +, -, \cdot, \div, \text{etc})$</td>
<td>$X \odot T$ or $T \odot X$</td>
<td></td>
<td>$n_S \times (d_S + d_R)$ matrix</td>
<td>No</td>
</tr>
<tr>
<td>Matrix Op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Notation used in this paper.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{R} / \mathbb{R}</td>
<td>Attribute table/feature matrix</td>
</tr>
<tr>
<td>\mathbb{S} / \mathbb{S}</td>
<td>Entity table/feature matrix</td>
</tr>
<tr>
<td>T / T</td>
<td>Join output table/feature matrix</td>
</tr>
<tr>
<td>K</td>
<td>Indicator matrix for PK-FK join</td>
</tr>
<tr>
<td>I_S / I_R</td>
<td>Indicator matrices for M:N join</td>
</tr>
<tr>
<td>Y</td>
<td>Target matrix (regression and classification)</td>
</tr>
<tr>
<td>n_R / n_S</td>
<td>Number of rows in R / S (and T)</td>
</tr>
<tr>
<td>d_R / d_S</td>
<td>Number of columns in R / S</td>
</tr>
<tr>
<td>d</td>
<td>Total number of features, $d_S + d_R$</td>
</tr>
<tr>
<td>n_U</td>
<td>M:N join attribute domain size</td>
</tr>
</tbody>
</table>

Example (based on [25]). Consider an insurance analyst classifying customers to predict who might churn, i.e., cancel their policy. She builds a logistic regression classifier using a table with customer details: Customers (CustomerID, Churn, Age, Income, EmployerID). EmployerID is the ID of the customer’s employer, a foreign key referring to a table about organizations that potentially employ the customers: Employers (EmployerID, Revenue, Country). Thus, S is Customers, R is Employers, K is S EmployerID, R ID is R. EmployerID, X_S is $\{\text{Age, Income}\}$, X_R is $\{\text{Country, Revenue}\}$, and Y is Churn. She joins the tables to bring in X_R because she has a hunch that customers employed by rich corporations in rich countries are unlikely to churn.

Linear Algebra (LA) Systems and R. LA is an elegant formal language in which one can express many ML algorithms [9][10]. Data are formally represented as matrices, with scalars and vectors being special cases. LA operators map matrices to matrices. Basic operators include unary operators such as element-wise exponentiation, as well as binary operators such as matrix-matrix multiplication. Derived operators include Gram matrix and aggregation operators. An LA system is a system that supports matrices as a first class data type, as well as elementary and derived LA operators such as indexing, matrix multiplication, and pseudo-inverse. Widely used examples include R, Matlab, SAS, and Python’s NumPy. In particular, open source R has gained immense popularity and has free ML libraries for various domains [3]. R is primarily an in-memory tool but recent systems built by the data management community enables one to scale LA scripts written in R (or R-like languages) to data resident in an RDBMS, Hive/Hadoop, and Spark. Examples of such “R-based analytics systems” include RIOT-DB [37], Oracle R Enterprise (ORE), Apache SystemML [9], and SparkR [4]. In this paper, we implement our framework on standard R and also ORE. Note that our ideas are generic enough to be applicable to other LA systems such as Matlab, NumPy, other R-based analytics systems, or TensorFlow as well.

Factorized ML. Factorized ML techniques were studied in a recent line of work for a few specific ML algorithms [25][33][34]. We briefly explain a key representative technique that introduced this paradigm: “factorized learning” from [25]. Given a model vector w, a GLM with gradient descent computes the inner products $w^\top x$, in each iteration, for each feature vector x from T. Since T has redundancy across tuples, this multiplication involves redundant computations across tuples, which is what factorized learning avoids. The crux of its idea is to decompose the inner products over x into inner products over the feature vectors x_S and x_R from the two base tables. Thus, the partial inner products from R can be saved and then reused for each tuple in S that refers to the same tuple in R. This is correct because $w^\top x = w_S^\top x_S + w_R^\top x_R$, wherein w_S (resp. w_R) is the projection of w to the features from S (resp. R). Figure 1(c) illustrates how logistic regression is factorized. Factorized learning often has significantly faster runtimes.

Problem Statement and Scope. We ask: Is it possible to transparently “factorize” a large set of LA operations over T that are common in ML into operations over S and R without losing efficiency? Our goal is to devise an integrated framework of such algebraic rewrite rules for the key application of automatically “factorizing” ML algorithms written in LA, which could mean that developers need not manually rewrite ML implementations from scratch. The challenge in devising such a framework is in preserving generality (i.e., applicability to many ML algorithms and both PK-FK and
3. FACTORIZED LINEAR ALGEBRA

We introduce the normalized matrix, give an overview of how Morpheus is implemented, and dive deep into our framework of rewrite rules for a single PK-FK join. We then extend our framework to multi-table joins and M:N joins.

3.1 The Normalized Matrix

We introduce a new multi-matrix logical data type called the normalized matrix to represent normalized data. It is called a logical data type because it only layers a logical abstraction on top of existing data types. For simplicity of exposition, this subsection focuses on a PK-FK join; Section 3.5 and 3.6 present the extensions of the normalized matrix to star schema multi-table PK-FK joins and M:N joins, respectively. Note that each R, RID in the attribute table R can be mapped to its sequential row number in the matrix R. Thus, S, K can be viewed as an attribute containing entries that are the row numbers of R. An indicator matrix K of size nS x nR can thus be constructed as follows:

\[K[i,j] = \begin{cases} 1, & \text{if } i^{th} \text{ row of } S.K = j \\ 0, & \text{otherwise} \end{cases} \]

The normalized matrix corresponding to T is defined as a matrix triple TN = (S,K,R). One can verify that T = [S,K,R]. It is worth noting that K is a highly sparse matrix. In fact, the PK-FK relationship implies that the number of non-zero elements in each row of K is 1. Thus, nnz(K), the number of non-zero elements in K, is exactly nS. Without loss of generality, assume \(\forall j, \text{nnz}(K[j]) > 0 \), i.e., each tuple in R is referred to by at least one tuple in S. Otherwise, we can remove from R all the tuples that are never referred to in S. Note that any of R, S, and T can be dense or sparse.

A natural question is how expressive our abstraction is for ML, i.e., what kind of ML algorithms it can support efficiency-wise. In short, ML algorithms whose data-intensive computations can be vectorized as elementary or derived LA operations over the feature matrix T in bulk can benefit from our abstraction. This is expected because vectorized computation is a key efficiency assumption made by almost all LA systems, including R, Matlab, and SystemML. Since our work builds on top of such LA systems, the same assumption carries over to our work. In practice, the data-intensive computations of many popular ML algorithms, including supervised ML, unsupervised ML, and feature extraction algorithms can be vectorized, as we illustrate in detail in Section 3.2.

Morpeus has been open sourced on the project webpage: http://cseweb.ucsd.edu/~arunkk/morpheus

3.2 Overview of Morpheus

Morpheus is an implementation of the normalized matrix and our framework of rewrite rules as a class in standard R and ORE. Our class has three matrices: S, K, and R. All LA operators in Table I are overloaded to support our class.

3.3 Factorized Linear Algebra Operators

We now dive deep into our framework of algebraic rewrite rules for the groups of operators listed in Table I.

3.3.1 Element-wise Scalar Operators

These are trivial to rewrite but are ubiquitous in ML. They include multiplication and addition of a matrix with a scalar, element-wise exponentiation, and element-wise scalar functions, e.g., log and exp. The output is a normalized matrix with the same structure as the input. The rewrite rules are given below: “\(R \)” represents a binary arithmetic operator, x is a scalar, and f is a scalar function.

\[T \oslash x \rightarrow (S \oslash x, K, R \oslash x); \quad x \odot T \rightarrow (x \odot S, K, x \odot R) \]

\[f(T) \rightarrow (f(S), K, f(R)) \]

In the above, T \(\odot x \rightarrow (S \odot x, K, R \odot x) \) means that an operation T \(\odot x \) can be replaced implicitly with operations on the normalized matrix (S, K, R) to yield a new normalized matrix (S \(\odot x, K, R \odot x \)). These rewrites avoid redundant computations. For instance, computing 3 \times T requires

1For ease of exposition, we abuse the notation slightly and use T itself for TN when it is clear from the context that the rewrites operate over the normalized matrix rather than the regular matrix, e.g., in Table I and Section 3.3.

2But not all ML algorithms are amenable to vectorized bulk computations over T, e.g., stochastic gradient descent (SGD) will likely be a poor fit for LA systems, since it updates the model after each example or mini-batch from T [19]. We leave a deeper study of SGD to future work.

9Our architecture fits easily into any interpreted environments for LA; we leave to future work an integration with a compiler environment such as SystemML.
\(n_S(d_S + d_R)\) multiplications but computing \((3 \times S, K, 3 \times R)\) requires only \(n_Sd_S + n_Rd_R\). The ratio of these two quantities is the ratio of the size of \(T\) to the total size of \(S\) and \(R\). The speed-ups depend on this ratio and thus, the speed-ups could be significant when this ratio is large.

3.3.2 Aggregation Operators

These include `rowSums(T)`, which sums the matrix rowwise, `colSums(T)`, which sums the matrix column-wise, and `sum(T)`, which adds up all of the elements. These operators also arise frequently in ML, especially when computing loss or gradient values, which are aggregates over examples (or features). The rewrite rules are as follows.

- `rowSums(T) \rightarrow rowSums(S) + K[rowSums(R)]`
- `colSums(T) \rightarrow [colSums(S), colSums(K)]rowSums(R)`
- `sum(T) \rightarrow sum(S) + colSums(K)rowSums(R)`

The rule for `rowSums` pushes down the operator to before the join and then multiplies the pre-aggregated \(R\) with \(K\), before adding both parts. The rule for `colSums`, however, first pre-aggregates \(K\) before multiplying it with \(R\) and then attaches it to the pre-aggregated \(S\). Finally, the rewrite rule for `sum` is more complicated and involves a sum push-down along with a `rowSums` and a `colSums`. These rewrite rules are essentially the LA counterparts of SQL aggregate push-down optimizations in RDBMSs [12,36]. By extending such operator rewrite ideas to LA operations, our work makes them more widely applicable, especially, for LA-based ML workloads that may not use an RDBMS.

3.3.3 Left Matrix Multiplication (LMM)

LMM is an important and time-consuming operator arising in many ML algorithms, typically for multiplying the data matrix with a model/weight vector. In fact, it arises in all of GLMs, K-Means, and GNMF. Interestingly, a special case of LMM is the key operation factorized in [25]. Our rewrite rule expresses that idea in LA and generalizes it to a weight matrix, not just a weight vector. The rewrite rule is as follows: \(X\) is a regular \(d \times 4\) matrix.

\[
TX \rightarrow SX[1 : d_S,] + K(RX[d_S + 1 : d,])
\]

Essentially, we first split up \(X\), then pre-multiply with \(S\) and \(R\) separately, and finally add them. A subtle but crucial issue is the order of the multiplication in the second component. There are two orders: (1) \((K/R)X[d_S + 1 : d_S,]\), and (2) \(K(RX[d_S + 1 : d,]).\) The first is equivalent to materializing (a part of) the output of the join, which causes computational redundancy! The second avoids the computational redundancy and thus, we use the second order. Most LA systems, including R, allow us to fix the multiplication order using parentheses. A key difference with [25] is that their approach stores the partial results over \(R\) in an in-memory associative array. We avoid using associative arrays, which are not a native part of most LA systems, and instead, use regular matrix multiplications. While this could lead to a small performance penalty, it enables us to satisfy the closure property explained before. Figure 2 illustrates how factorized LMM works.

3.3.4 Right Matrix Multiplication (RMM)

RMM also appears in many ML algorithms, including GLMs, especially when the normalized matrix is transposed (transposed operators are discussed in detail in our technical report [13]). Let \(X\) be a regular \(m \times n_S\) \((m \geq 1)\) matrix. The rewrite rule is as follows.

\[
XT \rightarrow [XS, (XK)R]
\]

This rewrite does not need to split up \(X\) but pushes down the RMM to the base tables and then attaches the resultant matrices. Once again, the second component has two possible orders, with the one that is not used being logically equivalent to materializing the join output.

A related matrix multiplication operation involves multiplying two normalized matrices; we call this operation Double Matrix Multiplication (DMM). In contrast to LMM and RMM, to the best of our knowledge, DMM does not arise in any popular ML algorithm. Nevertheless, we show in the technical report [13] that it is indeed possible to rewrite even a DMM into operations over the base tables’ matrices although the rewrite is more complicated.

3.3.5 Cross-product

The cross-product of a matrix \(T\), denoted `crossprod(T)` in R, is equivalent to `TT'`. Most LA systems offer cross-product as a unary function. It arises in ML algorithms where feature-feature interactions are needed, e.g., linear regression using normal equations, covariance, and PCA [16]. Interestingly, alternative rewrites are possible for `crossprod`. We start with a straightforward “naive method” in Algorithm 1. Since `TT` is symmetric, we need only half of the output matrix and its diagonal. Thus, this rewrite first computes the lower-left (and upper-right) by multiplying \(R'\) with the product of \(K'\) and \(S\), which avoids materialization. Second, it computes the cross-product of \(S\) for the upper-left. Third, it computes the cross-product of \(K\) and thus, the cross-product of \(KR\) without materializing the join. Finally, the results are stitched appropriately.

Algorithm 1: Cross-product (Naive method)

\[
P = R'(K'S) \\
\text{return} \[\begin{bmatrix} ST & P'TR'((K'K)R) \end{bmatrix} \]
\]

This approach takes \(3n^3/4\) operations to compute the cross-product. We have developed several optimizations to reduce the computation to \(3n^3/8\) or \(3n^3/4\), depending on the specific application [21].

By convention, data examples are rows in \(R\), which means `crossprod` is actually the Gram matrix in LA textbooks [21].

There is also a binary version: `crossprod(T1, T2) = T1'T2`. If only \(T_2\) is normalized, it is RMM; if only \(T_1\) is normalized, it is transposed RMM, which is discussed in Section 3.4. If both are normalized, it is a transposed double multiplication, which is discussed in the technical report.
Figure 2: Illustration of factorized LMM. (A) Materialized LMM \(TX\). (B) The first step in factorized LMM is \(SX[1:2,] = Z_1\) (say). Note that \(d_S = 2\). (C) Next, \(RX[d_S + 1 : d_R] = Z_2\) (say). Note that \(d = 4\). (D) Then, \(KZ_2 = Z_3\) (say). Finally, the factorized LMM is \(Z_1 + Z_3\), the same as the result in (A).

\[
\begin{array}{c|c|c|c|c|c|c}
1.0 & 2.0 & 1.1 & 2.2 & 1.0 & 17.1 & 1.0 \\
4.0 & 3.0 & 3.3 & 4.4 & 2.0 & 37.5 & 4.0 \\
5.0 & 6.0 & 3.3 & 4.4 & 3.0 & 44.5 & 5.0 \\
8.0 & 7.0 & 1.1 & 2.2 & 4.0 & 34.1 & 8.0 \\
9.0 & 1.0 & 3.3 & 4.4 & 9.0 & 38.5 & 9.0 \\
\end{array}
\]

\[TX \quad B \quad S \quad SX[1:2,] = Z_1 \quad C \quad RX[3:4,] = Z_2 \quad D \quad K \]

\[KZ_2 = Z_3 \]

\[A \]

\[P = R^T (K^T K) R = \text{crossprod}(K^{1/2} R) \]

\[\text{Algorithm 2: Cross-product (Efficient method)} \]

\[
\begin{align*}
\text{return} & \quad \text{crossprod}(S) \\
& \quad \frac{P^T}{\text{crossprod}\left((\text{diag}(\text{colSums}(K)))^{1/2} R\right)}
\end{align*}
\]

where \(\text{diag}\) is a standard LA operation that creates a diagonal matrix given a vector. Third, denoting the element-wise square root of \(K\) by \(K^{1/2}\), we have:

\[R^T (K^T K) R = \text{crossprod}(K^{1/2} R) \]

Compared to the expression on the left, the one on the right avoids transposing a sparse matrix and replaces several matrix multiplications with a single cross-product. Hence, about \(\frac{1}{2} n_k d_k^2\) arithmetic computations will be saved by the expression on the right. Integrating these observations, the efficient method is presented in Algorithm 2.

3.3.6 Matrix Inversion Operators

Note that \(T\) is seldom a square matrix in practice; hence, it will typically not be directly invertible. Interestingly, we find that all entries in \(T\) are just 1. Thus, \(T = \text{diag}(\text{colSums}(K))\) and \(T^T = T\).

\[\text{ginv}(T) \rightarrow \text{ginv}(\text{crossprod}(T)T^T), \quad \text{if } d < n \]

\[\text{ginv}(T) \rightarrow T^T \text{ginv}(\text{crossprod}(T^T)), \quad \text{otherwise} \]

3.3.7 Non-Factorizable Operators

Element-wise matrix arithmetic operators such as matrix addition do not necessarily have redundancy introduced into their computations by joins. Thus, we call such operators “non-factorizable.” To see why such operators may not have redundancy, consider the matrix addition \(T + X\), where \(T\) is the normalized matrix and \(X\) is a regular matrix of the same size, i.e., \(n_S \times (d_S + d_R)\). In general, it is possible that \(X\) has no redundancy, i.e., all its entries are unique, say, \(X[i, j] = ((i - 1)n_S + j)n_S(d_S + d_R)\). Now, suppose that all entries in \(S\) and \(R\) are just 1, which means all entries of \(T\) are also just 1. Thus, \(T\) has a large amount of redundancy. But \(T + X\) simply adds 1 to each element of \(X\). Since the elements of \(X\) are all unique, there is no redundancy in this computation, which is why we say \(T + X\) is non-factorizable. In general, there could be “instance-specific” redundancy in \(X\), e.g., some elements just happen to be repeated by chance. Exploiting such instance-specific redundancy is beyond the scope of this work. Fortunately, element-wise matrix arithmetic operations are rare in ML; to the best of our knowledge, there is no popular ML algorithm where these operations are the runtime bottleneck. Thus, we ignore these operations henceforth.

3.4 Runtime Complexity Analysis

We now present the runtime complexity of the factorized LA operators yielded by our rewrite rules. Instead of just the “big O” notation, we provide the proportional dependency of the number of arithmetic computations (multiplications and additions) in terms of the dimensions of the base table’s matrices. Table 3 presents the expressions for the standard (materialized) and factorized versions. Due to space constraints, we discuss these expressions in more detail (and also provide the more tedious expressions for \(\text{ginv}\)) in the technical report [13]. To understand the asymptotic speed-ups of the factorized versions over the corresponding standard versions, let \(TR \equiv \frac{n_R}{n_T}\) and \(FR \equiv \frac{d_R}{d_T}\) denote the tuple ratio and feature ratio, respectively. For most of the LA operators, the speed-ups converge to \(1 + FR\) (resp. \(TR\)) as \(TR\) (resp. \(FR\)) goes to infinity. The speedup for crossprod, however, converges to \((1 + FR)^2\) as \(TR\) increases, since its runtime complexity is quadratic in \(d\).

<table>
<thead>
<tr>
<th>Operator</th>
<th>Standard</th>
<th>Factorized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar Op</td>
<td>(n_S(d_S + d_R))</td>
<td>(n_Sd_S + n_Rd_R)</td>
</tr>
<tr>
<td>Aggregation</td>
<td>(d_Xn_S(d_S + d_R))</td>
<td>(d_X(n_Sd_S + n_Rd_R))</td>
</tr>
<tr>
<td>LMM</td>
<td>(nxn_Sd_S + d_R)</td>
<td>(nx(n_Sd_S + n_Rd_S))</td>
</tr>
<tr>
<td>RMM</td>
<td>(\frac{1}{2}(d_S + d_R)^2n_S)</td>
<td>(\frac{1}{2}d_Sn_S + \frac{1}{2}d_Rn_R + d_Sd_Rn_R)</td>
</tr>
<tr>
<td>Crossprod</td>
<td>(\frac{1}{2}(d_S + d_R)^2n_S)</td>
<td>(\frac{1}{2}d_Sn_S + \frac{1}{2}d_Rn_R + d_Sd_Rn_R)</td>
</tr>
</tbody>
</table>

3.5 Extension to Multi-table Joins

We now extend our framework to multi-table PK-PK joins, specifically, star schema joins, which are ubiquitous in practice. For example, in recommendation systems such as Netflix and Amazon, the table with ratings has two foreign keys referring to tables about users and products. Thus, such operations may arise in non-ML applications of LA, e.g., scientific simulations and financial engineering, but it is not clear if these applications have normalized data.
there is one entity table and two attribute tables. Formally,
the schema is as follows: one entity table/matrix S, q attribute
tables, R_1, \ldots, R_q, and q associated PK-FK matrices K_1, \ldots, K_q. The materialized join output T is $[S, K_1 R_1, \ldots, K_q R_q]$. The extended normalized matrix is the tuple $(S, K_1, K_2, \ldots, K_q, R_1, R_2, \ldots, R_q)$. We now present the extended rewrite rules.

Element-wise Scalar Operators. The extension is straightforward
and as follows.

$$
T \odot x \rightarrow (S \odot x, K_1, \ldots, K_q, R_1 \odot x, \ldots, R_q \odot x)
$$

$$
x \odot T \rightarrow (x \odot S, K_1, \ldots, K_q, x \odot R_1, \ldots, x \odot R_q),
$$

$$
f(T) \rightarrow (f(S), K_1, \ldots, K_q, f(R_1), \ldots, f(R_q)).
$$

Aggregation Operators. These require pre-aggregation of each R_i using K_i and then combining the partial results, shown as follows.

$$
colSums(T) \rightarrow [\text{colSums}(S), \text{colSums}(K_1) R_1, \ldots, \text{colSums}(K_q) R_q]
$$

$$
rowSums(T) \rightarrow \sum_{i=1}^{q} K_i \text{rowSums}(R_i)
$$

$$
sum(T) \rightarrow \text{sum}(S) + \sum_{i=1}^{q} \text{colSums}(K_i) \text{rowSums}(R_i)
$$

LMM. We need some notation. Let the dimensions of R_i be $n_{R_i} \times d_{R_i}$. Thus $d = d_s + \sum_{i=1}^{q} d_{R_i}$ Define $d'_s = d_s + \sum_{i=1}^{q} d_{R_i}$, for $i = 1$ to q, and $d'_d = d_s$. Given X of size $d \times m$ ($m \geq 1$), the rewrite is as follows.

$$
TX \rightarrow SX[1 : d_s,] + \sum_{i=1}^{q} K_i (R_i X[1 : d'_s,])
$$

RMM. Note that the dimensions of K_i is $n_S \times n_{R_i}$. Given X of size $m \times n_S$ ($m \geq 1$), the rewrite is as follows.

$$
XT \rightarrow [XS, (X K_1) R_1, \ldots, (X K_q) R_q]
$$

Cross-product. For the sake of readability, let K_{R_i} and $\text{cp}(X)$ denote $K_i R_i$ and crossprod(X), respectively. Using the block matrix multiplication, $\text{cp}(T) = T \odot T = [S, K_1 R_1, \ldots, K_q R_q] [S, K_1 R_1, \ldots, K_q R_q]$ can be rewritten as follows.

$$
\begin{bmatrix}
\text{cp}(S) & S^T K_{R_1} & \cdots & S^T K_{R_q} \\
K_{R_1}^T S & \text{cp}(K_{R_1}) & \cdots & K_{R_1}^T K_{R_q} \\
K_{R_2}^T S & K_{R_2}^T K_{R_1} & \cdots & K_{R_2}^T K_{R_q} \\
\vdots & \vdots & \ddots & \vdots \\
K_{R_q}^T S & K_{R_q}^T K_{R_1} & \cdots & \text{cp}(K_{R_q})
\end{bmatrix}
$$

Since $\text{cp}(T)$ is symmetric, we only need to compute the upper right parts of it, i.e., all diagonal block matrices, $S^T K_{R_i}$, and $K_{R_i}^T K_{R_i}$. For each diagonal block matrix $\text{cp}(K_{R_i})$, we use the rewrite rule crossprod $((\text{diag} \text{colSums}(K_i))) \frac{1}{2} R_i$.

For $S^T K_{R_i}$ and $K_{R_i}^T K_{R_i}$, $(S^T K_{R_i}) R_i$ and $R_i (K_{R_i}^T K_{R_i}) R_j$ are used, respectively.

3.6 Extension to M:N Joins

We now briefly explain how our framework can be extended to handle a general non-PK-FK equi-join (“M:N” join) between S (or a projection of it that excludes Y) and R. Due to space constraints, we discuss multi-table M:N joins only in the technical report [13]. Let the join attribute in S (resp. R) be denoted J_S (resp. J_R). Attach attributes N_S and N_R to the corresponding tables to encode row numbers, i.e., N_S (resp. N_R) takes values from 1 to n_S (resp. n_R). We need to capture which tuples (rows) of S and R get mapped to which rows of $T = S \bowtie_{J_S=J_R} R$. To do so, first compute $T' = \pi_{N_S J_S = J_R} (S \bowtie_{J_S=J_R} \pi_{N_R J_R} (R))$ with non-deducing projections (potentially, a relational cross-product of the projected join columns). Then, create two indicator matrices I_S and I_R of dimensions $|T'| \times n_S$ and $|T'| \times n_R$ respectively:

$$
[I_S | I_R][(i, j)] = \begin{cases}
1, & \text{if } i^{th} \text{ row of } T' \cdot [N_S | N_R] = j \\
0, & \text{otherwise}
\end{cases}
$$

I_S and I_R are also very sparse: $\text{nnz}(I_S) = \text{nnz}(I_R) = |T'|$. Without loss of generality, assume each column of I_S and I_R has at least one non-zero, i.e., each tuple of S and R contributes to at least one tuple of T; otherwise, we can remove those tuples a priori. The extended normalized matrix is now (S, I_S, I_R, R) and it is clear that $T = [I_S S, I_R R]$. The extensions to our implementation (Section 3.2) are now straightforward. For brevity, we skip the modified rewrite rules here and present them in the technical report [13].

3.7 Will Rewrites Always Be Faster?

Our rewrites avoid computational redundancy caused by joins. But if the joins are (too) selective and/or introduce no redundancy, the rewrites could worsen performance because T could become smaller than S and R put together. This dichotomy is an instance of the classical problem of cardinality estimation; it is orthogonal to our work and we leave it to future work to integrate sophisticated cardinality estimation ideas into LA systems. In this work, we drop tuples of S and R that do not contribute to T, as explained in Section 3.1 and 3.6. Since many ML algorithms are iterative, this pre-processing time is relatively minor.

But interestingly, in some extreme cases, even after such pre-processing and even if the joins introduce some redundancy, rewrites could worsen performance because the overheads caused by the extra LA operations could dominate the computational redundancy saved. Empirically (Section 5.1), we found such slowdowns to be almost always < 2x, but it is still helpful to predict and avoid these. Using runtime "cost models" for LA operators, say, based on BLAS [29] is one option. However, this ties us too much to a specific LA system back-end and violates genericity, while also imposing the burden of system- and machine-specific cost calibrations on the user (CPU clock frequency, cache sizes, etc.). Thus, we consider a simpler system-agnostic approach that does not need cost models for the operators; instead, we use a simple heuristic decision rule that thresholds on the tuple ratio and factor ratio (explained in Section 3.4) to predict if the redundancy saved by the factorized version will be substantial enough. The thresholds are set conservatively.

We explain more about why our approach is feasible and what our decision rule looks like in Section 5.1.

5Our rewrites do not alter the outputs of the operators, assuming exact arithmetic, which is standard for rewrite optimizations in the LA systems literature [37]. We leave a numerical analysis for finite-precision arithmetic to future work. Empirically, we saw that ML accuracy was unaffected.

6We verified this empirically (see technical report [13].
4. APPLICATION TO ML ALGORITHMS

We now show how MORPHEUS automatically “factorizes” a few popular ML algorithms. We pick a diverse and representative set of ML algorithms: logistic regression for classification, least squares for regression, K-Means for clustering, and Gaussian non-negative matrix factorization (GNMF) for feature extraction. For each algorithm, we present the standard single-table version of their LA scripts, followed by the “factorized” versions for a PK-FK join. Note that these can be easily extended to multi-table joins and M:N joins using rewrite rules from Sections 3.5 and 3.6, respectively. These rewrite rules are shown for illustration only; MORPHEUS uses the rewrite rules on-the-fly without code regeneration.

Logistic Regression for Classification. Algorithm 3 presents the standard algorithm using the normal equations; Algorithm 5 presents the standard algorithm using gradient descent (GD); Algorithm 4 presents the standard algorithm using the normal equations; Algorithm 5 presents the standard algorithm using gradient descent (GD).

Algorithm 3: Logistic Regression (Standard)

Input: Regular matrix T, Y, w, α

for i in 1 : max_iter do

$w = w + \alpha \cdot (T^T Y / (1 + \exp(Tw)))$

end

Algorithm 4: Logistic Regression (Factorized)

Input: Normalized matrix (S, K, R), Y, w, α

for i in 1 : max_iter do

$P = (Y / (1 + \exp(Sw[1 : ds_K] + \text{crossprod}(Rw[ds_K + 1 : ds + dR])))^T$

$w = w + \alpha \cdot [PS, (PK)R]^T$

end

Least Squares Linear Regression. Algorithm 6 presents the standard algorithm using the normal equations; Algorithm 7 presents the factorized version. The following rewrite rules are used: cross-product for crossprod(T) and transposed LMM for $T^T Y$. If d is too large, or if the cross-product is singular, GD is used instead; this is similar to Algorithm 3 and Algorithm 4 and for brevity sake, we skip it here and present it in the technical report [13]. A hybrid algorithm that constructs the so-called “co-factor” matrix (using the cross-product) and then uses GD was presented and factorized in [34]. Their algorithm can also be automatically factorized by MORPHEUS; due to space constraints, we discuss it in the technical report [13].

Algorithm 5: Linear Regression (Standard)

Input: Regular matrix T, Y, w

$w = \text{ginv(crossprod}(T))(T^T Y)$

Algorithm 6: Linear Regression (Factorized)

Input: Normalized matrix (S, K, R), Y, w

$P = \text{ginv(crossprod}((S, K, R)))$ //Use Algo. 2

$w = P(Y^T S, (Y^T K)R)^T$

K-Means Clustering. The factorized version is in Algorithm 7; the standard version is presented in the technical report due to space constraints. The following rewrite rules are used: element-wise exponentiation and aggregation for rowSums(T^2)), LMM for T^C, and transposed LMM for T^A. Note that K-Means requires matrix-matrix multiplications, not just matrix-vector multiplications. This demonstrates a key benefit of the generality of our approach.

GNMF for Feature Extraction. Algorithm 8 presents the factorized version; the standard version is presented in the technical report due to space constraints. The following rewrite rules are used: RMM and LMM for $W^T T$ and TH respectively. Similar to K-Means, GNMF also requires full matrix-matrix multiplications.

Algorithm 7: K-Means Clustering (Factorized)

Input: Normalized matrix (S, K, R), # centroids k

//Initialize centroids matrix $C \in \mathbb{R}^{d \times k}$

$1_{a \times b}$ represents an all 1 matrix in $\mathbb{R}^{a \times b}$; used for replicating a vector row-wise or column-wise

//1. Pre-compute l^2-norm of points for distances $D_T = (\text{rowSums}(S^2) + \text{KrowSums}(R^2))1_{1 \times k}$

$S_z = 2 \times S$; $R_z = 2 \times R$

for i in 1 : max_iter do

//2. Compute pairwise squared distances; $D_T^{a \times k}$ has points on rows and centroids/clusters on columns.

$D_T = D_T + 1_{a \times 1} \text{colSums}(C^2) - (S_z C + K(R_z C))$

//3. Assign each point to nearest centroid; $A_{n \times k}$ is a boolean (0/1) assignment matrix $A = (D_T == (\text{rowMin}(D_T)[1 \times k]))$

//4. Compute new centroids; denominator counts number of points in the new clusters, while numerator adds up assigned points per cluster $C = [A^T S, (A^T K)^T] / (1_{d \times 1} \text{colSums}(A))$

end

Algorithm 8: Gaussian NMF (Factorized)

Input: Normalized matrix (S, K, R), rank r

//Initialize W and H

for i in 1 : max_iter do

$P = [W^T S, (W^T K)R]^T$

$H = H + P \times \text{Hcrossprod}(W)$

$P = SH + K(RH)$

$W = W + P \times \text{Wcrossprod}(H)$

end

Overall, note that the data-intensive computations on T in these algorithms are all expressed as vectorized LA operations, as underscored in Section 3.1. Thus, our normalized matrix abstraction and rewrite rules enable MORPHEUS to automatically factorize all these algorithms in a unified way.

5. EXPERIMENTS

We compare the runtime performance of our rewrite rules for key LA operators and the four automatically factorized ML algorithms. Our goal is to evaluate the speed-ups provided by MORPHEUS and understand how they vary for different data dimensions. Both synthetic and real-world datasets are used.

Datasets. We generate synthetic datasets for PK-FK and M:N joins with a wide range of data dimensions as listed in Table 4 and Table 5 respectively. For the PK-FK joins, the quantities varied are the tuple ratio (n_S/n_R) and feature ratio (d_S/d_R), which are explained in [25], help quantify the amount of redundancy introduced by a PK-FK join. The other parameters are fixed as per Table 4. For M:N joins, the number of tuples, number of features, and join attribute domain size are varied and the other parameters fixed as per
Table 4: Data dimension parameters for PK-FK joins.

<table>
<thead>
<tr>
<th>PK-FK Join</th>
<th>n_S</th>
<th>d_S</th>
<th>n_R</th>
<th>d_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuple Ratio</td>
<td>Varied</td>
<td>2×10^9</td>
<td>40×80</td>
<td>20×10^9</td>
</tr>
<tr>
<td>Feature Ratio</td>
<td>2×10^9</td>
<td>20×10^9</td>
<td>Varied</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Data dimension parameters for M:N joins. n_U is the domain size (number of unique values) of J_S / J_R.

<table>
<thead>
<tr>
<th>M:N Join</th>
<th>$n_S = n_R$</th>
<th>$d_S = d_R$</th>
<th>n_U</th>
</tr>
</thead>
<tbody>
<tr>
<td># Tuples</td>
<td>Varied</td>
<td>200 or 100</td>
<td>1000</td>
</tr>
<tr>
<td># Features</td>
<td>2×10^9</td>
<td>20×10^9</td>
<td>Varied</td>
</tr>
<tr>
<td>Domain Size</td>
<td>2×10^9</td>
<td>20×10^9</td>
<td>Varied</td>
</tr>
</tbody>
</table>

Table 6: Dataset statistics for the real-world datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>(n_S, d_S, nnz)</th>
<th>q</th>
<th>(n_R, d_R, nnz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expedia</td>
<td>942142,27,5652852</td>
<td>2</td>
<td>11939,12013,107451</td>
</tr>
<tr>
<td>Movies</td>
<td>1000209,0,0</td>
<td>2</td>
<td>6040,9509,30200</td>
</tr>
<tr>
<td>Yelp</td>
<td>215879,0,0</td>
<td>2</td>
<td>11535,11706,380655</td>
</tr>
<tr>
<td>Walmart</td>
<td>421570,1,421570</td>
<td>2</td>
<td>2340,2387,23400</td>
</tr>
<tr>
<td>LastFM</td>
<td>343747,0,0</td>
<td>2</td>
<td>4099,5019,39992</td>
</tr>
<tr>
<td>Books</td>
<td>253120,0,0</td>
<td>2</td>
<td>27876,28022,83628</td>
</tr>
<tr>
<td>Flights</td>
<td>66548,20,55301</td>
<td>3</td>
<td>3167,6464,22169</td>
</tr>
</tbody>
</table>

Section 3.7. In these cases, the tuple ratios and/or feature ratios are very low. Since these regions exhibit an “L” shape, it motivates us to consider a heuristic decision rule that is a disjunctive predicate with two thresholds: if the tuple ratio is $< \tau$ or if the feature ratio is $< \rho$, we do not use F. We tune τ and ρ conservatively using the speed-up results from all of our experiments on synthetic data; we set $\tau = 5$ and $\rho = 1$. This is conservative because it is unlikely to wrongly predict that a slow-down will not occur when it does, but it might wrongly predict that a slow-down will occur even though it does not; but even in the latter cases, the speed-ups of F over M were minor ($< 50\%$). We leave more sophisticated approaches to future work.

5.1 Operator-level Results

We first study the effects of the rewrites on individual LA operator runtimes using synthetic data. This will help us understand the runtime results for the ML algorithms later. The data preparation time is excluded for both the materialized version (in short, M), viz., joining the tables, and for the factorized version (in short, F), viz., constructing K (or I_S and I_R) matrices. As mentioned before, this pre-processing time was a minor fraction of the total runtimes in almost all cases on the real data. Furthermore, the time to construct the normalized matrix was almost always smaller than the time to materialize the single table. We present the pre-processing runtimes in the technical report [13].

PK-FK Join. Figure 3 shows the speed-ups of F over M for four key LA operators. Other operators exhibit similar trends and for brevity sake, we present their results in the technical report [13]. Note that F is significantly faster than M for a wide range of data dimensions for all operators. The speed-ups increase with both the tuple ratio and feature ratio, but grow faster with the latter because the amount of redundancy in T, and thus, in the ML computations, increases faster with the feature ratio. Figure 3(b) shows that the speed-ups are slightly lower for LMM compared to scalar multiplication. This is because the rewrite rule for LMM has slightly higher overhead. Interestingly, Figures 3(c,d) show that the speed-ups for cross-product and pseudo-inverse grow much faster with the feature ratio. This is because their runtimes are at least quadratic in d, while the previous two operators have $O(d)$ runtimes.

Heuristic Decision Rule. Figure 3 also shows that F is indeed sometimes slower than M, as suggested earlier in Section 3.7. In these cases, the tuple ratios and/or feature ratios are very low. Since these regions exhibit an “L” shape, it motivates us to consider a heuristic decision rule that is a disjunctive predicate with two thresholds: if the tuple ratio is $< \tau$ or if the feature ratio is $< \rho$, we do not use F. We tune τ and ρ conservatively using the speed-up results from all of our experiments on synthetic data; we set $\tau = 5$ and $\rho = 1$. This is conservative because it is unlikely to wrongly predict that a slow-down will not occur when it does, but it might wrongly predict that a slow-down will occur even though it does not; but even in the latter cases, the speed-ups of F over M were minor ($< 50\%$). We leave more sophisticated approaches to future work.

M:N Join. We now evaluate the rewritten operators for an M:N join. We set $(n_S, d_S) = (n_R, d_R)$ and vary n_U. Define the “join attribute uniqueness degree” as n_U/n_S. Note that as n_U becomes smaller, more tuples are repeated after the join. $n_U = 1$ leads to the full cartesian product. Figure 4 presents the speed-ups for two key operators that arise in ML: LMM and cross-product. Other operators and other parameters are discussed in the technical report [13]. We see that F is again significantly faster than M for a wide range of n_U values for both operators. In fact, when $n_U = 0.01$, the speed-ups are nearly two orders of magnitude, which is comparable to the average number of times each tuple is repeated after the join. This confirms that our framework can efficiently handle M:N joins as well.

5.2 ML Algorithm-level Results

We compare the materialized versions (M) of the ML algorithms with the MORPHIEUS-factorized versions (F) from Section 4. Due to space constraints, we focus primarily on a PK-FK join; M:N join is discussed in the technical report [13] (the takeaways are similar). We study the effects of the data dimensions using synthetic data and then present the results on the real data. We then compare MORPHIEUS against prior ML algorithm-specific factorized ML tools. Finally, we study the scalability of MORPHIEUS on ORE.
5.2.1 Results on Synthetic Datasets

Logistic Regression. Figure 3(a) shows the runtimes for different tuple ratios and feature ratios, while the technical report presents a plot varying the number of iterations. It is clear that F is significantly faster than M in most cases across a wide range of data dimensions. The runtime is dominated by the LMM T_w and the transposed LMM T_P (which becomes an RMM). Thus, the speed-up trends are similar to that for those operators in Figure 3.

Linear Regression. The results are in Figure 3(b). Again, F is significantly faster than M for a wide range of data dimensions. The runtime is dominated by crossprod(T) (see Algorithms 5 and 6). Thus, the speed-up trends are similar to that for crossprod in Figure 3. Gradient descent-based linear regression is similar to logistic regression; thus, we skip it for brevity and discuss it in the technical report.

K-Means and GNMF. The results are in Figure 3(c) and Figure 3(d), respectively. The runtime trends for the number of iterations for both are similar to logistic regression. Figure 3(d2) shows that K-Means runtime increases linearly with the number of centroids (k). The speed-up of F over M decreases slowly because unlike logistic regression, K-Means has extra computations beyond factorized operators whose contribution to the runtime increases as k increases. The trends for GNMF are similar.

5.2.2 Results on Real Datasets

Since all the real datasets have multi-table star schema joins, this experiment also evaluates our multi-table join extension. Table 7 presents the results. We see that Morpheus is significantly faster than the materialized approach (M) in almost all cases for all datasets although the exact speed-ups differ widely across datasets and ML algorithms. The lowest speed-ups are mostly for GNMF and on Books, e.g., 1.4x for GNMF on Books, and 1.3x for K-Means on Books, primarily because the dataset has low feature ratios (as shown in Table 6) and GNMF and K-Means have extra computations after the factorized portions. On the other extreme, Movies and Yelp see the highest speed-ups, e.g., over 30x on both datasets for both linear regression and logistic regression. This is primarily because the runtimes of these ML algorithms are dominated by matrix multiplication operators, which are factorized by Morpheus, and these datasets have high feature and/or tuple ratios. Overall, these results validate Morpheus not only generalizes factorized ML, but also yields over an order of magnitude of speed-ups on some real datasets for a few popular ML tasks.

5.2.3 Comparison with ML Algorithm-specific Tools

We would like to know if the generality of Morpheus is at the cost of possible performance gains compared to prior ML algorithm-specific tools. Since the tool from [34] is not open sourced, we contacted the authors; after discussions, we realized that their tool does not support the equivalent of M, which makes an apples-to-apples comparison impossible. Thus, we only compare with the Orion tool from [25]. Note that Orion only supports dense features and PK-FK joins, unlike Morpheus. We vary the feature ratio and report the speed-ups in Table 7. Morpheus achieves comparable or higher speed-ups (in fact, the runtimes were also lower than Orion). This is primarily due to hashing overheads in Orion. Overall, we see that Morpheus provides high generality without sacrificing on possible performance gains.
Figure 5: ML algorithms on synthetic data for a PK-FK join. Row 1: (a) Logistic Regression and (b) Linear Regression (using normal equations). Row 2: (c) K-Means and (d) GNMF. For (a), we vary number of iterations to 20 (we vary this in the technical report. All data dimensions are listed in Table 4. For (c1) and (d1), we vary the number of iterations while fixing the number of centroids (resp. topics) for K-Means (resp. GNMF) to 10 (resp. 5). For (c2) and (d2), we set \((n_S, n_R, d_R) = (2 \times 10^7, 10^6, 20)\), while \(d_R = 40\) (FR=2) and 80 (FR=4), and number of iterations is 20 for both algorithms.

Table 9: Per-iteration runtime (in minutes) of logistic regression on ORE for a PK-FK join. Fix \((n_S, n_R, d_R) = (10^5, 5 \times 10^5, 60)\) and vary \(d_R\) as per feature ratio (FR).

<table>
<thead>
<tr>
<th>Feature Ratio</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialized</td>
<td>98.27</td>
<td>130.09</td>
<td>169.36</td>
<td>277.52</td>
</tr>
<tr>
<td>MORPHEUS</td>
<td>56.30</td>
<td>62.51</td>
<td>68.54</td>
<td>73.33</td>
</tr>
<tr>
<td>Speed-up</td>
<td>1.8x</td>
<td>2.1x</td>
<td>2.5x</td>
<td>3.8x</td>
</tr>
</tbody>
</table>

Table 10: Per-iteration runtime (in minutes) of logistic regression on ORE for a M:N join. Fix \((n_S, n_R, d_R, d_{LR}) = (10^6, 10^6, 200, 2000)\) and vary \(n_U\) (join attribute domain size).

<table>
<thead>
<tr>
<th>Domain Size</th>
<th>(5 \times 10^7)</th>
<th>(10^7)</th>
<th>(5 \times 10^7)</th>
<th>(10^7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialized</td>
<td>1.98</td>
<td>13.04</td>
<td>119.54</td>
<td>346.93</td>
</tr>
<tr>
<td>MORPHEUS</td>
<td>0.96</td>
<td>1.00</td>
<td>1.02</td>
<td>1.16</td>
</tr>
<tr>
<td>Speed-up</td>
<td>2.1x</td>
<td>12.9x</td>
<td>117.3x</td>
<td>298.2x</td>
</tr>
</tbody>
</table>

5.2.4 Scalability with ORE

ORE executes LA operators over an ore.frame (physically, an RDBMS table) by pushing down computations to the RDBMS [2]. However, since ORE does not expose the underlying RDBMS multi-table abstractions (or the optimizer) to LA, by default, it needs the materialized single table. In contrast, MORPHEUS on ORE realizes the benefits of factorized ML on top of ORE (e.g., the ore.rowapply operator) without requiring changes to ORE. We compare the runtimes of MORPHEUS with the materialized version for logistic regression on larger-than-memory synthetic data. The results are presented in Table 9 (PK-FK join) and Table 10 (M:N join). We see that MORPHEUS yields speed-ups at scale for both PK-FK and M:N joins, validating our claim that MORPHEUS can leverage the scalability of existing LA systems. Since SystemML, SciDB, TensorFlow, and most other LA systems do not expose normalized data abstractions either, we expect our framework to benefit them too.

6. RELATED WORK

Factorized ML. As Figure 1(a) illustrates, prior works on factorized ML are either ML algorithm-specific or platform-specific or both [24,25,31,33,34]. For instance, [31,34] only aim at optimizing linear regression, while [33] is restricted to in-memory datasets. Our work unifies and generalizes such ideas to a wider variety of ML algorithms, as well as data platforms. By factorizing LA operators, our work lets us decouple the ML algorithm from the platform, which enables us to leverage existing industrial-strength LA systems for scalability and other orthogonal benefits. It also lets data scientists automatically factorize any future ML algorithms expressible in LA systems.

LA Systems. Several tools support LA workloads over data systems [2,3,5,37]. There are also from-scratch systems for LA such as SciDB [14] and TensorFlow [5], both of which support tensor algebra, not just matrices. None of these systems optimize LA over normalized data. While they offer physical data independence for LA, our work brings logical data independence to LA. Since MORPHEUS offers closure, it could be integrated into any of these LA systems; our prototype on ORE is an encouraging first step in this direction. Related to our goals are two recent optimizations in SystemML: compressed LA (CLA) [18] and SPOOF [17]. CLA re-implements LA operators from scratch over compressed matrix formats to reduce memory footprints. MORPHEUS can be viewed as a schema-based form of compression. Unlike CLA, since MORPHEUS offers closure, it does not require re-implementing LA operators from scratch. Furthermore, CLA does not target runtime speed-ups [18] and thus, is complementary to MORPHEUS. SPOOF enables “sum-product” optimizations for LA expressions to avoid creating large intermediate matrices. While this is conceptually similar to avoiding join materialization, our work differs on both technical and architectural aspects. SPOOF does not exploit schema information, which means it cannot subsume factorized ML without an abstraction like our normalized matrix. Architecturally, SPOOF requires an LA compiler [17], while MORPHEUS also works in interpreted LA environments such as R and ORE. Overall, MORPHEUS is complementary to both CLA and SPOOF; it is interesting future work to integrate these ideas. To handle evolving data, LINVIEW proposed incremental maintenance for LA operators and expressions, albeit over single-table matrices [30]. To the best of our knowledge, most standard LA systems do not yet support incremental maintenance. Our work is orthogonal to this issue and it is interesting fu-
ture work to integrate MORPHEUS and LINVIEW. Finally, BLAS is a popular library of fast low-level implementations of LA operations; it is the basic building block of many LA systems and is used by several follow-on projects, including the widely used Linear Algebra PACKage (LAPACK). Our focus is orthogonal to such lower-level LA implementation issues; since our framework offers closure, it can be integrated into any of these LA packages.

Query Optimization. Factorized computations generalize prior work on optimizing SQL aggregates over joins. In particular, FDB (“factorized database”) is an in-memory tool that factorizes and optimizes relational algebra (RA) operations over joins. In contrast, our focus is on LA operations with the aim of automatically factorizing many ML algorithms. This raises a grander question of whether LA can be “subsumed” by RA and RDBMSs, which is a long standing debate that is perhaps yet to be settled. Different systems take different paths: build from scratch systems without an RDBMS, while layer LA on top of an RDBMS even if they do not fully exploit the RDBMS optimizer for LA. Our work is orthogonal to this debate; MORPHEUS is applicable to both kinds of systems, easily integrates with existing LA systems, provides closure with respect to LA, and crucially, does not force ML users to learn RA or SQL. Furthermore, our work shows the benefits of database-style optimization ideas for LA operations regardless of the system environment, while also introducing new LA-specific optimizations with no known counterparts in RA. Nevertheless, it is interesting future work to more deeply integrate RA and LA, say, by creating a new representation language as suggested in [25]. There is also a need for benchmarks of LA systems in the spirit of [11]. While these questions are beyond the scope of this paper, such efforts could expose interesting new interactions between LA operations and optimizations such as multi-query optimization [26,35] and matrix chain product optimization [22] (implemented in Matlab [1] and SystemML [9]) coupled with join order optimization for normalized matrices.

7. CONCLUSION AND FUTURE WORK

Factorized ML techniques help improve ML performance over normalized data. But they have hitherto been ad-hoc and ML algorithm-specific, which causes a daunting development overhead when applying such ideas to other ML algorithms. Our work takes a major step towards mitigating this overhead by leveraging linear algebra (LA) to represent ML algorithms and factorizing LA. Our framework, MORPHEUS, generically and automatically factorizes several popular ML algorithms, provides significant performance gains, and can leverage existing LA systems for scalability. As ML-based analytics grows in importance, our work lays a foundation for more research on integrating LA systems with RA operations, as well as a grand unification of LA and RA operations and systems. As for future work, we are working on distributed versions of MORPHEUS on SystemML and TensorFlow. Another avenue is to include more complex LA operations such as Cholesky decomposition and SVD.

8. REFERENCES

[3] R-project.org

Acknowledgements

This work was supported in part by gifts from Google and Microsoft, including a Google Faculty Research Award. We thank Matthias Boehm, Johann-Christoph Freytag, and the members of Wisconsin’s Database Group and UC San Diego’s Database Lab for their feedback. We thank Dan Olteanu and Maximilian Schleich for discussions on related work.