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The proliferation of distributed internet services has reaffirmed the need for reliable and

high-performance networks, not only in the WAN bringing users to the services, but within the

datacenters where services themselves reside. Services consist of distributed applications running

across thousands of servers within datacenters, with stringent performance, scaling and reliability

requirements. To support these requirements, datacenter networks are comprised of thousands of

servers, links and ports and over hundreds of switches providing multiple paths between any pair

of servers. Because any given component has a small but non-zero failure rate, the large number

of components means that failures are endemic inside datacenters. Unfortunately, not all failures

are easily diagnosable within datacenter environments.
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In particular, datacenters are susceptible to insidious parasitic performance loss due to

a class of network component fault known as partial faults—where a component is nominally

healthy, but intermittently drops or delays traffic. These faults have been noted as being particu-

larly difficult to detect and localize, though mitigation can be straightforward once the faulty

component is determined. Pinpointing partial faults quickly is crucial, because they are capable

of inflicting a disproportionately high toll on application performance.

Unfortunately, partial faults can confound existing fault detection methods in several

ways, including interactions between faults, application traffic, and network hardware. For

example, network switches may fail to detect faults due to unreliable or otherwise insensitive

monitoring capabilities. Traffic volume and variability may complicate analyzing server-based

application and network metrics, as well as mask fault impact. Moreover, the myriad paths

available to network flows complicate localization even if servers detect partial faults.

However, this work shows that the scale and regular design of contemporary datacen-

ters can simplify partial-fault localization. In particular, the combination of large-scale load-

balanced multipath topologies and high-volume datacenter traffic enables simple, low-overhead,

application-agnostic, and root-cause-agnostic partial-fault localization via passive, link-by-link

outlier analysis of application network performance. I validate the effectiveness of my approach

within large-scale first-party production datacenters, and examine the additional challenges and

complexities raised by third-party cloud datacenters.
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Chapter 1

Introduction

Widespread and ever-growing internet access has continued to drive the proliferation of

large-scale services aimed at improving the lives of people worldwide. For example, services may

provide web-based information indexing and retrieval, online storefronts, and social networking

platforms to upwards of billions of users [43, 44]. Due to scale and reliability requirements,

service operators often implement their services as distributed applications that run on vast

numbers of networked servers. As these services have grown in scale and capability, the number

of servers required to support them, and their network demands [19], have grown as well.

The physical installation housing such servers, the servers themselves, and the network

connecting them together are collectively referred to as a ‘datacenter’. Modern datacenters

continue to increase in scale, speed, and complexity. As these massive computing infrastructures

expand—to hundreds of thousands of multi-core servers with 10- and 40-Gbps NICs [112] and

beyond—so too do the sets of applications they support: Google recently disclosed that their

datacenter network fabrics support literally thousands of distinct applications and services [117].

Oftentimes, datacenter operators do not control the applications running therein. So-

called ‘tenant’ datacenters instead provide rentable computing infrastructure to third-party

customers and organizations. In this case, the datacenter network operator owns and maintains the

infrastructure, while tenants rent computing resources to host their own services and applications.
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Yet the practicality of operating such multi-purpose datacenters depends on effective

management. While any given service might employ an army of support engineers to ensure its

efficient operation, these efforts can be frustrated by the inevitable failures that arise within the

network fabric itself. While fault detection is a classical problem in distributed systems [13,25,39,

40, 55, 110] and networks [26, 76, 99], modern datacenter environments and large-scale services

give rise to a confluence of challenges that requires re-examining fault detection in this setting.

In particular, large-scale services have a plethora of highly latency-sensitive [83] users [43, 44].

Applications implementing large-scale services require both low-latency and high-bandwidth

connectivity [112, 117], leading to high path-diversity network topologies [14, 19, 117].

Experience indicates that modern datacenters are rife with hardware and software failures,

due to the use of commodity hardware (exhibiting low but non-zero failure rates) coupled with

the misconfigurations, software anomalies and hardware failures attendant with large-scale

deployments [126]. To provide acceptable performance to applications despite failures, datacenter

designs leverage redundancy in a bid to be robust to large numbers of faults. For example, after a

failure manifests, network operators may pinpoint the affected component and route traffic around

it using excess capacity to avoid application performance degradation [93, 126]. However, this

approach depends on effective fault localization, which large-scale deployment can complicate.

Moreover, recent work has indicated that the types and impacts of faults common in modern

datacenters [126, 133] differ from those typically encountered in the wide-area [111, 122] and

enterprise [121]; we focus on one particularly insidious class of such faults in this work.

Specifically, Microsoft studies describe [64, 133] a rogue’s gallery of datacenter faults:

dusty fiber-optic connectors corrupting packets, switch software bugs, hardware faults, incorrect

ECMP load balancing, untrustworthy counters, and more. These failures can be intermittent and

partial: rather than failing completely, a link or switch might only affect subsets of traffic, thus

complicating detection and diagnosis. Despite being intermittent, these ‘partial faults’ can still

significantly impact application performance, while the difficulty of partial-fault localization

may exacerbate impact length. For example, the authors of NetPilot [126] describe how a single

2



link dropping a small percentage of packets, combined with cut-through routing, resulted in

degraded application performance and a multiple-hour goose chase to identify the faulty device.

Network virtualization further complicates matters within many third-party tenant dat-

acenters [54]. Servers in such datacenters often take on additional network management

responsibilities—including routing, packet processing and network address indirection—leading

to scenarios where server-based performance issues can manifest as network-based performance

issues from the point of view of tenant applications. In other words, a network-impacting partial

fault in such a datacenter could be due to a network switch or link, or a server issue.

To make matters worse, both partial faults and common datacenter traffic characteristics

can cause packet loss and latency spikes. Traffic may be bursty [131], variable [30] and

potentially unpredictable at micro [112] and macro [32] timescales. The extent of these effects

have motivated datacenter operators and network protocol designers to expend significant effort

on application and network level traffic engineering [18, 34, 112, 117] to stave off harmful effects

such as flash congestion [129] and latency-inducing persistent queue buildups [18].

All of these effects can complicate partial-fault detection (for example, bursty traffic can

mask fault-driven packet loss and latency), application impact analysis (due to the sheer traffic

volume and variability) and fault localization (path-diversity means that faults may impact any

one or more of thousands of links [113]). At the same time, end-user desire for low end-to-end

service latency [83] raises the stakes and harshens the consequences of undiagnosed faults.

Production methods for pinpointing datacenter network faults typically involve watching

for anomalous network events (for example, scanning switch drop and link utility/error counters)

and/or monitoring server performance metrics. Such methods consider events independently:

“Did a drop happen at this link? Is RPC latency unusually high at this server?” Yet, in isolation,

knowledge of these events is of limited utility. There are many reasons servers could observe

poor network performance; similarly, transient congestion may cause in-network packet loss as

well as persistent faults. Hence, datacenter operators frequently fall back to active probing and a

degree of manual analysis to diagnose and localize detected performance anomalies [64, 133].
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Instead, we propose an alternative approach: rather than looking at anomalies indepen-

dently, we consider the impacts of faults on aggregate application performance. Modern data-

center topologies are typically designed with a plethora of disjoint but equally performant paths

and operators work hard to load balance traffic across both paths and servers [19, 34, 112, 117].

When combined with the large volume of datacenter traffic, such designs result in highly regular

flow performance regardless of path—in the absence of network faults [112]. An (un-mitigated)

fault, on the other hand, will manifest itself as a performance anomaly visible to end hosts.

Hence, to detect faults, we can compare performance end hosts observe along different paths and

hypothesize that outliers correspond to faults within the network.

Thus, we claim that various fundamental datacenter characteristics, borne of the underly-

ing design goals of contemporary datacenters, enable a partial-fault localization methodology

based on hypothesis testing and outlier analysis. In particular, the combination of large-scale

load-balanced multipath topologies and high-volume datacenter traffic enables simple, low-

overhead, application-agnostic, and root-cause-agnostic partial-fault localization via passive

link-by-link outlier analysis of application network performance.

This dissertation investigates the current state of the art in datacenter fault management,

focusing on partial-fault detection and localization. First, it highlights how partial faults can

cause disproportionately severe performance degradations within common application workloads,

and describes why pinpointing them is difficult despite impact severity. It then demonstrates

how multipath datacenter topologies and high traffic volume—which ostensibly complicate fault

localization—can be harnessed to simplify pinpointing networking-component-based partial

faults. We evaluate a prototype partial-fault localization system within Facebook datacenters

under a variety of production application workloads and fault scenarios, including instances

where our system notices faults before production monitoring infrastructure [113]. While existing

research examines partial faults that occur within the physical network plane (i.e. within the

switches and links that comprise the network), a relative dearth of information is present on

datacenter application behaviour and faults that occur within network virtualization overlays
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inside tenant datacenters. Thus, this dissertation provides a first look into tenant SDN-virtualized

datacenter monitoring, focusing especially on partial-fault behaviors specific to such networks.

In all, this dissertation makes the following specific contributions:

1. Based on the topologies and application traffic patterns of contemporary datacenters, it

presents as the primary contribution a methodology for finding network-component-based

partial faults leveraging statistical outlier detection. It evaluates a prototype system based

on this methodology within a large-scale production Facebook datacenter environment.

2. It presents the results of a detailed application traffic pattern study at Facebook, a datacenter

operator providing a popular social networking service used worldwide. It highlights

relevant traffic characteristics both in support of this work’s proposed fault localization

system, and of broader interest to networking research. In particular, it upends various

assumptions made regarding datacenter traffic based on prior studies.

3. It examines the additional kinds of partial faults that can occur within tenant datacenters

that use server-based tenant-network-isolation techniques—above and beyond the network-

component-based partial faults that continue to occur within such datacenters.

This dissertation is organized as follows. Chapter 2 scopes the problem we try to solve

and provides context on datacenter topologies, traffic patterns, and network faults. Chapter 3

examines contemporary production and academic fault localization techniques and discusses the

efficacy and shortcomings of these approaches before presenting the intuition for this work’s

solution. Chapter 4 presents a detailed study of Facebook datacenter application traffic, focusing

both on implications for fault localization and topics of broader interest to networking research.

Chapter 5 leverages these characteristics and presents the design, implementation and evaluation

of a prototype partial-fault localization system that represents this work’s primary contribution.

Following this, Chapter 6 discusses additional challenges impacting partial-fault localization

within virtualized tenant datacenters. Chapter 7 concludes by motivating future work, focusing

especially on fault diagnosis and mitigation.
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Chapter 2

Datacenters, applications, and failures

To effectively appreciate the importance of datacenter fault detection, and to properly

evaluate the effectiveness of any proposed solution, it is important to develop sufficient context.

To begin with, we circumscribe the scope of this dissertation’s main contribution. Prior work

suggests, for partial faults affecting switches and links, that fault diagnosis and mitigation are

relatively simple problems to tackle after fault localization [126]. Simply put, links and switches

causing loss or delay can be disabled or routed around, thus preventing application traffic from

incurring performance penalties. In various cases, simply rebooting a network switch is sufficient

to resolve faulty behaviour [126]. For virtualized tenant networks, however, this dissertation

finds that diagnosis and mitigation can be significantly more complex, as discussed in Chapter 6.

Thus, this work concerns itself primarily with detecting and localizing partial faults within

network hardware, focusing primarily on non-tenant, non-virtualized ‘first-party’ datacenters.

In this chapter, we first discuss datacenter applications, network design, network faults, and

fault impact on applications. We then argue in favour of passively monitoring application

network performance for partial-fault localization, rather than actively probing the network or

instrumenting it to detect specific failures. Following this, we discuss the metrics we may use for

passive monitoring, categorized broadly into whether they are collected at network switches or

servers. In particular, we discuss how partial-fault localization leveraging only network-switch-

based metrics, or only server-based metrics, can underperform due to the challenges imposed
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by partial faults in conjunction with multipath topologies and application workloads. Instead,

we propose a unified approach leveraging information from both network switches and servers

that overcome these challenges, discussing datacenter characteristics that help us do so. We then

discuss related work and motivate our solution in Chapter 3.

2.1 Datacenter applications, networks and faults

In this section, we discuss the needs of common datacenter applications and how they

drive datacenter network design. We then focus on how large networks, built out of commodity

hardware with a low but non-zero failure rate, result in a non-trivial rate of performance-sapping

‘partial faults’. Following this, we motivate the importance of rapidly detecting and localizing

partial faults by describing their impact on datacenter application performance.

2.1.1 Datacenter application patterns

Datacenter applications can present different and possibly conflicting requirements to

the underlying network. For example, user-facing services require low latency to maximize user

engagement, while batch-processing ‘big-data’ workloads require abundant bandwidth and are

often less sensitive to network latency. Real-world services may require a mix of such traffic;

consider a web search service that needs to manage a large corpus of data within its search

index, while rapidly responding to user queries from the internet [117]. Note that this is not a

complete list of datacenter applications; for example, video-delivery services are user facing but

depend heavily on efficient utilization of bandwidth [12]. However, a combination of big-data

and latency-sensitive user facing workloads exist at a variety of large-scale datacenter operators,

including Google, Microsoft and Facebook [77, 112, 117]. We focus on such traffic in this work.

Big-data workloads

Datacenters commonly support large-scale computations that cannot fit within a small (≤

the server capacity of a ToR switch) number of servers. For example, these can include indexing
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webpage content in support of web searches, or computing large-scale analytics to recommend

products to online shoppers. Specifically, the volume of data processed may not fit within either

the primary or secondary memories of any single or small set of servers. This dissertation

describes this class of computations as ‘Big-data workloads’. Big-data workloads use divide-

and-conquer approaches that split the input to a computational problem across a large number

of servers across the datacenter; each server then operates on this data independently, with a

recombination step providing a single unified output for the overall computation [46]. While

various proposals have described alternative computational models [70, 128], the fundamental

divide-and-conquer strategy and attendant bandwidth requirements do not change.

Due to large data volume, big-data workloads frequently utilize many-to-many and

all-to-all traffic patterns, thus driving the development of high-bandwidth networks that can

support such patterns [14, 62, 63, 117]. Maximizing network and server utilization receives

significant attention; various proposals have targeted both more efficient application-layer job

scheduling and better network utilization [127]. Strategies include optimally using available

bandwidth [68, 71], avoiding bandwidth-wasting traffic imbalances [15], and promoting network

topologies that are resilient to (or can otherwise deal with) inevitable network failures [93, 118].

Various big-data processing systems exploit data locality when able [46] to avoid needless

network-core congestion. When using the network core is unavoidable, effective congestion

control is critical [18, 117]. All of this engineering effort informs us that network performance is

of great importance to big-data workloads; as we will see, effectively dealing with datacenter

faults is a necessity for maintaining high performance.

Latency sensitive workloads

User-facing services handle requests from the outside world, and possess significant

differences compared to big-data style workloads. With the notable exception of services like

video streaming, user requests frequently have a short lifespan compared to big-data workloads.

For example, a user might wish to search for a particular item and receive immediate results
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when attempting to use an online storefront; indeed, delays of greater than 100 milliseconds

may discourage user interaction with such services [83]. Thus, a focus on latency has driven or

influenced a significant chunk of application, topology and hardware design [35, 82, 125, 129].

Unlike big-data workloads, where organizations can schedule tasks and optimize network

utilization, user-driven traffic is inherently randomized. Various statistical methods can analyze

aggregate user behaviour [28, 90]; however, user-driven traffic can still induce unpredictability

in network traffic patterns in various ways. For example, certain pieces of content can become

virally popular and cause sudden traffic spikes from users requesting that content; this could

lead to hot spots in the underlying datacenter network, at least until the content can be replicated

and load-balanced to account for its popularity [34]. Furthermore, request desynchronization,

inherent to large and uncoordinated user bases, can lead to unpredictably bursty traffic in the

network which can cause loss inside shallow-buffered datacenter switches [131].

A typical high level architecture for interactive user services is as follows. Users make

requests, which arrive at datacenter load balancers. Load balancers split user requests amongst

a tier of stateless application servers. The data backing the service resides within a tier of

databases; application servers are responsible for querying databases for the appropriate data to

satisfy user requests. Once the necessary data is assembled, application servers respond to the

user. As a common optimization for services with read-mostly requests, popular data may be

stored in read-optimized cache servers which may be queried instead of the databases.

One challenge such an architecture presents is that any given user-level request is likely

to trigger several (tens of, or more) network flows to satisfy the request [30, 34, 112]. The

overall runtime of the high-level request depends on the runtime of all of the flows dispatched

to service it. Thus, if any one of these flows is delayed, the overall runtime of the user-level

request increases. Some user requests may be amenable to a trade-off between request latency

and degraded result—for example, a search query may only yield the subset of search results that

could be returned within a fixed window of time, if latency mattered more than result quality—but

services in general may not necessarily support or welcome such trade-offs [129]. To provide low
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network latency for these applications, datacenter operators once again leverage high-bandwidth

network topologies. Unlike big-data workloads, link utilization may be low [112]; the high

network fabric capacity is instead used to ensure there is sufficient headroom for bursty traffic so

that loss (and the consequent latency spikes) rarely occurs.

2.1.2 Datacenter networks

The growth in the demands placed on internet-facing services, the specific requirements

of datacenter application patterns, and the desire to reduce costs have served as key motivators

for datacenter topology research and engineering efforts [63, 117]. In particular, both big-data

and latency-sensitive workloads have driven a desire for datacenters of ever-increasing server

capacity and network bandwidth. Balancing scale and cost concerns has driven both equipment

and topology designs in ways that influence both the overall reliability of datacenter networks,

and the difficulty of finding faults when they do occur.

Historically, large datacenter operators like Google and Facebook have used so-called

‘four-post’ topologies, where a cluster consists of multiple racks of a few tens of servers each,

interconnected via four high-radix cluster switches repurposed from Wide Area Network (WAN)

environments [19, 117]. While the switches themselves were considered of high quality, and

while it is expedient to reuse hardware that is already developed and validated, attitudes towards

switch (and thus network) design have evolved in a few key ways.

Commodity switching hardware

Due to stringent reliability and interoperability needs, WAN switch design prioritizes

high availability and protocol diversity, thus increasing costs [117]. Contrastingly, datacenters

often use cheaper commodity switches, indicating a trade-off between cost and complexity

for slightly reduced reliability [117]. When aggregating this trade-off over a large datacenter,

faults are inevitable. Perhaps as a consequence of using lower-availability hardware, datacenter

operators have noted that network fabric redundancy degrades as hardware ages; in some cases,
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unforeseen failure modes develop [117]. Thus, the combination of large datacenter networks

and mostly-reliable commodity hardware exacerbates fault incidence rates. However, careful

topology design retains high network availability and performance even with failures [93];

traffic can traverse alternate paths and use excess network capacity to maintain performance—if

network monitoring systems can rapidly detect and localize failures.

Scaling via multipath topologies

Consider a simplified logical model of a datacenter as a single non-blocking switch;

adding more servers requires both larger port counts and greater switch fabric capacity to provide

increased aggregate bandwidth. Google four-post datacenters used the highest density switches

available at the time, which imposed a natural limit on cluster size [117]. Furthermore, there was

a tension between the number of servers such a cluster could support, and the amount of external

bandwidth such a cluster had for connecting it to other clusters [19]. Both external and internal

bandwidth are crucial, since a single cluster is a relatively small component within large-scale

service infrastructure that must communicate with other clusters [112].

Beyond providing connectivity, datacenters must provide high bandwidth. Oversub-

scribed four-post clusters imposed constraints on application traffic that were categorically the

network’s fault—a computational task might have had enough computing resources spread

through the network but not enough bandwidth to connect them [117]. Researchers have noted

that bandwidth constraints complicated application design and limited overall performance [14].

Thus, datacenters require high port counts and (internal and external) bandwidth. Rather

than developing higher-radix switches, scalability is achieved by interconnecting larger numbers

of smaller commodity switches. Scalability thus depends on careful topology design [19,

117]. High bandwidth requirements, in support of Map-Reduce [46] style big-data workloads,

motivated topology design in several cases [14, 62, 63, 117]. In each case, large-scale multipath

provides scalability. Multipath aids reliability as well; if a network fault is pinpointed, excess

network fabric capacity can absorb the load normally routed over the faulty components.
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Contemporary datacenter networks are thus organized as multi-rooted trees offering

redundant equal-cost paths between datacenter servers [14, 19, 117]. Relatively involatile topolo-

gies and centralized control simplify datacenter routing, while switch ECMP groups allow traffic

to both leverage all network paths in the absence of faults and avoid particular hops if a fault is

detected. Switch control software is, in some cases, offloaded from relatively under-provisioned

switch CPUs to servers [117]. However, large-scale multipath can complicate fault localization;

even if applications detect degraded network performance, pinpointing the responsible link or

switch may be challenging, as we shall see later in this chapter.

Switch buffering and congestion

Switch buffering impacts the degree of attainable network performance. High bandwidth

flows on high latency WANs depend on sufficiently large buffer sizes to effectively use all

available bandwidth. For a single flow, the ‘Bandwidth-Delay Product’ (BDP) rule of thumb

describes the necessary buffer sizes for high utilization [21]. Low bandwidth flows may still be

bursty and require sufficiently high buffer headroom to avoid packet loss [112].

However, the specific degree of buffer sizing remains a contentious issue. Research

targeting WAN environments with high degrees of statistical flow multiplexing has suggested

that the BDP is unnecessary, and that higher degrees of multiplexing can allow switches to

provision smaller buffers [21]. Different traffic studies, focusing on different datacenter operators,

reveal that one cannot take for granted the degree of statistical multiplexing present within

datacenter links—depending on workload, high [112] or low [18] levels of multiplexing may

occur. Consequently, certain arguments favour deep switch buffers [29] for datacenters while

others do not [36,56,98]. Furthermore, a consequence of ever-increasing link speeds is that large

buffers may be unfeasible or undesirable for cost and performance reasons [98].

Thus, contemporary commodity datacenter switches tend towards shallower buffers [112,

117], with careful server-based control of network congestion to manage queue sizes [117]. Even

so, the combination of ever-increasing datacenter link speeds, bursty application traffic [112],
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and shallow switch buffers means that effects such as flash congestion [129], incast [18], and

microbursts [131] are endemic within datacenters. We argue that these effects greatly complicate

partial-fault detection and localization. Both faults and congestion-based effects can cause packet

loss and delay; thus it can be difficult to reason whether an application performance degradation

is due to congestion resulting from shallow-buffered switches or an actual fault.

Centralized control

Traditionally, WANs comprised of autonomous and independent subdivisions have

leveraged complex distributed routing and directory service protocols [94, 101, 103]. While

commodity datacenter switches may not support all the myriad protocols that a WAN switch

might, datacenters may still allow fine-grained centralized control since a single operator controls

the entire network. Thus, they are amenable to centralized control schemes that allow the entire

network to work in concert. Various large datacenter operators today employ a control scheme

known as Software Defined Networking (SDN) [33, 54, 117]. Switching hardware is comprised

of a forwarding plane (hardware ASICs comprising the switching fabric of a network switch)

and a control plane (which configures the forwarding plane). While a WAN switch might have

a switch-local control plane running a distributed routing protocol that configures hardware

routing tables, an SDN controlled switch may offload the decision making process to one or

more logically centralized controllers which calculate forwarding behaviour and program the

forwarding hardware appropriately. In addition to controlling physical network switches [117],

SDN has been used to control server-based ‘virtual switches’ which are used to provide network

connectivity to virtual machines (VMs) inside tenant datacenters [54].

SDN networks enable a potentially rich set of behaviours and configurations for network

components—for example, bandwidth allocation policies [68, 71] may leverage switch queuing

and limiter resources, or servers may perform network load balancing [67]. However, greater

complexity can increase the incidence of errors or unexpected behaviour. Improper network

configuration may lead to long term link utilization imbalances or incorrect queuing and quality
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of service, thus impacting application performance. Managing rulebase and hardware configu-

ration complexities within SDN networks is an active field of research, with various proposed

methodologies [81, 102]. Even if networking state is properly computed and managed, however,

inaccuracies may occur when programming network hardware with this state [133] or due to

inconsistencies borne of the distributed control plane [80, 89]. Thus, it is important to be able to

characterize traffic performance in relation to traversed network components; if we can localize

network components that coincide with diminished traffic performance, we may receive early (or

additional) warning of potential misconfigurations or faults.

2.1.3 Datacenter partial faults

Contemporary datacenter scale means that faults are inevitable, and topology design and

routing protocols must account for them [62, 63, 93]. Links or switches might fail to forward

traffic; in such a case, traffic must flow around damage and fallback onto alternate network paths.

That said, the efficacy of failure mitigation depends on the ability to realize a failure has occurred,

and where in the network it resides. In some cases, this may not be obvious.

As a motivating example, Microsoft datacenter operators discovered dusty optical cable

connectors inducing packet corruption and loss [126]. While application traffic felt loss-driven

impact, fault localization was complicated since cut-through routing meant packet corruption

was detected at devices other than the one actually responsible for packet corruption. This failure

represents an insidious class of network fault—where the network appears healthy (no links or

switches have failed entirely and still transmit traffic) but a subset of traffic is lost or delayed.

The fault mechanism may limit the network’s ability to accurately self-report the fault’s location.

These faults may cause disproportionately severe application impacts even with small loss rates.

We call these faults ”partial faults”—where the state of a networking component is nominally

healthy, but a subset of traffic is either lost or delayed. Experience shows that partial faults can

occur for myriad reasons; we investigate a few examples next.
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Partial fault taxonomy

For example, consider ‘black-holes’, where routing misconfigurations can cause packet

loss due to a router having no forwarding rule for certain traffic. Microsoft datacenter operators

have noted occasions where a switch may inadvertently create a black-hole due to bitflips in

TCAM-based routing tables [133]. TCAM bitflips cause faults where the network configuration is

nominally correct (when queried, the switch control plane will insist that routes are programmed

as intended) and yet a subset of traffic that would hit the rule is dropped. Furthermore, in certain

cases packets may be dropped silently, where neither drop nor error counters increment [133].

Another example arises from inexplicable ECMP imbalances caused by seemingly

malfunctioning switches [126]. In this scenario, traffic is unevenly spread across links in an

ECMP group—here, no drop counters or error counters may trigger, but latency may be impacted

for traffic traversing higher utilization links. Switch reboots may fix the problem [64, 126],

without revealing whether buggy switch hardware [64] or software control planes [113, 117]

were at fault. Moreover, imbalance detection may be complicated since since it can be hard to

distinguish faulty ECMP behaviour from naturally uneven traffic caused by elephant flows [15],

especially in datacenters with relatively low statistical flow multiplexing [18].

Note that partial faults are not necessarily caused by hardware-centric anomalies; instead,

they may also arise from hardware misconfiguration [64, 117]. While there have been a variety

of efforts towards simplifying datacenter configuration and providing adequate manageability

of the networking rulebase [81, 102], inevitable oversights in software engineering [117] can

confound these efforts and torpedo the efficacy of network devices.

It is important to note that while there are already many different ways partial faults may

occur, the opportunities for such faults to occur continue to increase as datacenter networks grow

in size and complexity. Indeed, a significant chunk of network switch errors have causes that

are never diagnosed [126] at all. The advent of network virtualization and software-defined

networking based overlays within tenant datacenters provides additional opportunities for partial-
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fault style behaviour to occur (we discuss these effects more in Chapter 6). Next, we discuss the

impact partial faults have on application traffic.

Partial faults and application impact

While latency-sensitive and big-data workloads workloads differ along several axes, they

do share one commonality: both utilize scatter-gather workloads. Despite different operation

timescales, high-level workload execution time in either case is gated by the performance of the

slowest sub-operation involved. Scatter-gather style workloads are thus highly susceptible to tail-

latency increases, leading significant amounts of research into improving tail performance [18,

125, 129]. To illustrate the impact of tail latency, consider a simple scenario where a high-level

request forks 10 parallel sub-requests. Suppose any given sub-request has a 1% chance to be

delayed to an inacceptable degree, and a 99% chance of completing within an acceptably short

period of time. The probability that a high level request will be slowed down is 1 - 0.9910 in this

scenario—a full order of magnitude more likely than the probability that any given sub-request is

slowed down. Such scenarios are an important design consideration for large datacenter operators

providing interactive services where low latency matters [18, 129].

The authors of DeTail, a tail latency mitigating methodology, assert that the typical

culprit for high tail latency is ‘flash congestion’ in the network, which causes packet loss and

attendant delay [129]. They note further that uneven load balancing exacerbates the issue,

causing more opportunities for congestion to occur. However, in addition to regular congestion,

the presence of partial faults can also increase tail latency—and unlike temporary congestion,

partial faults can persist within the network core for a relatively long period of time before being

mitigated [126]. Partial faults within datacenter networks can thus be heavily detrimental to

application performance. A fault inducing a small packet loss rate or added delay can have a

disproportionate impact on scatter-gather workloads.

While big-data workloads network flows may be longer than latency-sensitive user traf-

fic [112], a similar effect can occur. While bulk-flows may be latency-insensitive (microsecond
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respond times may not matter for a flow lasting multiple seconds), packet loss can slow down

reliable protocol transfer rates (e.g., TCP considers loss as a sign of congestion), leading to slow

transfers and higher overall job execution times than in the absence of faults. MapReduce jobs

may be delayed if even a single worker stalls due to slow network transfers. Loss affecting some

paths but not others can lead to flows on fully functional paths outcompeting flows mapped to

paths with at least one faulty link when they share a common bottleneck link or switch buffer.

2.2 Partial faults require passive impact monitoring

The diverse and unpredictable nature of partial faults indicates that building proactive

monitoring systems to search for specific failure modes is inevitably futile [117]. Furthermore,

diagnosing specific failures may be unnecessary if simply rebooting affected hardware can clear

faults [126]. Instead, deleterious partial-fault-driven traffic impacts suggest that one appropriate

methodology may be to search for such impacts and use them to localize faults. For example, we

may monitor synthetic probe traffic [11, 64] or production application traffic for loss or latency

indicative of a partial fault. Once we localize a fault, we may mitigate its impacts (perhaps by

disabling faulty components) before remedial actions are applied [126].

However, we contend that monitoring synthetic probe traffic is not a panacea, due to

the possibility of partial faults that may only impact specific traffic subsets [133]. Furthermore,

active-probing monitoring systems may possess resource-consumption constraints that limit

allowable network overheads, as we discuss further in Chapter 6. Thus, since probe traffic volume

is constrained, and since it may not trigger latent fault mechanisms, it may delay partial-fault

localization. On the other hand, passively monitoring production-traffic performance impact

alleviates both concerns; this dissertation devises a system that passively examines all production

traffic and rapidly pinpoints partial faults affecting small subsets of this traffic.

If we are to rely on passively examining application network performance to detect and

localize partial faults, we have to decide what metrics we will observe. Our options include
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network-device metrics (for example, switch-based drop, error or queue occupancy counters),

server metrics (for example, TCP statistics or application-level metrics like end-to-end request

latency) or some combination of both. We refer to these options as adopting particular viewpoints,

depending on which metrics we observe—thus, we can adopt either a network-centric, server-

centric, or unified viewpoint. While both network-centric and server-centric viewpoints can

give indications of application network performance, it is the position of this dissertation that

examining either in isolation has significant drawbacks, which we discuss next. Instead, we

propose a unified approach which we motivate in Section 2.3.

2.2.1 Multipath hampers server-centric monitoring

Servers possess deep insight into application level performance. In particular, we can

characterize whether metrics like request latency, flow completion and file transfer times meet

various service-level agreements that dictate acceptable service-performance bounds. Further-

more, we can examine transport-level statistics through server network stacks; for example, TCP

retransmits can convey the degree of packet loss. A fundamental issue, however, is that while we

may be able to detect performance degradation at servers, we cannot ascertain the root cause. As

an example, a network-based partial fault may cause high application-level request latencies;

on the other hand, remote-server scheduling or disk-access latency may also delay requests.

Similarly, a network-based partial fault may cause packet loss and trigger TCP retransmits;

alternatively, server-based effects like insufficient TCP buffer space may do the same.

Theoretically, network operators may systematically examine metric reactions to various

controlled stimuli (specifically, injected faults of differing mechanisms at network components or

servers) and develop a baseline per-metric expected-behaviour model; they can then use machine-

learning classifiers to determine whether network-based faults cause production-observed loss or

delays [23]. In addition to requiring model-generation and complicated analysis, this methodol-

ogy is incapable of fault localization (if performance degradation is deemed a network-caused

issue) due the lack of server-based knowledge about impacted-traffic network path.
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For production datacenters, multihop and multipath topologies yield a combinatorial

explosion of paths between communicating server pairs [113], which serves both as a boon and a

curse. Path-diversity both increases fault likelihood and complicates fault localization; however,

it also provides alternative paths that (hopefully) do not contain faults. Fallback-path availability

supports one possible argument: that in fact, it does not matter if servers can localize faults or not.

Rather, servers can simply attempt to influence application traffic path if they detect performance

degradation. Server based path-oblivious and fault-reactive protocols can thus attempt to mitigate

the partial-fault impact. For example, MP-TCP breaks a single TCP flow into a collection of

TCP sub-flows operating in parallel; if a sub-flow performs poorly, MP-TCP shunts data away

onto other sub-flows [109]. FlowBender reactively tweaks outgoing-packet header bits when

detecting degraded performance in an attempt to place traffic onto alternative network paths [75].

However, fault-reactive methodologies have drawbacks. First, they must detect per-

formance degradation before mitigating faults; short-lived flows may end before benefiting.

Furthermore, longer flows encountering early loss may be competitively disadvantaged even

after mitigation, compared to flows that never traversed fault-containing paths. In cases where

the network is ultimately not responsible for observed performance degradation, fault-reactive

methods may also induce unnecessary network churn. Finally, fault-reactive methods do not

perform fault localization, and thus cannot pro-actively mitigate fault impact for new flows. On

the other hand, this dissertation shows that if servers are privy to application-traffic network

path, they can leverage their knowledge of application performance to rapidly pinpoint specific

network components that may contain a partial fault. Consequently, network operators may

proactively mitigate partial-fault impacts for all traffic.

2.2.2 Partial faults confuse network-centric monitoring

In theory, network switches collectively possess full knowledge of application-traffic

network paths. Each switch, for each packet, can determine the immediately neighouring device

that the packet came from and is going to. Furthermore, switches can correlate locally-imposed
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packet latency (via buffer occupancy counters), loss or locally observed corruption with specific

links and ports. In practice, however, leveraging switch-based knowledge can be difficult. Switch

CPUs are relatively weak and cannot neither examine nor report paths for every packet or flow.

Switch-based counters have, in some cases, been unreliable; for example, Microsoft datacenter

operators have detected ‘silent’ drops that are undetected by switch counters [133]. Thus,

network-centric monitoring may underperform at partial-fault detection and localization.

As we have already seen, a variety of underlying mechanisms may cause partial faults.

The specific fault mechanism and network configuration may impact the effectiveness of the

fault-detection strategy in use. For example, for the motivating optical network packet-corruption

scenario presented earlier, per-switch error counters were ineffective in the presence of cut-

through routing; with store-and-forward routing they may have proved sufficient. On the other

hand, for TCAM bit-flip induced black holes, leveraging error counters would not catch a

problem since there was no packet corruption, nor any (packet) error from the perspective of

the switch forwarding plane. Switch control-plane based routing table examination will also not

catch the error, since the configuration is correct from the control plane’s point of view. While

switch-based unroutable-packet drop counters may trigger, it is difficult to distinguish black-hole

misconfiguration from spoofed or erroneous traffic—either will increment such counters.

Instead, partial faults may require a perspective far removed from the switches themselves

to catch the error; in the case of TCAM bit-flips, the fault was only localized by using a path

diagnosis tool [133] that knew the full traffic network path for impacted traffic. Similarly,

for ECMP imbalance errors, switch-based byte utilization counters are not enough due to the

possibility of imbalanced elephant traffic. In this case, understanding application-driven network

demands may be essential. For silent-drop partial faults, where no counters are incremented,

server statistics coupled with network-path knowledge may be the only recourse. Thus, for

many different kinds of partial faults, network-centric fault-localization approaches leveraging

only switch-based knowledge may be insufficient. For the particular faults in question, only a

combination of network-based and server-based monitoring proved effective.
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Table 2.1. Fault localization mechanism capabilities by type.

Type Localizes
fault

Root-causes
fault

Fault
agnostic

Application
agnostic

Correlate fault with
performance hit

Server
based No No Yes Maybe No

Network
based Maybe Maybe No Yes No

Unified
(this work) Yes No Yes Yes Yes

2.3 Unifying network and server centric monitoring

Unifying network and server centric monitoring benefits partial-fault localization for

several reasons summarized in Table 2.1. Unified monitoring enables partial-fault diagnosis that:

1. Can localize partial faults to specific components [22, 113, 133], unlike server-centric

mechanisms [23, 64, 75, 100]. Network-centric monitoring may successfully localize

faults [59] or fail to do so [38, 126] depending on circumstance.

2. Is fault-agnostic (unlike network-switch based scans [38, 112, 131] for specific errors

like packet drop, corruption or high latency), due to examining fault-driven impact on

server-based performance metrics. For the same reason, server-based approaches are also

fault-agnostic [64, 75, 100], in some cases being able to broadly classify the perceived

fault mechanism [23]. As a result, however, neither server-based approaches nor this

dissertation’s approach can root-cause partial faults, while network-based approaches may

do so (if the fault mechanism is accounted for, which is not always the case [117]).

3. Is application-agnostic, assuming sufficient traffic volume as discussed in Chapter 5.

Network-based monitoring is also application-agnostic [38, 112, 131], while server-based

approaches may be application-agnostic [64, 75] or not [23, 100].

4. Can correlate faults with application impacts, allowing services to re-route impacted traffic

without inducing churn (by not needlessly re-routing if ‘normal’ congestion was the cause).
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While a variety of production systems and academic proposals target datacenter faults, including

in some cases partial faults [22, 126], production monitoring systems often adopt a network-

centric perspective [11, 59]. In other words, they answer questions like “How many packets are

lost on this link?” and “What is the queuing delay incurred on this switch?”. While such effects

may point to partial faults, they may also indicate (non-fault-driven) network congestion. Error

counters may not suffice depending on partial-fault mechanism and network configuration [126],

or if the network device itself is buggy or unreliable [64, 133].

Service owners, on the other hand, leverage an application and server level view: they can

answer questions like “What is the 99th percentile latency for requests in this application?” and

“How much loss is incurred by TCP flows on this server?”, without any network-path visibility.

Consequently, service owners cannot correlate observed loss and delay with network faults. Thus,

even if a fault is detected, the service owner cannot know for sure if any observed application

performance degradation was due to that fault or due to (non-fault-driven) network congestion.

Our method avoids purely network or server centric partial-fault localization. Instead, we

acquire path-information for all flows from switches and expose it to servers, while avoiding

expensive and unscalable on-switch computation. Servers use path information to correlate server-

based metrics with network components, providing partial-fault detection and localization—even

with unreliable or otherwise insensitive switches. If network operators can correlate performance

degradation with network faults, they can preemptively mitigate fault impact until they fix the

faults. Our work evokes prior network-tomography approaches [22, 58, 95], though datacenters

exhibit properties that simplify analysis. We discuss some of these properties next, before

leveraging these properties to simply partial-fault detection and localization in Chapter 5.

2.3.1 Load-balanced links mean outliers correspond with partial faults

While multipath topologies can complicate fault localization, they do possess fundamen-

tally helpful characteristics. The desire to support big-data traffic patterns [5, 117] underscores

a drive for network uniformity and even-load balancing [14, 15, 62, 63]. Evenly-distributed
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network-core traffic is essential for achieving maximum Fat-Tree bisection bandwidth [14], and

avoiding congestion losses [117]. Both application [34] and network [15] approaches actively

seek and flatten imbalances. However, topology imbalance (caused by incremental deployment

or faults) can cause imbalanced traffic even if traffic is normally balanced [62]. As we dis-

cuss in Chapter 3, imbalanced component-by-component network performance may indicate

outlier-component affecting partial faults; this observation underpins the partial-fault localization

system we present as our main contribution. In particular, we leverage server-based application

and network-stack metrics, in collaboration with switch-provided network path information, to

rapidly pinpoint partial-fault indicating performance anomalies.

2.3.2 Centralized network control enables collating viewpoints

Centralized control provides advantages for expediently detecting and localizing partial

faults. Rather than relying on limited computational resources and performance metrics available

at individual switches, or an incomplete network picture at servers, centralized control lets us

devise a hybrid methodology using switches and servers in-concert to detect and localize partial

faults more rapidly and accurately than any single device acting alone. Furthermore, centralized

control allows us to proactively mitigate faults once localized [126].

In the next chapter, we discuss related work in detail, including existing production

network health/fault monitoring systems, and academic proposals. We discuss datacenter traffic

characteristics and how they can confound our task. Next, we motivate at a high level the

methodology we use to localize partial faults, before fully presenting our solution in Chapter 5.
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Chapter 3

Related work, challenges and a solution

Given the inevitability of datacenter network faults, network operators and academic

researchers alike have deployed or proposed a large variety of fault detection and localization sys-

tems. This chapter positions our contributions vis-à-vis prior efforts. First, it presents criteria that

we use as a guideline for evaluating fault-localization methodology efficacy. Next, it discusses

existing work in the context of these criteria, noting both where the methodologies are successful

and where they might fall short. Finally, it presents a high-level motivation for a partial-fault

localization methodology that meets our criteria while avoiding various shortcomings present

in existing work. This server-based, passively-monitoring, and outlier-analyzing methodology

leverages datacenter network and traffic characteristics discussed in Chapters 2 and 4 and is

further developed into our main contribution in Chapter 5.

3.1 Fault localization effectiveness criteria

In an ideal world, datacenter networks are completely reliable and performance-sapping

partial faults never occur. In the real world, partial faults do occur; they can consume large

amounts of time and effort to pinpoint [126], affect small subsets of traffic [133], be misat-

tributed [126] and have a variety of underlying causes [64, 117, 126, 133]. Detection method-

ologies have to contend with various difficulties borne of computational and storage over-

heads [64, 133] as well as the engineering effort needed to change applications and hard-
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ware [64, 66, 75]. These complicating factors suggest a set of criteria that can be used to evaluate

the success of all fault-localization methodologies.

1. Detection speed

Faster partial-fault localization can minimize fault application-impact. Academic

proposals can detect non-partial faults within tens of microseconds and reroute traffic

around failed links [93]; localizing partial faults, on the other hand, may potentially

require minutes to hours of debugging and analysis [126, 133]. On the other hand, rapid

partial-fault localization would enable datacenter operators to use reroute-based mitigation

to reduce partial-fault application impact [75, 93], or at least disable faulty links until

diagnosed and fixed. Therefore, our methodology aims to detect partial faults as quickly

as possible—ideally, within tens of seconds rather than minutes or hours.

2. Sensitivity to minuscule faults and false negatives

Partial faults may have particularly minuscule impacts, affecting only a small subset

of traffic. For example, a fault may only impact traffic destined to a particular subnet,

or mapped to a single forwarding rule [133]. Alternatively, a faulty link might affect all

traffic, but with a drop rate that is difficult to distinguish from congestion-based losses.

Consequently, detection systems may fail to diagnose faults. We call undiagnosed faults

‘false-negatives’. Our methodology aims to detect partial faults regardless of confounding

factors and minimize the false-negative rate.

3. Accuracy and false positives in the face of network variability

Given widespread oversubscription in historic datacenter architectures [117], vari-

ous applications have favoured rack-based data locality to avoid overloading the network

core [5, 30, 47, 77]. Consequently, cross-rack traffic may be relatively sparse; servers in

a Microsoft map-reduce style datacenter communicate either with in-rack servers only,

or with a small fraction (1-10%) of servers outside the rack [77]. Cross-rack traffic

sparseness means that large swathes of the traffic matrix may be empty or underutilized
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within such datacenters; however, hot spot behaviour can still occur in portions of the

traffic matrix. Perhaps due to hot spots, congestion frequently occurs within big-data style

datacenters [77, 131]. Studies show that congestion is not static, however; it can last from

seconds [32] to tens or even hundreds of seconds [77] before dissipating or manifesting

elsewhere. Traffic may be bursty and exhibit on-off send behaviours [30]. Thus, temporal

and spatial traffic instability can plague the network.

Like partial faults, hot spots and network congestion may cause packet loss or

high-latency. Thus, a partial-fault detection system may incorrectly detect the presence of a

fault, or incorrectly attribute a partial fault to a congested network component—we refer to

this case as a ‘false-positive’ event. Datacenters can contain thousands of individual links,

and thus false-positives can result in costly goose-chases that can waste time scrutinizing

correctly functioning equipment [126]. Our methodology aims to minimize false-positive

incidence, even in the face of congestion-based loss and delay.

4. Ability to detect varied faults

Due to the variety of partial fault root causes, we may conceivably produce a

system that can detect one type of fault (i.e. with a specific root cause) but not another.

For example, packet corruption may be detected via framecheck error counters [126], but

silent packet drops may not [133]. Drop and error counters are incapable of detecting

latency-impacting faults. Given the proliferation of different partial-fault varieties, we aim

for a fault-agnostic detection and localization methodology.

5. Ability to pinpoint fault location and correlate application impact

While certain methodologies can detect partial faults, they may fall short of local-

izing them [23, 75]. Beyond fault localization, however, we argue that it is important to

be able to correlate faults to specific application performance impact. Without the ability

to correlate specific faults to application impacts, even if partial faults are pinpointed, a

user is unaware whether any given fault causes observed application performance degrada-
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tion. Thus, it is unclear whether applying mitigation steps (such as reactively rerouting

application traffic [75]) will be helpful, or just create network churn.

Not localizing a fault has further downsides; even if we can mitigate fault impact

sans localization, we have to do so reactively—we only route a network flow away

from a faulty component after flow performance degrades. Short flows may send most

of their traffic across a performance-impacting faulty component; longer flows may be

disadvantaged compared to flows that did not traverse a faulty component. Thus, it is

desirable to quickly pinpoint faulty network components so they can be fixed, or at least

disabled to prevent future traffic from suffering performance degradation.

6. Resilience against faulty monitors

Fault monitors may be unreliable. For example, Microsoft datacenter operators

discovered switches that ‘silently’ drop packets [133], where switches failed to increment

drop counters. Given the possibility of unreliable network monitors, it is imperative to

develop a fault detection methodology that successfully localizes faults even if individual

monitors are unable to detect a fault. Our methodology aims to aggregate metrics collected

at every server to robustly detect partial faults, even if certain servers or switches are

unable to detect the fault. However, we do not handle the case where certain servers act as

adversaries and maliciously and inaccurately detect (or fail to detect) faults.

7. Computation, storage and network overheads

Datacenter switches may possess limited computational resources [45]. Servers

can possess greater resources, but non-application use represents cost-inducing overhead.

Furthermore, storage space and network bandwidth dedicated to network monitoring may

be limited. Large traffic volume combined with resource limitations may result in certain

compromises. For example, per-flow monitoring may be eschewed [45] in favour of

flow sampling [112] or aggregation [45]. Certain systems may only be able to process a

subset of network traffic [133] or operate on-demand for short periods of time, rather than
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continuously [22]. To provide an always-on fault detection methodology, our methodology

aims to find partial faults with low computational, storage and network overheads.

8. Need to modify hardware and application software

Academic proposals that improve network performance or reliability at the cost

of making invasive hardware changes may not see widespread deployment [49, 66, 73],

possibly due to the high engineering cost of modifying hardware. On the other hand,

software-only backwards-compatible improvements, as well as systems leveraging existing

capabilities have seen higher adoption [18, 75, 133]. Thus, our methodology strives to

avoid hardware and (onerous) software modifications.

3.2 Existing fault management techniques

Having developed criteria for evaluating partial-fault localization effectiveness, we now

examine existing approaches. As taxonomy, we categorize prior works by whether they use

server-based metrics, network-based metrics, or a combination of server and network based

information. In each case, we discuss how the methodology’s viewpoint impacts its ability to

satisfy our success criteria. After doing so, we possess enough context to compare these works

with our main contribution, which we motivate at a high level in Section 3.3.

3.2.1 Server-centric fault detection

Server-centric fault detection leverages server-based information. Applications track a

variety of metrics to quantify service health and, in various cases, facilitate service operation.

For example, Hadoop MapReduce jobs comprise several worker tasks, with a job coordinator

monitoring each task to ensure adequate overall progress (the coordinator restarts stalled tasks to

prevent an entire job from stalling) [5]. The underlying HDFS filesystem tracks more granular

metrics, such as the amount of time network traffic spends waiting on network system calls [20].

Latency sensitive applications can use metrics such as 99th percentile RPC completion time.
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In either case, service owners can set thresholds for what they consider as unacceptably poor

performance; if a metric crosses the threshold, they can investigate. Note, however, that high

level application requests can comprise several different network flows, any of which could

potentially be responsible for diminished performance. Thus, datacenter operators leverage

transport-level monitoring as well to get an insight into network flow performance [88, 100, 112].

Fundamental deficiencies and impact on fault localization

Due to multipath topologies and the prevalence of switch based ECMP routing, servers

do not typically know network traffic path. Contemporary networks provide tracing functionality

that enables servers to determine the path for subsets of traffic [11, 133]. However, servers may

still not know what other traffic (from other servers) coincides on the paths traversed by their

own traffic. Thus, when a server observes loss and latency for its own traffic, it is non-trivial to

determine whether these effects are due to a fault in the network, network congestion (possibly

caused by traffic from other servers) or a non-network cause such as server load. As a result,

server-based methodologies may not satisfy several criteria from our fault localization wishlist.

In particular, path-oblivious approaches may be insensitive to minuscule faults. Multipath

networks may dilute server’s ability to notice consistent loss and latency since congestion losses

may hide fault-driven losses. For example, consider a k = 20 fat-tree network connecting 2,000

servers. For any server pair, 100 paths connect them. If a single path contains a link with a

(relatively high) 1% packet loss rate, and if packets are evenly spread across each path, the

server-observed loss rate is 0.01%—in line with observed microburst-driven ToR-server loss

rates [131]. Thus, relatively high-impact faults may be unnoticed. Furthermore, even if server-

based systems detect [23] or mitigate [75] partial faults in spite of dilution, they cannot localize

faults unless provided with some modicum of path information [84]. To make matters worse,

long-lived congestion [15, 32, 77] may trick systems into reporting faults when none exist.
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Additional challenges noted in practice

Additional challenges apply to server-centric partial-fault detection and localization

methodologies. Since servers can possess tens to hundreds of thousands of active flows [112],

comprehensively characterizing flow performance can be unrealistic due to computational, stor-

age and network bandwidth overheads [112, 133]. To reduce overheads, we may sample traffic;

either by considering ‘interesting’ subgroups (like control traffic or flow start/end packets) [133]

or randomly [112]. Even with sampling, however, processing cost [112], data retention [112], and

network bandwidth overheads [133] are considered difficult challenges. Furthermore, reducing

the set of monitored traffic can impact fault-detection sensitivity (if we skip over impacted traffic)

or fault-detection speed (network operators may have to wait till impacted traffic is sampled).

Deciding which traffic to examine and analyze can be a non-trivial task. TCP flows

make up a significant chunk of datacenter traffic [18, 112]. While various studies examine TCP

performance [21, 37], they often make simplifying assumptions to ease analysis. However, real

application traffic has to contend with myriad effects that can complicate analysis. While some

flows may be bulk-data and unbottlenecked, such as those moving large files across a distributed

file system, others may perform relatively low-volume tasks such as synchronizing distributed

systems or making RPC calls. Flows may stay dormant for long periods of time, and only send

traffic within short bursts [30, 112]. Coupled with the large number of flows, understanding flow

performance and the significance of collected metrics might be complicated.

For example, packet loss is generally considered harmful to flow performance. Flows

with large bandwidth demands may encounter congestion-driven losses while those with limited

demands (assuming they do not coincide with high-demand flows on the same path) might not;

simply comparing the degree of packet loss across flows may pick out ‘natural’ differences in

traffic behaviour rather than evidence of a network partial fault. Further confounding analysis is

the fact that the limited-bandwidth flows might have bursty demands, resulting in more losses

than high bandwidth flow when faced with shallow switch buffers.

30



One way to mitigate analysis complexity is to eschew analyzing application traffic and

instead monitor latency and loss for injected probe traffic [11, 59, 64]. Probe-based methods

can have downsides, however. While certain faults may impact probes and application traffic

alike (for example, randomized packet loss), there may be faults that affect applications but not

probes. For example, certain partial faults only affect specific destination subnets or ports [133];

they may harm application traffic while remaining invisible to probes. Probe traffic can cause

computational overheads, consuming resources available for application traffic.

3.2.2 Network-centric fault detection

Network-centric fault detection refers to methodologies that use information available at

network switches. For example, this includes flow information embedded within packet headers,

link error and drop counters, and buffer occupancy information. As defined, it is not privy to

information normally tracked at servers, like the number of retransmits or congestion window

for a given TCP flow. Network-centric methodologies are theoretically advantaged in being able

to correlate error, loss or delay with specific ports, links, queues, or other relevant components.

Furthermore, it can theoretically reveal exactly which traffic is traversing afflicted components.

In practice, however, network-centric approaches can be confounded in various ways.

Fundamental deficiencies and impact on fault localization

Network-centric fault detection methods are not privy to server-based information. At

first, server-based information seems redundant—surely, switches can leverage their own moni-

toring to pinpoint faulty components! However, we argue that lacking server-based information

is sub-optimal since it precludes desirable capabilities. Specifically, if a detection methodology

can correlate server-based performance metrics to specific components (for example, ports on a

switch), it can enable root-cause-agnostic fault detection and localization, as this dissertation

will show. Root-cause-agnostic operation is advantageous for two reasons.
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1. While switches can be designed to detect specific faults (for example, packet checksums

to detect corruption), not every failure can be anticipated during initial switch engineering.

Production experience suggests that unexpected and varied faults can and do occur, and

that the right kind of monitoring is not always anticipated and provisioned [117].

2. Switches may be unreliable in various fault scenarios, either missing [64, 133] or mis-

attributing [126] partial faults. Given that switch fabric reliability may degrade with

age [117], we cannot always assume switches will be able to detect faults; in which case,

pinpointing faults via performance impact is a valuable ability.

Thus, network-centric fault detection methodologies that do not have access to server-

based information have a comparatively harder task of detecting partial faults with variable and

unanticipated root causes. They also risk insensitivity to certain failure modes, either due to

compromised reliability or because the failure mode was unanticipated to begin with.

Additional challenges noted in practice

Like some server-centric approaches (c.f. TCP retransmits and NIC error counters),

switches may use counters to detect packet loss or latency spikes [38, 112]. Counter-based

approaches may pinpoint certain faults; for example, comparing port error and drop counters can

reveal packet-corrupting links. However, faults like ECMP imbalance [126] or misconfigurations

would not be detectable using error counters, and neither would silent packet drops [133].

Unfortunately, aggregating traffic into counters prevents switches from revealing what

traffic is traversing the faulty component. While granular counters (perhaps tracking certain

application port numbers or subnets) can provide some insight, they may compete with essential

features (like routing tables) for hardware resources. An alternative approach is to sample flows

traversing switch ports. However, sampling is subject to bias; elephant flows are more likely to

be sampled, even though mouse flows can still carry critical traffic [15]. Additionally, switch

CPUs are often relatively low performance [45]; thus, we may spend too many computational

resources on monitoring at the expense of important tasks like participating in routing protocols.
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Consequently, partial-fault monitoring sensitivity may suffer. While subsets of traffic can

be checked on a case by case basis—for example, a network operator could configure a counter

to check the drop rate for a specific protocol—in general it can be hard to comprehensively

characterize traffic performance across a switch, and in particular if some subset of traffic is

suffering from performance degradation. Furthermore, since scalably examining all traffic is

infeasible, attributing a network fault to specific impacts on specific application traffic is difficult.

3.2.3 Hybridized approaches

Hybridized fault detection and localization methodologies leverage information present

within the network core (for example, counters or sampled flow data located within network

switches or middleboxes) and within the servers at the network edge.

In order to provide more insight into network path, and to attempt to localize faults to

a given path, certain methodologies leverage tracing the path of packets through the network

on a hop by hop basis. For example, Everflow [133] classifies certain subsets of application

traffic (including, for example, protocol control traffic) as being ‘interesting’; switches traversed

by the traffic in question then mirror packet headers to a collection and analysis infrastructure

that can pinpoint faults like routing black holes. Similarly, NetSight creates a postcard per

packet per switch that is sent to a logically central analyzer; a collection of postcards comprises

a packet history that can be used to debug network performance [66]. Another path recovery

approach is to leverage traceroute-like behaviour in conjunction with sending parallel requests to

characterize inordinate packet loss [11] on various network paths. Finally, active programming

style approaches have attempted to modify switch design in order to enable the execution of

programs on a per packet basis, thus providing greater visibility to servers [73, 74].

Other systems focus more on the health of individual links, rather than the hop-by-hop

performance of application traffic. For example, Netbouncer [59] combines server-originated

probe traffic with packet encapsulation to inject probes into specific links in the network, allowing

servers to characterize packet loss and latency on a link-by-link basis in the network.
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Hybrid methodology benefits and impact on fault localization

Leveraging both network-based and server-based information provides various advan-

tages to hybrid methodologies. In particular, while network-centric methodologies might be

unable to scalably examine all traffic or correctly determine what subset of traffic to examine,

hybridized approaches like Everflow can leverage server-based context to focus on important

traffic. Specifically, servers can mark specific flows that might be experiencing delay or loss or

otherwise harming application performance, and determine both the nominal network path for

the traffic and whether the network is dropping the packet at a given hop. Probe traffic injected

via Netbouncer-like services can provide further data to diagnose a potentially faulty link.

As a result, hybridized methodologies may satisfy several criteria presented at the start

of this chapter. Detection speed is aided since fault investigations can be triggered by passively

monitoring production traffic as it is generated—datacenter operators need not wait for the

‘correct’ type of probe traffic to trigger latent faults. Sensitivity is similarly improved, especially

since hybrid fault detection systems need not lose information via counter-based aggregation

at switches or servers. Since hybrid systems can leverage server-based metrics and trigger on

application performance impact, it can pinpoint faults regardless of root cause [133]. Furthermore,

application impact can and has been attributed to specific partial faults using such systems, even

in the presence of unreliable monitors [133]. Finally, complicated processing can be offloaded

from relatively weak switch CPUs and onto dedicated fault-monitoring servers [133].

Challenges noted in practice

In practice, various challenges still face hybridized fault detection and localization

methodologies. Traceroute approaches can induce CPU load at switch CPUs, while Everflow

style match-mirror approaches can cause significant network overheads (requiring Everflow in

particular to curtail the traffic it looks at [133]). Despite the relatively high degree of control a

datacenter operator has on software and networking hardware, there appears to yet be significant

inertia when it comes to making invasive or elaborate changes. Production systems [59, 133] and
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successfully deployed protocols [11,18] tend to leverage existing hardware capabilities while

methodologies requiring switch modifications [49, 73, 79] do not see large-scale deployment.

3.3 Accounting for traffic and faults with outlier analysis

Thus far, we have established success criteria for fault localization methodologies, and

examined how existing approaches have either satisfied or fallen short of satisfying those criteria.

In particular, we have seen that server-centric and network-centric methodologies have various

shortcomings that can hinder fault localization effectiveness, while existing hybridized systems

provide significant benefits but have various overheads to cope with. It is this dissertation’s

goal to contribute a methodology that satisfies all of the success criteria, by leveraging our

understanding of datacenter topologies and traffic patterns.

In addition, we wish to devise a system that can not only find network-based partial faults

regardless of root cause, but also enable correlation between faults and impacted traffic. We

desire the system to run continuously without requiring manual intervention by either users,

network administrators or user applications. We argue that datacenter topology regularity and

large-scale traffic together enable a low-overhead outlier-analysis methodology. Here, we present

our intuition for why such a method is viable and how it satisfies our criteria. In Chapter 4, we

discuss Facebook datacenters and how they allow particularly effective outlier-analysis. We then

formalize our methodology and present a working prototype in Chapter 5.

3.3.1 Localizing faults via passive monitoring and outlier analysis

This dissertation claims that datacenter topologies and traffic patterns enable an outlier-

analysis-based fault localization methodology that relies on passive monitoring of server-based

statistics. To support this claim, we first present our intuition of why passive-monitoring of

server-based statistics could reveal partial faults if we can correlate with path information. Next,

we show that naı̈ve outlier-analysis is unlikely to succeed, but carefully chosen comparisons can

make the approach viable within contemporary datacenter environments.
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Passive monitoring could reveal partial faults with path correlation

In general, observing application metrics or network flow performance to ascertain

network performance quality is complicated by several effects. For example, if we consider a

simple RPC protocol network and examine the request completion latency as a network health

indicator, we might notice elevated request latency either due to a faulty network component,

or due to unrelated effects like scheduler latency or disk access for servers handling RPC calls.

Thus, a single bad performance metric in isolation is not necessarily indicative of a problem.

On the other hand, consider a set of links in an ECMP group carrying RPC traffic,

where one link hosts a partial fault that randomly corrupts packets. Once can surmise that

traffic traversing the faulty link is more likely to encounter loss than within the non-faulty links.

Conversely, assuming sufficient traffic volume, we may expect roughly similar performance

across all the non-faulty links. Thus, we may consider comparing link-by-link traffic performance

for this ECMP group, and consider outliers to be indicative of a partial fault.

However, comparing performance of application traffic across links or switches will not

always yield meaningful results. Consider, for example, a Top-of-Rack (ToR) switch connected

to several A server that is sending or receiving a larger rate of traffic is more likely to incur loss

than a server that is barely sending any traffic at all. Comparing the performance of applications

and network flows across the respective Host-to-Tor (access) links would falsely indicate a

performance issue on the access link for the busier server.

Accounting for traffic pattern hot spots

Datacenter hot spots [30, 47] can invalidate naı̈ve link-by-link performance comparisons.

However, we argue that extensive application [34, 112] and network load balancing enable

comparing certain components. For example, consider ECMP routed networks containing equal-

cost paths between servers. An initial approach would be to compare, for traffic between any

server pair, path-by-path traffic performance. Equal-cost paths and ECMP routing suggest that

the suggest relative mix of traffic on any path should be similar in nature and in performance.
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However, this approach is not generally feasible—the very existence of hot spots suggests

that the amount of traffic might be minuscule between any given pair of servers in various

datacenters. Coupling this with the tens of thousands of paths that contemporary datacenters may

provide between any pair of servers [112], and we end up with a situation where a relatively small

set of flows may be split amongst a large number of paths, leading to effects such as elephant

flows on one path degrading the perceived performance of that path compared to others [15].

Instead, we argue for comparing server traffic on a link-by-link basis, irrespective of the

destination server and in spite of traffic-matrix hot spots, for certain subsets of links. Suppose

we have a fat-tree network with a skewed traffic pattern containing one hot spot. Specifically,

one network pod receives traffic from all other pods; the other pods do not exchange any traffic

with each other, and neither does the recipient pod contain any intra-pod traffic. In this case,

how will traffic be spread within the network core? To make the example concrete, suppose

the fat-tree contains C core switches and S servers. Suppose each source server (in one of the

pods other than the destination pod) sends F flows to a random destination-pod server, for a

total of S×F flows. From the point of view of a single source server, each of its F flows has an

equal probability of traversing one of the four available core switches to the destination pod; the

expectation being that each core switch ends up with F÷C flows from that server.

Now suppose that the flows are infinitely long, but have varying rates; suppose 25% of

the flows are limited to 1 Mbps, 25% are limited to 10 Mbps and 50% have no rate limit. Since

the ECMP forwarding decision is independent of the flow characteristics, we would expect to

see each core server end up with F÷ (2×C) non-rate-limited flows from the server. Similarly,

we expect to see F÷ (4×C) 1 Mbps flows per core, and the same number of 10 Mbps flows.

Thus, the server’s expected network utilization on a core switch by core switch basis is identical.

This observation is true for every server sending traffic, regardless of the specific traffic

characteristics of the server’s traffic. The expected mix of traffic per core switch from any

given server is the same; if the number of flows is significantly higher than the number of core

switches, we hypothesize that the utilization per core switch will be similar over time. We further

37



hypothesize that, in the absence of faults, the performance observed by applications and server

network stacks will be similar on a core-by-core basis as well.

On the other hand, if a given core switch contains a partial fault—for example, suppose

it drops a small percentage of packets randomly—we hypothesize that the performance observed

by servers for traffic on the faulty core switch will be strictly worse than performance observed

through other switches. In other words, despite the presence of traffic matrix hot spots, we

should be able to compare traffic performance on a core switch by core switch basis on a fat-tree

network, and treat deviations from the norm as potentially indicating a partial fault.

Outlier analysis enables traffic-agnostic fault detection

Outlier analysis thus enables the detection of anomalous network performance on a

core-by-core basis, thus potentially allowing us to find partial faults in a manner that is root-

cause-agnostic (since it looks at server-based metrics and only requires that a fault have some

measurable impact) and traffic-agnostic (it only requires that the number of flows is large

compared to the number of components that the flows traverse). We argue that a fault localization

system built on such a system can localize faults for every link and component in the datacenter

where the presence of equivalent traffic can be demonstrated, and claim this encompasses most

links within contemporary datacenters. Furthermore, we argue that such a system can satisfy all

of our success criteria from the start of this chapter in Chapter 5. First, however, we demonstrate

that our intuition for outlier-analysis is sound by validating our hypotheses using real applications

and synthetic workload on a private fat-tree testbed.

3.3.2 Outlier analysis demonstration

To demonstrate outlier analysis in action, we perform a set of synthetic experiments on

a small testbed that is representative of real world network topologies—specifically, a k = 6

fat-tree [14] at 50% occupancy (3 out of 6 pods fully populated, 3 empty). We emulate real

world workloads by running real world applications; Redis [7] and Hadoop [5] in order to
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examine latency sensitive and bulk traffic workloads respectively. We expect core-by-core traffic

performance to be similar in the absence of partial faults, and worse than normal on a core switch

with an induced packet-loss partial fault. Furthermore, we expect this to be the case regardless of

application traffic pattern and flow characteristics. Thus, we consider representative real world

applications that a datacenter might run and examine the efficacy of outlier analysis at finding

anomalous network behaviour that we can correlate with partial faults.

Latency sensitive traffic

Redis is an in-memory cache implemented as a client-server key-value store. Redis data

occupies main memory; thus, disk accesses do not impact latency. Thus, Redis is highly sensitive

to poor network performance, where packet drops can yield order-of-magnitude request latency

increases. Thus, we use request latency as a poor-performance signal, expecting that packet

drops will increase request latency for clients connected via the bad link.

To verify this, we deploy Redis on our testbed using 9 servers and 18 clients. Each client

creates a large number of connections spread amongst the Redis servers. Over each connection,

the client requests objects of various sizes (either small objects fitting in a single packet response,

or larger objects several kilobytes in size). We record per-server request-latency distributions

grouped by transited core switch. The clients in this experiment occupy two of the three available

pods. For any given client/server pair, there are nine core switches the flow may transit. In this

example, we pick one core switch and induce a partial fault, randomly dropping 1% of all carried

packets; thus we expect to see a correlation between request latency and core switch.

Figure 3.1 shows packet-loss impact on Redis request latency. Eight series, corresponding

to non-faulty switches, demonstrate nearly identical distributions: every request takes approxi-

mately 20 milliseconds to complete. For the remaining series, shaded gray and corresponding

to the faulty switch, 99th-percentile request latency increases to over 200 milliseconds. In this

scenario, each server response fits within one IP packet. With a 1% packet drop rate, 1% of

responses drop and incur TCP retransmit timeout latency from the server TCP stack. This case
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Figure 3.1. Redis request latency. The y-axis is in seconds; whiskers correspond to the 99th

percentiles.

represents an ideal scenario; with larger response sizes, any given request is more likely to

encounter packet loss, and thus a larger percentage of requests will encounter packet loss and

subsequent latency jumps (e.g. a 10k response in the presence of 1% packet loss means we will

see 95th-percentile latency jump by an order of magnitude).

To summarize, the large number of flows within the experiment leads to variations

in application flow performance—in this case, latency—being evenly spread across the core

switches in our testbed network. Consequently, partial-fault-like performance anomalies centered

on a given core switch visually appears as a clear outlier compared to normally operating

switches. While this experiment leveraged an even distribution of traffic—each client evenly

spreads connections amongst the available servers—further experimentation in Chapter 5 shows

us that outlier analysis can be effectively used even with gross traffic imbalances.
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Bulk traffic workloads

Hadoop is a bulk-data processing framework hosting computation jobs that can shuffle

large quantities of data across the network. Jobs can vary in several ways including input data

size, the number of servers involved, or the amount of computation. Consequently, the number,

size and frequency of network flows can vary between jobs. Suppose a partial fault existed in

a Hadoop-serving network, which caused randomized packet corruption and loss. With such

a fault, an unpredictable subset of the flows supporting a Hadoop job can be impacted. While

characterizing the specific impact of a fault on an overall Hadoop job can be complicated, in

general packet loss can slow down transfer rates and increase job completion time.

Intuitively, since flows use TCP, we expect flows routed over a faulty link to experience

packet loss and thus poor throughput. A Hadoop job is comprised of several flows of varying size;

we expect that larger flows (with more packets) on lossy links are more likely to suffer loss—and

poor throughput. Consequently, for flows experiencing good throughput over a faulty link, we

expect flow size distribution to skew smaller. Thus, one possible outlier-analysis based approach

would be to characterize the flow size distribution and flow rate together on a link-by-link basis.

For non-faulty links, we would expect similar flow rates and flow sizes. However, a faulty link

would likely possess skewed statistics, where only smaller flows achieve high rate. Hadoop

instrumentation provides us with flow size and start and end times, thus providing us flow rate.

Our testbed simulates ECMP routing via server-based source routing, thus providing us the

ability to correlate flow size and rate information to network component.

To test the proposed approach, we deployed a Hadoop installation on our testbed and

installed a query framework called Hive [120] on top. We executed a variety of queries of different

size and computational requirements against a free data set [2]. By varying workload complexity,

we aim to demonstrate the efficacy of outlier analysis on non-homogeneous workloads—in other

words, whether it is effective regardless of the mix of flow size, count or temporal behaviour.

In this experiment, we picked one core switch and induce a partial fault, dropping 2% of all
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Figure 3.2. Flow size distribution of high-throughput flows for Hadoop. The y-axis is in bytes.

packets that transit it; we expected to see similar flow size and rate performance on the non-faulty

switches, and diminished flow sizes amongst the high-rate flows for the faulty switch.

We classify the fastest 10% of flows as “high-throughput”, and plot the flow size distribu-

tion in Figure 3.2. Any flow can traverse one of nine core switches. As expected, the gray-shaded

faulty-core-switch flow size distribution skews smaller, by half an order of magnitude in the

median case; i.e., the median flow size on non-impacted switches is roughly 500% larger. Hence,

faulty-switch flow performance is clearly distinguishable from non-faulty switches.

3.3.3 Outlier analysis in real world datacenters

While partial-fault localization via outlier analysis shows promise, several hurdles need

to be cleared to build an effective fault detection and localization system:

1. Our testbed allows us to recover all flow network paths, since we simulate ECMP via

source routing. In general, though, servers are not privy to flow path information without
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computationally-expensive (and thus limited scale) methods like traceroute [133]. Thus,

we need to recover paths for all flows scalably.

2. Outlier analysis effectiveness depends on traffic behaviour. For example, the number of

flows must be relatively high. If the traffic matrix is sparse enough, there might not be

enough cross-core traffic to develop enough confidence in outlier-analysis based results

unless we wait for longer periods of time (thus allowing the aggregate traffic matrix to shift

and eliminate cold spots). Thus, we need to properly characterize the traffic characteristics

of any datacenter where an outlier detection based methodology may apply.

3. While outliers are apparent visually to human observers, it must be automatable to deal

with datacenter scale, in a manner that does not induce false positives or false negatives.

Thus, we spend the next chapter performing a detailed study of production Facebook

datacenters that reveal significant differences compared to prior studies focusing on Microsoft;

in particular, we note several characteristics that our advantageous to the outlier analysis fault

detection approach. Following this we formalize our methodology and present the design and

implementation of a prototype fault detection system based upon it at Facebook in Chapter 5.
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Chapter 4

Facebook datacenters and outlier analysis

Outlier analysis via equivalence set analysis, while showing promise within private

testbed experiments, may vary in effectiveness depending on the nature of datacenter traffic.

In this chapter, we investigate the datacenter traffic at Facebook, a large-scale social media

website, examining various characteristics that aid partial fault localization. Historically, the

bulk of datacenter traffic studies have focused on Microsoft datacenters, and have set a variety of

expectations or rules of thumb regarding datacenter traffic characteristics. We find that Facebook

datacenters upend several of these expectations, and thus also discuss various characteristics of

broader interest to the computer networking community.

While Facebook operates traditional services like Hadoop, its core Web service and

supporting cache infrastructure exhibit behaviors that contrast with those reported in the literature.

We report on the contrasting locality, stability, and predictability of network traffic in Facebook’s

datacenters, and comment on their implications for network architecture, traffic engineering,

switch design and partial fault localization—in particular, on how various characteristics of

Facebook traffic are particularly amenable to outlier-analysis-based partial-fault detection.

4.1 Inside the social network’s (datacenter) network

Datacenters are revolutionizing the way in which we design networks, due in large part

to the vastly different engineering constraints that arise when interconnecting a large number
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Table 4.1. Each of our major findings differs from previously published characterizations of
datacenter traffic. Many systems incorporate one or more of the previously published features as
design assumptions.

Finding Previously published data Potential impacts
Traffic is neither rack local nor all-to-all;
low utilization (§4.4)

50–80% of traffic is rack lo-
cal [30, 47]

Datacenter fab-
rics [14, 60, 118]

Demand is wide-spread, uniform, and
stable, with rapidly changing, internally
bursty heavy hitters (§4.5)

Demand is frequently con-
centrated and bursty [30, 31,
32]

Traffic engineer-
ing [15, 32, 65, 123]

Small packets (outside of Hadoop), con-
tinuous arrivals; many concurrent flows
(§4.6)

Bimodal ACK/MTU packet
size, on/off behavior [30]; ¡5
concurrent large flows [18]

SDN con-
trollers [8, 61,
87, 106, 115]; Cir-
cuit/hybrid switch-
ing [17, 53, 92, 123]

of highly interdependent homogeneous nodes in a relatively small physical space, as opposed

to loosely coupled heterogeneous end points scattered across the globe. While many aspects

of network and protocol design hinge on these physical attributes, many others require a firm

understanding of the demand that will be placed on the network by end hosts. Unfortunately,

while we understand a great deal about the former (i.e., that modern cloud datacenters connect 10s

of thousands of servers using a mix of 10-Gbps Ethernet and increasing quantities of higher-speed

fiber interconnects), the latter tend to be not disclosed publicly.

Thus, many recent proposals are motivated by lightly validated assumptions regarding

datacenter workloads, or, in some cases, workload traces from a single, large datacenter oper-

ator [30, 77]. These traces are dominated by traffic generated by a major Web search service,

which, while significant, may differ from the other major cloud service’s demands. Here, we

study Facebook datacenter workloads. We find that traffic studies in the literature are not entirely

representative of Facebook’s demands, calling into question the applicability of some proposals

based upon prevalent assumptions on datacenter traffic behavior. This situation is particularly

acute when considering novel network fabrics, traffic engineering protocols, and switch designs.

As an example, a great deal of effort has gone into identifying effective topologies

for datacenter interconnects [14, 52, 60, 118]. The best choice (in terms of cost/benefit trade-
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off) depends on the communication pattern between end hosts [107]. Lacking concrete data,

researchers often design for the worst case, namely an all-to-all traffic matrix in which each

host communicates with every other host with equal frequency and intensity [14]. Such an

assumption leads to the goal of delivering maximum bisection bandwidth [14, 62, 118], which

may be overkill when demand exhibits significant locality [47].

In practice, production datacenters tend to enforce a certain degree of oversubscrip-

tion [30, 60], assuming that either the end-host bandwidth far exceeds actual traffic demands, or

that there is significant locality in demand that decreases the need for full connectivity between

physically disparate portions of the datacenter. The precise degree of oversubscription varies,

but there is general agreement amongst operators that full connectivity is rarely worthwhile [27].

To mitigate potential “hot spots” caused by oversubscription, researchers have suggested designs

that temporarily enhance connectivity between portions of the datacenter [15, 65, 132]. The

utility of these approaches depends upon the prevalence, size, and dynamics of such hot spots.

In particular, researchers have proposed inherently non-uniform fabrics which provide

qualitatively different connectivity to certain portions of the datacenter through hybrid designs,

typically including optical [92, 123] or wireless links [65, 132]. If demand is stable and/or

predictable over reasonable time periods, it may be feasible to provide circuit-like connectivity

between portions of the datacenter [53]. Alternatively, network controllers could select among

existing paths in an intelligent fashion [32]. Regardless of the technology involved, all of these

techniques require traffic to be predictable over non-trivial time scales [32, 53, 65, 92, 123].

Finally, many have observed that the stylized nature of datacenter traffic opens up

avenues for increasing switching hardware efficiency. While some have proposed straightforward

modifications like decreased buffering, port count, or sophistication [14] in various switching

fabric layers, others have proposed replacing conventional packet switches either with circuit

or hybrid designs that leverage locality, persistence, and predictability of traffic demands [92].

More extreme solutions advocate connecting servers directly [60, 62]. Obviously, when, where,

or if any of these approaches makes economic sense hinges tightly on offered loads [107].
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While there have been a number of studies of university [32] and private datacenters [30],

many proposals cannot be fully evaluated without significant scale. Almost all of the previous

studies of large-scale (10K hosts or larger) datacenters [15, 30, 32, 47, 60, 65, 77] consider

Microsoft datacenters. While Facebook’s datacenters have some commonality with Microsoft’s,

such as eschewing virtual machines1 [32], they support a very different application mix. As

a result, we observe a number of critical distinctions that may lead to qualitatively different

conclusions; we describe those differences and explain the reasons behind them.

Our study is the first to report on production traffic in a datacenter network connecting

hundreds of thousands of 10-Gbps nodes. Using both Facebook-wide monitoring systems and

per-host packet-header traces, we examine services that generate the majority of the traffic in

Facebook’s network. While we find that the traffic patterns exhibited by Facebook’s Hadoop

deployments comport well with those reported in the literature, significant portions of Face-

book’s service architecture [24, 34] vary dramatically from the MapReduce-style infrastructures

studied previously, leading to vastly different traffic patterns. These patterns possess several

characteristics that greatly advantage outlier-analysis based partial-fault localization, including:

• Traffic is overwhelmingly cross-rack across multiple services, though not all-to-all. Instead,

locality depends upon the specific service but is stable across time periods from seconds

to days. This temporally stable traffic is spread amongst a plethora of equal-cost paths

traversing the network core, in both the classic four-post and newer ‘Fabric’ topologies [19].

These characteristics are instrumental to supporting outlier-analysis based fault localization;

we formalize the specific requirements in Section 5.1, and demonstrate how temporal

stability impacts how rapidly we can pinpoint partial faults in Section 5.6.

• Non-Hadoop flows are long-lived but not very heavy. Load balancing effectively distributes

traffic across hosts; so much so that traffic demands are quite stable over even sub-second

intervals. As a result, heavy hitters are not much larger than the median flow, and the

1However, this dissertation also examines Microsoft Azure datacenters that do use virtual machines.
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set of heavy hitters changes rapidly. Instantaneously heavy hitters are frequently not

heavy over longer time periods, likely confounding many approaches to traffic engineering.

However, this property yields a traffic matrix that lacks both temporal and spatial hot

spots. Consequently, we show in Section 5.4 that we can effect partial fault detection that

pinpoints faults to specific links on timescales ranging from a few seconds to a few tens

of seconds (due to the lack of persistent temporal hot spots) and either on a per-link or

per-destination basis (due to the lack of persistent spatial hot spots).

• Packets are small (median length for non-Hadoop traffic is less than 200 bytes) and do

not exhibit on/off arrival behavior. Servers communicate with 100s of hosts and racks

concurrently (i.e., within the same 5-ms interval), but the majority of traffic is often

destined to (few) 10s of racks—although the set of racks changes from interval to interval.

ECMP routing, Facebook traffic granularity and high flow counts yield per-link traffic

loads that carry not only similar numbers of flows, but similar numbers of bytes across

links in the same layer of the network topology. This enables link-by-link comparisons of

traffic network performance, which we highlight in Section 5.3.2.

While we do not offer these workloads as any more representative than others—indeed,

they may change as Facebook’s services evolve—they do suggest that the space of cloud

datacenter workloads is more rich than the literature may imply. As one way to characterize the

significance of our findings, Table 4.1 shows how our results compare to the literature, and cites

exemplar systems that incorporate these assumptions in their design.

The rest of this chapter is organized as follows. Section 4.2 surveys previous datacenter

traffic studies. Section 4.3 provides a high-level description of Facebook’s datacenters, services,

and our collection methodologies. We then analyze traffic aspects within a number of Facebook’s

datacenters that impact provisioning (Section 4.4), traffic engineering (Section 4.5), and switch

design (Section 4.6). Section 4.7 highlights relevant characteristics that impact our outlier-

analysis based partial fault detection methodology that we present in Chapter 5.
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4.2 Related datacenter traffic characterization work

Initial datacenter workload studies were conducted via simulation [16] or on testbeds [50].

Subsequently, however, a number of studies of production datacenter traffic have been performed,

primarily within Microsoft datacenters. It is difficult to determine how many distinct Microsoft

datacenters are reported on in literature, or how representative that set might be. Kandula

et al. observe that their results “extend to other mining data centers that employ some flavor of

map-reduce style workflow computation on top of a distributed block store,” but caution that

“web or cloud data centers that primarily deal with generating responses for web requests (e.g.,

mail, messenger) are likely to have different characteristics.” [77]. By that taxonomy, Facebook’s

datacenters clearly fall in the latter camp. Jalaparti et al. [72] examine latency for Microsoft

Bing services that are similar in concept to Facebook’s service; we note both similarities to

our workload (relatively low utilization coupled with a scatter-gather style traffic pattern) and

differences (load appears more evenly distributed within Facebook datacenters).

Three major themes are prevalent in prior studies, and summarized in Table 4.1. First,

traffic is found to be heavily rack local, likely as a consequence of the application patterns

observed; Benson et al. note that for cloud datacenters “a majority of traffic originated by servers

(80%) stays within the rack” [30]. Studies by Kandula et al. [77], Delimitrou et al. [47] and

Alizadeh et al. [18] observe similarly rack-heavy traffic patterns.

Second, traffic may be bursty and unstable across various timescales—an important

observation, since traffic engineering often depends on relatively long-lived, predictable flows.

Kapoor et al. observe that packets to a given destination often arrive in trains [78]; while

Benson et al. find a strong on/off pattern with a log-normal packet inter-arrival distribution [31].

Changing observation timescale can ease prediction; Delimitrou et al. [47] note that while locality

varies day-by-day, it remains consistent at the scale of months. Conversely, Benson et al. [32]

claim that while traffic is unpredictable at timescales ≥ 150 seconds, it may be relatively stable

on a few seconds timescale, and discuss traffic engineering mechanisms for such traffic.
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Figure 4.1. Facebook’s 4-post cluster design [52]

Finally, previous studies have consistently reported a bimodal packet size [30], with

packets either approaching the MTU or remaining quite small, such as a TCP ACK segment.

We find that Facebook’s traffic is very different, with a consistently small median packet size

despite the 10-Gbps link speed. Researchers have also reported that individual end hosts typically

communicate with only a few (e.g., less than 5 [18]) destinations at once. For some Facebook

services, an individual host maintains orders of magnitude more concurrent connections.

4.3 A Facebook datacenter

In order to establish context necessary, this section provides a brief overview of Face-

book’s datacenter network topology, as well as a description of the services that it supports; more

detail is available elsewhere [9, 19, 24, 34, 52]. We then describe the distinct collection systems

used to assemble the network traces analyzed in the remainder of the chapter.

4.3.1 Datacenter topology

Facebook’s network consists of multiple datacenter sites connected by a backbone

network. Each site contains one or more buildings (henceforth datacenter), each containing

multiple clusters. A cluster is a unit of deployment in Facebook datacenters. Each cluster employs

a conventional 3-tier topology depicted in Figure 4.1, reproduced from a short paper [52].
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Machines are organized into racks and connected to a top-of-rack switch (ToR) via 10-

Gbps Ethernet links. The number of machines per rack varies from cluster to cluster. Each ToR in

turn is connected by 10-Gbps links to four aggregation switches called cluster switches (CSWs).

All racks served by a particular set of CSWs are said to be in the same cluster. Clusters may

be homogeneous in terms of machines—e.g. Cache clusters—or heterogeneous, e.g. Frontend

clusters which contain a mixture of Web servers, load balancers and cache servers. CSWs are

connected to each other via another layer of aggregation switches called Fat Cats (FC). As will

be seen later in this chapter, this design follows directly from the need to support a high amount

of intra-cluster traffic. Finally, CSWs also connect to aggregation switches for intra-site (but

inter-datacenter) traffic and datacenter routers for inter-site traffic.

Most of Facebook’s current datacenters employ this 4-post Clos design. Facebook’s

datacenters are migrating, however, to a next-generation Fabric architecture2 [19]. This chapter

analyzes data collected from machines in traditional 4-post clusters, although Facebook-wide

statistics (e.g., Table 4.3) cover hosts in both traditional 4-post clusters and newer Fabric pods.

One distinctive aspect of Facebook’s datacenters is that servers typically have precisely

one role: Web servers (Web) serve Web traffic; MySQL servers (DB) store user data; query

results are stored temporarily in cache servers (Cache)—including leaders, which handle cache

coherency, and followers, which serve most read requests [34]; Hadoop servers (Hadoop) handle

offline analysis and data mining; Multifeed servers (MF) assemble news feeds [96]. While

other roles exist, these roles represent the majority, and will be the focus of our study. Only a

relatively small number of machines do not have a fixed role and are dynamically repurposed.

Facebook’s datacenters do not typically house virtual machines: each service runs on a physical

server. Moreover—and in contrast to previously studied datacenters [30]—to ease provisioning

and management, racks typically contain only servers of the same role. The combination of co-

locating same-role servers by rack, coupled with the type of inter-service interaction, significantly

aids outlier-analysis based partial fault localization as we discuss in Section 4.7.

2In particular, we evaluate our partial fault localization system within Fabric-equipped datacenters in Chapter 5.
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Figure 4.2. How an HTTP request is served

4.3.2 Constituent services

The organization of machines within a cluster—and even a datacenter—is intimately

related to the communication patterns between the services they support. We introduce the major

services by briefly describing how an HTTP request is served by http://facebook.com, shown

in Figure 4.2. When an HTTP query hits a Facebook datacenter, it arrives at a layer-four software

load balancer (SLB) [119], which redirects the query to a Web server. Web servers are stateless

and contain no user data, instead fetching data from the cache tier [34]. In case of a miss, a cache

will then fetch data from the database tier. At the same time, the Web server may communicate

with other backend machines to fetch objects such as news stories and ads. Table 4.2 quantifies

the relative traffic intensity between services by classifying the outbound traffic from different

servers—a Web server, cache leader (cache-l), cache follower (cache-f), and Hadoop—based

upon the role of the destination host. (We describe our data source in Section 4.3.3.)

In contrast to most service tiers, Hadoop nodes are not involved with serving end-user

requests. Instead, Hadoop clusters perform offline analysis such as data mining. HDFS and

Hadoop MapReduce are the main applications running on these servers.
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Table 4.2. Breakdown of outbound traffic percentages for four different host types

Type Web Cache MF SLB Hadoop Rest
Web - 63.1 15.2 5.6 - 16.1
Cache-l - 86.6 5.9 - - 7.5
Cache-f 88.7 5.8 - - - 5.5
Hadoop - - - - 99.8 0.2
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Figure 4.3. Fbflow architecture

4.3.3 Data collection

Due to the scale of Facebook’s datacenters, it is impractical to collect complete network

traffic dumps. Instead, we consider two distinct sources of data. The first, Fbflow, constantly

samples packet headers across Facebook’s entire global network. The second, port mirroring,

focuses on a single machine (or rack) at a time, allowing us to collect complete packet-header

traces for a brief period of time at particular locations within a single datacenter.

Fbflow

Fbflow is a production monitoring system that samples packet headers from Facebook’s

entire machine fleet. Its architecture, comprised of two main component types—agents and

taggers—is shown in Figure 4.3. Fbflow samples packets by inserting a Netfilter nflog target

into every machine’s iptable rules. The datasets we consider in this chapter are collected with
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a 1:30,000 sampling rate. A user-level Fbflow agent process on each machine listens to the

nflog socket and parses the headers, extracting information such as source and destination IP

addresses, port numbers, and protocol. These parsed headers—collected across all machines

in Facebook’s datacenters—along with metadata such as machine name and capture time, are

streamed to a small number of taggers using Scribe [9], a log aggregation system.

Taggers, running on a subset of machines, read a portion of the packet-header stream

from Scribe, and further annotate it with additional information such as the rack and cluster

containing the machine where the trace was collected, its autonomous system number, etc., by

querying other data sources. Taggers then convert each annotated packet header into a JSON

object and feed it into Scuba [10], a real-time data analytics system. Samples are simultaneously

stored into Hive [120] tables for long-term analysis.

Port mirroring

While Fbflow is a powerful tool for network monitoring and management, its sampling-

based collection prohibits certain types of data analysis. Specifically, in production use, it

aggregates statistics at a per-minute granularity. In order to collect high-fidelity data, we deploy

a number of special-purpose trace collection machines within the datacenter that collect packet-

header traces over short intervals.

We deploy monitoring hosts in five different racks across Facebook’s datacenter network,

locating them in clusters that host distinct services. In particular, we monitor a rack of Web

servers, a Hadoop node, cache followers and leaders, and a Multifeed node. In all but one

(Web) instance, we collect traces by turning on port mirroring on the ToR and mirroring the full,

bi-directional traffic for a single server to our collection server. For the hosts we monitor, the

ToR is able to mirror the selected ports without loss. In the case of Web servers, utilization is

low enough that we are able to mirror traffic from a rack of servers to our collection host. We did

not measure database servers that include user data in this study.
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Recording packet traces using a commodity server is not entirely trivial, as tcpdump is

unable to handle more than approximately 1.5 Gbps of traffic in our configuration. In order to

support line-rate traces, we employ a custom kernel module that effectively pins all free RAM on

the server and uses it to buffer incoming packets. Our module extracts packets immediately after

the Ethernet driver hands them to the kernel to avoid additional delays or overhead. Once data

collection is complete, the data is spooled to remote storage for analysis. Memory restrictions on

our collection servers limit the traces we collect in this fashion to a few minutes in length.

Limitations

Our methodology imposes a few limitations on the scope of this study. Using end hosts

to capture and timestamp packets introduces scheduler-based variations on timestamp accuracy.

In addition, we can only capture traffic from a few hosts at a time without risking drops in

packet collection. Together, these constraints prevent us from evaluating effects like incast or

microbursts, which are noted as being contributors to poor application performance [72]. Further,

per-host packet dumps are necessarily anecdotal and ad hoc, relying on the presence of an unused

capture host on the same rack as the target. While Fbflow is deployed datacenter-wide, the sheer

amount of measurement data it provides presents another challenge—specifically, one of data

processing and retention—which limits the resolution at which it can operate.

4.4 Provisioning

The appropriate design, scale, and technology of a datacenter interconnect depends

heavily on the traffic demands of hosted services. Here, we quantify the traffic intensity, locality,

and stability across three different types of clusters inside Facebook datacenters; in particular,

we examine clusters supporting Hadoop, Frontend machines serving Web requests, and Cache.

Our study reveals that while Facebook’s Hadoop deployments exhibit behavior largely

consistent with the literature, the same cannot be said for clusters hosting Facebook’s other

services. In particular, most traffic is not rack-local, yet locality patterns remain stable within
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and across both long (multiple-day) and short (two-minute) time intervals. We define stable

traffic as being close to constant (low deviation from a baseline value) over a time interval, and

slowly changing across time intervals. Note that this definition is dependent upon the length of

the interval being considered; accordingly, we examine several different timescales.

4.4.1 Utilization

Given that Facebook has recently transitioned to 10-Gbps Ethernet across all of their hosts,

it is not surprising that overall access link (i.e., links between hosts and their ToR) utilization is

quite low, with the average 1-minute link utilization less than 1%. This observation comports

with the utilization levels reported for other cloud-scale datacenters [30, 47]. Demand follows

typical diurnal and day-of-the-week patterns, although the magnitude of change is on the order

of 2× as opposed to the order-of-magnitude variation reported elsewhere [30], Even the most

loaded links are lightly loaded over 1-minute time scales: 99% of all links are typically less than

10% loaded. Load varies considerably across clusters, where the average link utilization in the

heaviest clusters (Hadoop) is roughly 5× clusters with light load (Frontend).

As in other datacenters with similar structure [30, 31], utilization rises at higher levels

of aggregation. Focusing on the links between ToRs and CSWs, median utilization varies

between 10–20% across clusters, with the busiest 5% of the links seeing 23–46% utilization.

These levels are higher than most previously studied datacenters [30, Fig. 9], likely due to

the disproportionate increase in edge-link technology (1→10 Gbps) vs. aggregation links

(10→40 Gbps). The variance between clusters decreases, with the heaviest clusters running

3× higher than lightly loaded ones. Utilization is higher still on links between CSWs and FC

switches, although the differences between clusters are less apparent because different clusters

are provisioned with different numbers of uplinks depending on their demand. We examine link

utilization at finer timescales in Section 4.6.
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Figure 4.4. Per-second traffic locality by system type over a two-minute span: Hadoop (top left),
Web server (top right), cache follower (bottom left) and leader (bottom right) (Note the differing
y axes)

57



4.4.2 Locality and stability

Prior studies have observed heavy rack locality in datacenter traffic. This behaviour seems

in line with applications that seek to minimize network utilization by leveraging locality, allowing

for topologies with high levels of oversubscription. We examine the locality of Facebook’s traffic

from a representative sampling of production systems across various times of the day.

Figure 4.4 shows the breakdown of outbound traffic by destination for four different

classes of servers: a Hadoop server within a Hadoop cluster, a Web server in a Frontend cluster,

and both a cache follower and a cache leader from the same Cache cluster. For each server,

each second’s traffic is represented as a stacked bar chart, with rack-local traffic in cyan, the

cluster-local traffic in blue, the intra-datacenter traffic in red, and inter-datacenter traffic in green.

Among the four server types, Hadoop shows the most diversity—both across servers and

time: some traces show periods of significant network activity while others do not. While all

traces show both rack- and cluster-level locality, the distribution between the two varies greatly.

In one ten-minute-long trace captured during a busy period, 99.8% of all traffic sent by the server

in Figure 4.4 is destined to other Hadoop servers: 75.7% of that traffic is destined to servers in the

the same rack (with a fairly even spread within the rack); almost all of the remainder is destined

to other hosts within the cluster. Only a vanishingly small amount of traffic is inter-cluster.

In terms of dispersion, of the inter-rack (intra-cluster) traffic, the Hadoop server commu-

nicates with 1.5% of the other servers in the cluster—spread across 95% of the racks—though

only 17% of the racks receive over 80% of the server’s traffic. This pattern is consistent with that

observed by Kandula et al. [77], in which traffic is either rack-local or destined to one of roughly

1–10% of the hosts in the cluster.

Hadoop’s variability is a consequence of a combination of job size and the distinct phases

that a Hadoop job undergoes—any given data capture might observe a Hadoop node during a

busy period of shuffled network traffic, or during a relatively quiet period of computation.
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By way of contrast, the traffic patterns for the other server classes are both markedly

more stable and dramatically different from the findings of Kandula et al. [77]. Notably, only a

minimal amount of rack-local traffic is present; even inter-datacenter traffic is present in larger

quantities. Frontend cluster traffic, including Web servers and the attendant cache followers,

stays largely within the cluster: 68% of Web server traffic during the capture plotted here stays

within the cluster, 80% of which is destined to cache systems; the Multifeed systems and the

SLB servers get 8% each. While miscellaneous background traffic is present, the volume of such

traffic is relatively inconsequential. As we discuss in Section 4.7, both the lack of rack locality

and the temporal stability of traffic will benefit outlier-analysis based partial fault detection.

Cache systems, depending on type, see markedly different localities, though along with

Web servers the intra-rack locality is minimal. Frontend cache followers primarily send traffic

in the form of responses to Web servers (88%), and thus see high intra-cluster traffic—mostly

servicing cache reads. Due to load balancing (see Section 5.2), this traffic is spread quite widely;

during this two-minute interval the cache follower communicates with over 75% of the hosts in

the cluster, including over 90% of the Web servers. Cache leaders maintain coherency across

clusters and the backing databases, engaging primarily in intra- and inter-datacenter traffic—a

necessary consequence of the cache being a ”single geographically distributed instance.” [34]

The stability of these traffic patterns bears special mention. While Facebook traffic is

affected by the diurnal traffic pattern noted by Benson et al. [30], the relative proportions of

the locality do not change—only the total amount of traffic. Over short enough periods of time,

the graph looks essentially flat and unchanging. In order to further investigate the cause and

particulars of this stability, we turn our attention to the traffic matrix itself.

4.4.3 Traffic matrix

In light of the surprising lack of rack locality and high degree of traffic stability, we

examine traffic from the more long-term and zoomed-out Fbflow perspective. Table 4.3 shows

the locality of traffic generated by all of Facebook’s machines during a 24-hour period in January
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Table 4.3. Different clusters have different localities; last row shows each cluster’s contribution
to total network traffic

Locality All Hadoop FE Svc. Cache DB
Rack 12.9 13.3 2.7 12.1 0.2 0

Cluster 57.5 80.9 81.3 56.3 13.0 30.7
DC 11.9 3.3 7.3 15.7 40.7 34.5

Inter-DC 17.7 2.5 8.6 15.9 16.1 34.8
Percentage 23.7 21.5 18.0 10.2 5.2

(a) Rack-to-rack, Hadoop
cluster
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(c) Cluster-to-cluster

Figure 4.5. Traffic demand by source (x axis) and destination (y axis). The graphs are each
normalized to the lowest demand in that graph type (i.e., the Hadoop and Frontend clusters are
normalized to the same value, while the cluster-to-cluster graph is normalized independently).

2015 as reported by Fbflow. Facebook’s traffic patterns remain stable day-by-day—unlike the

datacenter studied by Delimitrou et al. [47]. The clear majority of traffic is intra-cluster but not

intra-rack (i.e., the 12.9% of traffic that stays within a rack is not counted in the 57.5% of traffic

labeled as intra-cluster). Moreover, more traffic is inter-datacenter than intra-rack.

Table 4.3 further breaks down traffic locality of the top-five cluster types which, together,

account for 78.6% of Facebook datacenter traffic. Hadoop clusters generate the most traffic

(23.7% of all traffic), and are significantly more rack-local than others, but even its traffic is far

from the 40–80% rack-local reported in the literature [30, 47]. Instead, Hadoop is cluster local.

Frontend (FE) traffic is cluster local by design, but not very rack-local, and the locality of a given

rack’s traffic depends on its constituent servers (e.g., Web, Multifeed, or cache).
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Figure 4.6. Flow size distribution, broken down by location of destination

This distinction is clearly visualized in Figure 4.5, generated in the style of Delimitrou

et al. [47]. The two left portions of the figure graph the relative traffic demands between 64 racks

within clusters of two different types. While we show only a subset of the total set of racks in

each cluster, the pattern is representative of the cluster as a whole.

Traffic within the Hadoop cluster (left) is homogeneous with a very strong diagonal (i.e.,

intra-rack locality). The cluster-wide uniformity outside the local rack accounts for intra-cluster

traffic representing over 80% of Hadoop traffic—even though traffic to the local rack dominates

any given other rack in isolation. Map tasks are placed to maximize read locality, but there are a

large number of concurrent jobs which means that it is possible that any given job will not fit

entirely within a rack. Thus, some amount of traffic would necessarily need to leave the rack

during the shuffle and output phases of a MapReduce job. In addition, the cluster serves data

requests from other services which might not strive for as much read locality, which would also

contribute to reduced overall rack locality.

The Frontend cluster (center) exhibits three different patterns according to rack type,

with none being particularly rack-local. In particular, we see a strong bipartite traffic pattern

between the Web servers and the cache followers in Webserver racks that are responsible for

most of the traffic, by volume, within the cluster. This pattern is a consequence of placement:

Web servers talk primarily to cache servers and vice versa, and servers of different types are

deployed in distinct racks, leading to low intra-rack traffic.
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Figure 4.7. Flow duration distribution, broken down by location of destination

This striking difference in Facebook’s locality compared to previously studied Internet-

facing applications is a consequence of the realities of serving a densely-connected social graph.

Cache objects are replicated across clusters; however, each object typically appears once in a

cluster (though objects may be replicated to avoid hot spots, which we discuss in Section 4.5).

Since each Web server needs to be able to handle any request, they might need to access data in

a potentially random fashion due to load balancing. Section 4.7 discusses how this traffic matrix,

and in particular service load-balancing, aid outlier-analysis-based partial-fault detection.

To make this argument more concrete, loading the Facebook news feed draws from a vast

array of objects in the social graph: different people, relationships, and events comprise a large

graph interconnected in a complicated fashion. This connectedness means that the working set is

unlikely to reduce even if users are partitioned; the net result is a low cache hit rate within the

rack, leading to high intra-cluster traffic locality. In addition, partitioning the graph such that

users and their data are co-located on racks has the potential to introduce failure modes which

disproportionately target subsets of the user base, leading to a suboptimal experience.

The other three cluster types exhibit additional distinctive behaviors (not shown). Traffic

in cache leader clusters, for example, has very little intra-rack demand, instead spreading the

plurality of its traffic across the datacenter. Traffic in back-end database clusters is the most

uniform, divided almost evenly amongst nodes within the cluster, the same datacenter, and

worldwide. Service clusters, which host racks supporting a variety of supporting services, exhibit

a mixed traffic pattern that lies between these extreme points.
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Inter-cluster communication varies considerably by cluster type. Figure 4.5c plots the

traffic demand between 15 clusters within a single datacenter for the a 24-hour period. Hadoop

clusters, for example, have a very small proportion of inter-cluster traffic, while cache leader

clusters have a large amount of inter-cluster traffic, split between cache followers in other clusters

and database clusters. While each cluster may possess the same four-post structure internally,

it may make sense to consider heterogeneous inter-cluster communication fabrics, as demand

varies over more than seven orders of magnitude between cluster pairs.

While the 4-post cluster remains prevalent in Facebook datacenters, Facebook recently

announced a new network topology that is being implemented in datacenters going forward [19].

While servers are no longer grouped into clusters physically (instead, they comprise pods where

all pods in a datacenter have high connectivity), the high-level logical notion of a cluster for

server management purposes still exists to ease the transition. Accordingly, the rack-to-rack

traffic matrix of a Frontend “cluster” inside one of the new Fabric datacenters over a day-long

period (not shown) looks similar that shown in Figure 4.5.

4.4.4 Implications for connection fabrics

Low network-edge utilization levels reinforce common practice of oversubscribing the

aggregation and core of the network, although it remains to be seen whether utilization will creep

up as the datacenters age. The highly contrasting locality properties of the different clusters imply

a single homogeneous topology will either be over-provisioned in some regions or congested in

others—or both. This reality argues that non-uniform fabric technologies that can deliver higher

bandwidth to certain locations than others may find use. Researchers are exploring techniques to

ameliorate traffic hot spots. The stability of the traffic patterns we observe, however, suggest that

rapid reconfigurability may not be as necessary as some have assumed.

Somewhat surprisingly, the lack of significant levels of intra-rack locality (except in

the Hadoop cluster) hints that ToRs that deliver something less than full non-blocking line-rate

connectivity between all of their ports may be viable. In particular, the bipartite traffic pattern
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Figure 4.8. Per-destination-rack flow rate distribution (for both Hadoop and cache) and stability
(cache).

between end hosts and ToR uplinks may afford optimizations in switch design. We return to

consider further implications for switch design in Section 4.6.

4.5 Traffic engineering

Prior studies suggest that datacenter traffic stability depends on observation timescale.

Here, we analyze Facebook’s traffic at fine timescales, with an eye towards understanding how

applicable various traffic engineering approaches may be under such conditions.

4.5.1 Flow characteristics

Figures 4.6 and 4.7 plot the size and duration, respectively, of flows (defined by 5-tuple)

collected in 10-minute (2.5-minute for the Web-server rack) packet traces of three different node

types: a Web-server rack, a single cache follower (cache leader is similar to follower and not

shown due to space constraints), and a Hadoop node. We show the overall distribution (in black)

as well as per-destination curves. Consistent with the literature [77, Fig. 9], we find that most

flows in Facebook’s Hadoop cluster are short. As discussed previously, the traffic demands of

Hadoop vary substantially across nodes and time. We plot the results from tracing one node

over a relatively busy 10-minute interval; traces from other nodes or even the same node at

different times reveal somewhat different distributions, so we caution against examining the

specific distribution too carefully. Even in the graphed interval, however, 70% of flows send less
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Figure 4.9. Cache follower per-host flow size

than 10 KB and last less than 10 seconds; the median flow sends less than 1 KB and lasts less

than a second. Less than 5% of the flows are larger than 1 MB or last longer than 100 seconds;

almost none exceed our 10-minute trace.

Conversely, traces from other service types are much more representative due to load

balancing. Moreover, many of Facebook’s internal services use some form of connection

pooling [91], leading to long-lived connections with relatively low throughput. Pooling is

especially prevalent for cache follower(leader, not shown) nodes, where only 30(40)% of flows

are less than 100 seconds in length, with more than 40(25)% of flows exceeding our 10-minute

capture period. That said, most flows are active (i.e., actually transmit packets) only during

distinct millisecond-scale intervals with large intervening gaps. In other words, regardless of

flow size or length, flows tend to be internally bursty. In general cache flows are also significantly

larger than Hadoop; Web servers lie somewhere in the middle.
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If we consider higher aggregation levels, i.e., grouping flows by destination host or

rack, the flow size distributions simply shift to the right for Web servers (retaining its basic

shape). The behavior is starkly different for cache followers, however: the wide flow-size

distribution apparent at a 5-tuple granularity (Figure 4.6b) disappears at host and rack levels,

replaced by a very tight distribution around 1 MB per host (Figure 4.9). This distribution arises

as a consequence of the decision to load balance incoming user requests across all Web servers,

combined with large numbers of requests. Since requests and responses are typically small (on

the order of a few kilobytes) we do not observe any imbalance created by unequal response sizes.

As we discuss in Section 4.7, this significantly aids outlier-analysis based partial fault detection.

4.5.2 Load balancing

Existing traffic engineering efforts seek to leverage variability of traffic; highly regular

traffic does not provide much opportunity for improvement. In the previous section, we note that

Facebook’s approach to load balancing is highly effective on timescales lasting minutes to hours,

leaving less room for traffic engineering. We now consider traffic characteristics over the course

of a few seconds to determine whether traffic engineering might be effective on short timescales.

Specifically, we consider how the traffic from a host varies from one second to next.

We examine the distribution of flow rates, aggregated by destination rack, per second over a

two-minute period and compare each second to the next. Intuitively, the better the load balancing,

the closer one second appears to the next.

We first examine the Hadoop cluster by looking at 120 consecutive 1-second intervals.

Figure 4.8a plots a CDF of per-destination-rack flow sizes for each interval (i.e., there are 120

separate curves). While we do not claim this particular server is representative, it does depict

widely varying rates (i.e., over three orders of magnitude) which are common in our observations.

In and of itself, this is unsurprising—Hadoop has periods of varying network traffic,

and a production cluster is likely to see a myriad jobs of varying sizes. It is this variability of

traffic that existing network traffic engineering schemes seek to leverage. Orchestra [41] relies
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Figure 4.10. Heavy-hitter stability as a function of aggregation for 1/10/100-ms time windows

on temporal and per-job variation to provide lower task completion times for high-priority tasks,

while Hedera [15] provides non-interfering route placement for high bandwidth elephant flows

that last for several seconds, which are prevalent within Hadoop workloads.

A different story emerges for Frontend traffic, and the cache in particular. Recall from

Table 4.2 that the largest share of cache follower traffic are responses bound for Web servers.

Figure 4.8b shows the distribution of per-second flow rates on a per-rack basis from a single

cache follower node to distinct Web server racks during a two minute period. The distributions

for each of the 120 seconds are similar, and all are relatively tight, i.e., the CDFs are fairly

vertical about the median of ≈2 Mbps. Similar patterns (albeit with different scales) can be

observed for other services as well.

From the viewpoint of a single host, each second is similar to the next. However, this

analysis does not take per-destination variation into consideration. It is conceivable that there

could exist consistently high- or low-rate destinations that potentially could be treated differently

by a traffic engineering scheme. For each host, we consider outbound traffic rates per destination

rack (normalized to the median rate for that rack), and track the rate over time for each rack.

Figure 4.8c plots these distributions for the outbound traffic for the same cache machine as

Figure 4.8b. Each series represents a single destination; a near vertical series represents a

destination rack where the rate does not deviate far from the median rate. We find that per-

destination-rack flow sizes are remarkably stable across not only seconds but intervals as long

as 10 seconds (not shown) as well. All of the flows are within a factor of two of their median
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size in approximately 90% of the 1-second intervals—the median flow exhibits “significant

change” in only 45% of the 1-second intervals according to the 20% deviation cutoff defined

by Benson et al. [32]. Contrast this to the traffic leaving a Hadoop node—which is not load

balanced—where the middle 90% of flows can vary in size by over six orders of magnitude

compared to their median size in the trace (not shown).

Such stability, both over time and by destination, is the result of a combination of

workload characteristics and engineering effort. To a cache system, the offered load per second

is roughly held constant—large increases in load would indicate the presence of relatively hot

objects, which is actively monitored and mitigated. Bursts of requests for an object lead the

cache server to instruct the Web server to temporarily cache the hot object; sustained activity for

the object leads to replication of the object or the enclosing shard across multiple cache servers

to help spread the load. We note further that the request rate distribution for the top-50 most

requested objects on a cache server is close across all cache servers, and that the median lifespan

for objects within this list is on the order of a few minutes. Per-destination traffic stability is

again a consequence of user request multiplexing across all available Web servers, coupled

with relatively small request/response pairs. Thus, in addition to a dearth of spatial hot spots,

Facebook traffic tends to lack temporal hot spots. The lack of hot spots will have consequences

for outlier-analysis based partial fault detection, as we discuss in Section 4.7.

4.5.3 Heavy hitters

Here, we examine traffic behavior at sub-second timescales to better understand its

stability and whether traffic engineering can apply. We wish to see if certain flow (or aggregated)

data rates stand out, since such flows provide the largest potential network performance impact.

We define a set of flows called heavy hitters as the minimum set of flows (or hosts, or racks in

aggregate) responsible for 50% of observed traffic volume (in bytes) over a fixed time period.

Intuitively, heavy hitters signify imbalances that can be acted upon—if persistent for enough

time, and large enough compared other flows that treating them differently makes a difference.
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Table 4.4. Number and size of heavy hitters in 1-ms intervals for each of flow(f), host(h), and
rack(r) levels of aggregation.

Type Number Size (Mbps)
p10 p50 p90 p10 p50 p90

Web
f 1 4 15 1.6 3.2 47.3
h 1 4 14 1.6 3.3 48.1
r 1 3 9 1.7 4.6 48.9

Cache (f)
f 8 19 35 5.1 9.0 22.5
h 8 19 33 8.4 9.7 23.6
r 7 15 23 8.4 14.5 31.0

Cache (l)
f 1 16 48 2.6 3.3 408
h 1 8 25 3.2 8.1 414
r 1 7 17 5 12.6 427

Hadoop
f 1 2 3 4.6 12.7 1392
h 1 2 3 4.6 12.7 1392
r 1 2 3 4.6 12.7 1392

Table 4.4 shows statistics regarding the number and size of heavy hitters constituting 50%

of the traffic in 1-ms intervals for each of the four server classes. Because we are interested in

instantaneously large flows, we measure size in terms of rate instead of bytes sent over the flow’s

lifetime. Next, we consider the the lifespan of heavy hitters, aggregated by 5-tuple, destination

host and rack, and measured across intervals of 1, 10 and 100 milliseconds. Figure 4.10 shows

the fraction of the heavy hitters that remain in subsequent time intervals. We do not show the

Hadoop nodes, as our heavy-hitter definition almost always results in the identification of 1–3

heavy hitters at each of flow, host, and rack aggregation levels across all three time intervals.

Heavy hitter persistence is low for individual flows (red): in the median case, no more

than ≈ 15% of flows persist regardless of interval, a consequence of the internal burstiness

of flows noted earlier. Host-level aggregation (green) fares little better; with the exception of

destination-host-level aggregation for Web servers, no more than 20% of heavy hitter hosts

in a sub-second interval will persist as a heavy hitter in the next interval. Web servers have a

higher rate over 100-millisecond periods since they have a relatively small set of caches and load

balancers with which they communicate, while caches converse with many different Web servers.

We discuss ramifications for outlier-analysis based partial fault detection in Section 4.7.
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It is not until considering rack-level flows (blue) that heavy hitters are particularly stable.

In the median case, over 40% of cache heavy hitters persist into the next 100-ms interval, and

almost 60% for Web servers. Heavy hitters from Web servers are more stable in general, with

32% of rack-level heavy hitters persisting in the median 1-ms interval case. Even so, heavy hitter

persistence is not particularly favorable for traffic engineering. With a close to 50% chance of a

given heavy hitter continuing in the next time period, predicting a heavy hitter by observation is

not much more effective than randomly guessing.

Even if one could perfectly predict heavy hitters on a second-by-second timescale, it

remains to consider how useful that knowledge would be. We compare heavy hitters from

enclosing one-second intervals to instantaneous heavy hitters from each of the subintervals

within the second to see what fraction of heavy hitters in a subinterval are heavy hitters across the

entire enclosing second. A limited degree of overlap implies three things: First, it establishes an

upper bound on the traffic-engineering effectiveness—a significant amount of ephemeral heavy

hitter traffic would go unseen and untreated by the TE scheme. Second, it serves as an indicator

of prediction difficulty; if a one-second prediction interval is not sufficient, smaller timescales

(consuming more resources) may be needed. Finally, this metric is an indicator of burstiness, as

it indicates the presence of a large number of ephemeral heavy hitters.

Figure 4.11 plots a CDF of the fraction of a second’s overall heavy hitters that are

instantaneously heavy in each 1/10/100-ms interval within the second. We show results for a

Web server and cache follower—cache leaders are similar. At 5-tuple granularity, predictive

power is quite poor, at less than 10–15%. Rack-level predictions are much more effective, with

heavy hitters remaining heavy in the majority of 100-ms intervals in the median case for both

services. Host-level predictions are more useful for Web servers than cache nodes, but only the

100-ms case is more than 30% effective.
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Figure 4.11. Intersection between heavy hitters in a subinterval with enclosing second
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4.5.4 Implications for traffic engineering

Facebook’s extensive use of connection pooling leads to long-lived flows that seem like

potential candidates for traffic engineering. These same services use application-level load

balancing to great effect, however, leaving limited room for in-network approaches. Many

existing techniques work by identifying heavy hitters and then treating them differently (e.g.,

provisioning a circuit, moving them to a lightly loaded path, employing alternate buffering

strategies, etc.). For any such scheme to work, however, it must be possible to first identify the

heavy hitters, and then realize some benefit.

Unfortunately, it appears challenging to identify heavy hitters in a number of Facebook’s

clusters that persist with any frequency. Moreover, even for the timescales and aggregation levels

where it is possible (e.g., rack-level flows over intervals of 100-ms or larger), it is not clear there

is a great deal of benefit to be gained, as the heavy hitters are frequently not particularly heavy

for the vast majority of the period. Previous work has suggested traffic engineering schemes can

be effective if 35% of traffic is predictable [32]; only rack-level heavy hitters reach that level of

predictability for either Web or cache servers. This somewhat counter-intuitive situation results

from a combination of effective load balancing (which means there is little difference in size

between a heavy hitter and the median flow) and the relatively low long-term throughput of most

flows, meaning even heavy flows can be quite bursty internally.

4.6 Switching

Finally, we study aspects of the traffic that bear directly on top-of-rack switch design. In

particular, we consider the size and arrival processes of packets, and the number of concurrent

destinations for any particular end host. In addition, we examine the impact of burstiness over

short timescales and its impact on switch buffering.
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Figure 4.12. Packet size distribution

4.6.1 Per-packet features

Figure 4.12 shows the distribution of packet sizes for each of the four host types. Overall,

the median packet size is approximately 250 bytes, but that is significantly skewed by Hadoop

traffic. Hadoop traffic is bimodal: almost all packets are either MTU length (1500 bytes for the

servers we study) or TCP ACKs. Packets for the other services have a much wider distribution,

but the median packet size for all of them is significantly less than 200 bytes, with only 5–10%

of the packets fully utilizing the MTU.

Thus, while link utilization is low, the packet rate is still high. For example, a cache

server at 10% link utilization with a median packet size of roughly 175 bytes generates 85% of

the packet rate of a fully utilized link sending MTU-sized packets. As a result, any per-packet

operation (e.g., VLAN encapsulation) may still be stressed in a way that the pure link utilization

rate might not suggest at first glance.
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Figure 4.13. Hadoop traffic is not on/off at 15 nor 100 ms

4.6.2 Arrival patterns

Benson et al. observe that packet arrivals exhibit an on/off pattern at the server level [30,

31]. Facebook servers do not exhibit this behavior, even within Hadoop clusters. Figure 4.13

shows a time series of traffic sent by a Hadoop host (arriving at a ToR port) binned by 15- and

100-ms intervals. (c.f. Benson et al.’s analogous graphs [31, Figure 5] and [30, Figure 6]). If

one considers traffic on a per-destination host basis, on/off behavior reemerges (not shown),

suggesting its disappearance may be due to a large number of concurrent destinations.

Figure 4.14 plots the outgoing TCP flow inter-arrival time CDF at each of the servers

we study. While a significant amount of traffic is routed over long-lived pooled connections,

as is the case for request-response traffic between Web servers and cache followers, ephemeral

flows do exist. Flow inter-arrival periods from all four classes of host are shorter than those in

the literature [77, Fig. 11], to varying degrees. Hadoop nodes and Web servers see an order-of-

magnitude increase in flow intensity relative to previous reports—likely due at least in part to the

10× increase in link rate—with median inter-arrival times of approximately 2 ms (i.e., more than

500 flows per second). Perhaps due to connection pooling (which would decouple the arrival of

external user requests from the internal flow-arrival rate), the distribution of inter-arrival times

for flows at both types of cache node are similar and longer: cache leaders see a slightly higher

arrival rate than followers, with median inter-arrival times of 3 and 8 ms, respectively.
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Figure 4.14. Flow (SYN packet) inter-arrival

4.6.3 Buffer utilization

The combination of a lack of on/off traffic, higher flow intensity, and bursty individual

flows suggests a potential increase in buffer utilization and overruns. Despite low average link

utilization, bursty traffic can still lead to unacceptable loss rates. Recent work at Facebook has led

to the development of in-house switching platforms [116], enabling us to gather buffer utilization

statistics at fine granularity. In particular, we collect buffer occupancies over a 24-hour period for

switches connecting Web servers and cache nodes at a 10-microsecond granularity. Figure 4.15a

plots the median and maximum values per second for the entire period, normalized to the buffer

size. In other words, a single point for the median series represents the 50th-percentile buffer

occupancy during that second (out of 100,000 samples per second), normalized by the size of the

buffer. We also plot the normalized average link utilization (Figure 4.15b) and egress drop rate

(Figure 4.15c) over the same period, sourced via fbflow and SNMP counters, respectively.
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Figure 4.15. Correlating buffer occupancy, link utilization and packet drops in Web server and
Cache racks
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Figure 4.16. Concurrent (5-ms) rack-level flows

A few trends are apparent from our results. The first is that standing buffer occupancies

are non-trivial, and can be quite high in the Web-server case. Even though link utilization is on

the order of 1% most of the time, over two-thirds of the available shared buffer is utilized during

each 10-µs interval. Diurnal variation exists in buffer occupancies, utilization and drop rate,

highlighting the correlation between these metrics over time. Even with the diurnal traffic pattern,

however, the maximum buffer occupancy in the Web-server rack approaches the configured limit

for roughly three quarters of the 24-hour period. While link utilization is roughly correlated with

buffer occupancy within the Web-server rack, utilization by itself is not a good prediction of

buffer requirements across different applications. In particular, the Cache rack has higher link

utilization, but much lower buffer utilization and drop rates (not shown).

These buffer utilization levels occur despite relatively small packet sizes (Section 4.6.1).

As utilization increases in the future, it might be through an increase in the number of flows, in

the size of packets, or both. Either will have impacts on buffer utilization: larger packets with the

same level of burstiness will use up more of the buffer, while a larger number of flows leads to a

greater chance of multiple flows sending bursts of packets simultaneously. Thus, careful buffer

tuning is likely to be important moving forward. High buffer utilization also has ramifications

for outlier-analysis based partial fault detection, as we discuss in Section 4.7.
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Figure 4.17. Concurrent (5-ms) heavy-hitter racks

4.6.4 Concurrent flows

We consider concurrent to mean existing within the same 5-ms window (c.f. the 50-

ms window considered by Alizadeh et al. while measuring a datacenter of hosts connected

with 1-Gbps Ethernet [18]). We find that Web servers and cache hosts have 100s to 1000s

of concurrent connections (at the 5-tuple level), while Hadoop nodes have approximately 25

concurrent connections on average—corresponding quite well with the findings of Alizadeh

et al. [18, Figure 5]. That said, switches are obviously less concerned with individual connections

than destination ports. If we group connections destined to the same host, the numbers reduce

only slightly (by at most a factor of two)—and not at all in the case of Hadoop. The large number

of concurrent flows for Web and cache hosts, and the relatively small number of concurrent

Hadoop flows, will impact the time constants involved for outlier-analysis based partial fault

detection; we discuss these effects more in Section 4.7 and Chapter 5.

Given the general lack of intra-rack traffic, almost all flows will traverse an up-link port.

Hence, it may be more interesting to consider rack-level flows—i.e., the number of different racks

with which a server is communicating. Figure 4.16 shows the number of concurrent flows sent by

a single host over a 5-ms interval to different classes of destination hosts for three different host

types: cache follower, cache leader, Web server. Cache followers communicate with 225–300

different racks, while leaders talk to 175–350. In the median interval, both types of caches

communicate with ≈ 250 other racks—rack location varies dramatically as discussed previously,

however. Web servers communicate with 10–125 racks concurrently, 50 in the median interval.
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Some proposed switch designs [65, 92] employ different technologies for large flows.

Hence, we restrict our focus to the heavy hitter racks, namely those destination racks that

constitute the majority of the traffic. The median number of heavy-hitter racks is 6–8 for Web

servers and cache leaders with an effective max of 20–30, while the cache follower has 29 heavy

hitter racks in the median case and up to 50 in the tail. Due to the differences in locality, Web

servers and cache followers have very few rack-level heavy hitters of their cluster, while the

cache leader displays the opposite pattern. Even considering only heavy hitter racks, the number

of concurrent destinations is still significantly larger than that reported by Alizadeh et al. [18]. In

addition, the relative impermanence of our heavy hitters suggests that, for Frontend clusters at

least, hybrid circuit-based approaches may be challenging to employ.

4.7 Implications for partial fault localization

In Chapter 3, we motivated an outlier-analysis based approach for partial fault detection

and localization, noting that under certain circumstances—specifically, a multipath network with

equal-cost paths, and a large body of traffic to spread over those paths equally—that we could

pinpoint faults by looking for components that exhibited significantly worse performance than

normal. We demonstrated how partial faults could cause noticeable performance outliers on a

testbed matching these requirements; however, we noted that real world traffic characteristics

could impact the effectiveness of our methodology. Here, we discuss how various characteristics

of Facebook datacenters either help or hinder our approach.

Facebook datacenters meet the base requirements for outlier analysis

Both the four-post topology and the newer Fabric topologies provide multiple equal-cost

paths between any pair of communicating servers. The lack of rack locality means that most

communicating server pairs will send traffic over the core of the datacenter network over these

paths. In addition, the large number of flows (on the order of 1000s of concurrent flows in typical

5-msec intervals for just a single server) coupled with RPC-style traffic with small packet sizes
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(≤ 200 byte median packet size for non-Hadoop services) means that ECMP routing should

yield very even mixes of traffic across links within each layer of the network. Thus, performance

across these links will be roughly equivalent, as we show in Chapter 5.

High buffer occupancies suggests bursty traffic and complicates outlier analysis

Relatively high standing buffer occupancies in spite of low overall link utilization suggest

the possibility of bursty traffic and attendant loss. As such, microburst behaviour has been

noticed within Facebook datacenters [131]. The presence of ‘ambient’ packet loss has two

ramifications for outlier-analysis based detection.

First, burst-driven packet loss admits the possibility of false-positives; for example, a

burst on a link over a short time period could cause it to lose more packets than other links and

trigger an outlier monitor. We must take care that this does not occur. Second, even if we can

filter out false-positives, ambient packet loss may place an upper bound on the sensitivity of

outlier-analysis based approaches to detecting anomalous packet loss. In other words, if we

can ignore false-positives caused by ambient packet loss of a given degree, we risk not noticing

actual anomalous loss if it is of roughly the same degree. We argue that this may not be a large

downside—if the loss was not large enough to notice over the regular behaviour of the network,

it may not have a significant enough impact on application traffic to matter. In Chapter 5, we

see that outlier-analysis can reliably pinpoint lossy links when the degree of loss does outstrip

ambient loss, while avoiding false-positive behaviour caused by ambient loss.

Load balancing and the lack of hot spots will allow fast pinpointing of faults

Facebook application-level load balancing effectively squashes spatial and temporal hot

spots. Any given second look like any other second for a given host, both in terms of overall

volume of traffic and the amount of traffic sent to a remote host. As a consequence, no clear

persistent heavy hitter behaviour emerges; even if a given host suddenly receives a burst of traffic,

long-standing imbalances in traffic volume do not occur.
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As we will see in Chapter 5, this allows our outlier-analysis fault detection system to

successfully aggregate data and output faulty components over small timescales of ranging from

a few seconds to a few tens of seconds depending on fault magnitude. While Hadoop traffic

has significant amount of temporal variation, we will see that outlier-analysis still works, if we

increase the timescale that we operate on. In some sense, the emphasis on load-balancing means

that Facebook datacenters act as a best-case scenario for outlier-analysis based techniques. In

the next chapter, we present our fault-detection methodology and evaluate it at Facebook.
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Chapter 5

Simplified fault detection and localization

In prior chapters, we have introduced the challenges associated with datacenter partial

fault localization, developed a set of criteria for evaluating localization methodologies, and

discussed prior approaches and their success and shortcomings. Additionally, we have presented

an intuitive argument for why an outlier-analysis based passive monitoring approach could

be a viable method for localizing partial faults, and discussed how various characteristics of

production Facebook datacenters could aid the effectiveness of such an approach.

In this chapter, we present this dissertation’s main contribution. Specifically, we describe

how to expedite the process of detecting and localizing partial faults within datacenter networks

using an server based, passive-monitoring outlier-analysis methodology generalizable to most

datacenter applications. In particular, we correlate transport-layer flow metrics and network-I/O

system call delay at servers with the path that traffic takes through the datacenter and apply

statistical analysis techniques to identify outliers and localize the faulty link and/or switch(es).

We evaluate our approach in a production Facebook front-end datacenter.

At a high level, while network statistics can be noisy and confusing to interpret in isolation,

the regular topology and highly engineered traffic present within Facebook’s datacenters provides

an opportunity to leverage simple statistical comparison-based methods to rapidly determine

where partial faults occur as they happen.
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To facilitate such a comparison, we develop a lightweight packet-marking technique—

leveraging only forwarding rules supported by commodity switching ASICs—that uniquely

identifies the full path that a packet traverses in a Facebook datacenter. Moreover, the topological

regularity of Facebook’s datacenter networks allows us to use path information to passively

localize the fault as well. Because each server can bin flows according to the individual network

elements they traverse, we can contrast flows traversing any given link (switch) at a particular

level in the hierarchy with flows that traverse alternatives in order to identify the likely source of

detected performance anomalies. Operators can then use the output of our system—namely the

set of impacted traffic and the network element(s) seemingly responsible—in order to adjust path

selection (e.g., through OpenFlow rules, ECMP weight adjustment [108], or tweaking inputs to

flow hashes [75]) to mitigate the performance impact of the fault until they can repair it.

Our specific contributions include (1) a general-purpose, server-based monitoring scheme

that robustly identifies flows traversing faulty network components, (2) a methodology to discover

the necessary path information scalably in Facebook’s datacenters, and (3) a system that leverages

both types of information in aggregate to perform network-wide fault-localization.

We demonstrate that our technique is able to identify links and routers exhibiting low

levels (0.25–1.0%) of packet loss within a Facebook datacenter hosting user-servicing front-

end web and caching servers within 20 seconds of fault occurrence with a minimal amount of

processing overhead. We also perform a sensitivity analysis on a testbed to consider different

types of errors—including those that induce only additional latency and not loss—traffic patterns,

application mixes, and other confounding factors.

The rest of this chapter is organized as follows. We present a formalization of our outlier-

analysis based approach by defining ‘Equivalence Sets’, and describe how fault localization

based on comparing elements on these sets differs significantly from prior approaches. Following

this, we provide an overview of our specific fault localization system, describe its detailed

implementation and evaluate it within a production Facebook datacenter. We conclude by dis-

cussing the limits of its applicability, focusing both on surmountable challenges and fundamental

83



shortcomings of the approach. Finally, we discuss how our equivalence set based approach

satisfies the partial fault localization success criteria we presented earlier in this dissertation.

5.1 Formalizing outlier-analysis via equivalence sets

Outlier-analysis can be confounded by network traffic pattern hot spots, unless we pick

the right components—links, switches, or ports, for example—to compare with each other.

In particular, we previously showed that comparing traffic performance on a core-switch by

core-switch basis clearly revealed the impact of partial faults on application traffic metrics.

Here, we formalize our approach by defining ‘Equivalence Sets’. We claim that compar-

ing the equivalence-set components will allow us to find partial faults and that the characteristics

of such a set are both necessary and sufficient to apply outlier analysis to do so.

5.1.1 Defining equivalence sets

Given a collection of network flows, an Equivalence Set is a set of network components

(links, switches, ECMP groups, Link Aggregation groups, etc.) such that:

1. The flows in question are randomly split amongst the components within the set. In other

words, for a given collection of network flows, any flow has an exactly equal chance of

being forwarded via any of the elements in the set.

2. The number of flows is significantly larger than the number of elements in the set. Thus,

the distribution of traffic characteristics for each element in the set, while arbitrary, is

roughly similar to the distribution for any other member in the set.

3. Each component in the set can service network traffic equivalent performance. For example,

links in a set must provide the same bandwidth and have access to the same level of buffer

resources. Thus, an ECMP group of four 1-Gbps links is valid, while a set with three

1-Gbps and one 10-Gbps link is not. Or, for example, if traffic can flow via multiple

network middleboxes, they must possess comparable processing resources.
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We claim that components within an equivalence set, in the absence of any faults, will

provide equivalent performance to traffic traversing any component in the set. In other words,

the aggregate distribution of relevant performance metrics (for example, packet loss or latency)

will be similar on a component-by-component basis.

Consequently, equivalence sets can be used to detect performance sapping network

anomalies at the granularity of individual components where partial faults may reside when

used in conjunction with server-based application and network transport level statistics. In other

words, if we identify a particular component in an equivalence set where application or network

protocol performance is significantly degraded compared to other elements, we can conclude

that this is due to a performance sapping anomaly centered at this component only—in other

words, a partial fault affects this component.

5.1.2 Equivalence sets underpin outlier based partial-fault localization

Being able to form equivalence sets is necessary in order to successfully leverage outlier

analysis to find partial faults in datacenters. Suppose we have a hypothetical set of components

that matches the requirements for an equivalence set. We argue that if any one of the conditions

in the set is relaxed and left unsatisfied, that outlier analysis can fail as a result.

First, suppose flows are not randomly split amongst members in the set. In other words,

one or more of the members in the set has a greater or smaller likelihood that flows will be routed

through that component—ECMP imbalances detected in production datacenters are a notable

example [126]. In this case, we demonstrate that the distribution of performance metrics is no

longer equivalent on a per-component basis. While this effect can be used to detect erroneous

cases of ECMP imbalance, where traffic ought to be evenly load balanced, it means that partial

faults cannot be reliably detected when routing policy dictates an unequal split of traffic. In such

a case, false-positives may occur as more heavily loaded components may provide significantly

worse performance than light loaded components.
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Second, if the number of flows is small, we may get significant skew in the distribution

of performance metrics on a per-component basis. This skew is due to the inability to perform

effective statistical multiplexing of traffic when the number of flows is small; prior studies

indicate that gross differences in per-link performance can occur in such a case [15]. These

differences can prevent successful usage of outlier-analysis approaches, as the more heavily

loaded link presents itself as an outlier even in the absence of a fault.

Finally, if components within a candidate set do not offer equivalent performance, then

outlier-analysis can be confounded. On the other hand, we demonstrate in this chapter that if

equivalence sets can be formed, that they are sufficient to find faults accurately and sensitively in

a manner that is root-cause and application agnostic.

5.1.3 Equivalence-sets compared to prior approaches

Using equivalence sets, we devise a prototype for a partial-fault detection and localization

system that differs in several key ways with prior academic proposals and production systems:

1. Full path information: Past fault-finding systems have associated performance degra-

dations with components and logical paths [13, 23, 39, 64] but a solution that correlates

performance anomalies with specific network elements for arbitrary applications has, to

the best of our knowledge, proved elusive—although solutions exist for carefully chosen

subsets of traffic [133]. On the other hand, equivalence-set based outlier-analysis both

requires and takes full advantage of full path information for every flow in the network;

we demonstrate that we can acquire this information within Facebook datacenters and use

it to pinpoint faults to the specific links or switches they occur at.

2. Passive monitoring, not active probing: In contrast to active probing [11, 48, 64], our

method uses readily available metrics from production traffic, simultaneously increasing

detection surface and decreasing network overhead, detection, and localization time.

3. Reduced switch dependencies: While some approaches require expanded switch ASIC

features for debugging networks [66], we do not require them. Thus, network operators
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may deploy our approach on commodity switches. Furthermore, our approach is resilient

to bugs that may escape on-switch monitoring.

4. No per-application modeling: Our system leverages stable and load-balanced traffic

patterns found in some modern datacenters [112] in conjunction with properties resulting

from equivalent sets. Thus, it does not need to model complicated application dependen-

cies [13, 25, 39] or interpose on application middleware [40]. Since we compare relative

performance across network links, we do not require explicit performance thresholds.

5. Rapid online analysis: Regularity inherent in academic [14] and production [19, 117]

topologies allows us to perform rapid (10–20 seconds) online detection of small magnitude

(≤ 0.5% packet loss) partial faults with equivalence sets. This rapidity contrasts with prior

systems that require offline analysis [13] or much larger timescales to find faults [25].

Furthermore, localizing faults is possible without resource-intensive and potentially time

consuming graph analysis [48, 76, 84, 85, 86, 104].

5.2 System overview

In this section, we present the high-level design of a system that implements our proposed

approach. To set the context for our design, we first outline several important characteristics of

Facebook’s datacenter environment. We then introduce and describe the high-level responsibili-

ties of the three key components of our system, deferring implementation details to Section 5.3.

5.2.1 Production datacenter

Facebook’s datacenters consist of thousands of servers and hundreds of switches grouped

into a multi-rooted, multi-level tree topology [19]. The datacenter we consider serves web

requests from a multitude of end users, and is comprised primarily of web and cache servers [112].

While WAN connections to other installations exist, we do not focus on those in this work.
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Topology and service architecture

User requests are load balanced across all web servers, while cached objects are spread

across all caches. Since any web server can service any user request, there is a large fan-out

of web-to-cache connections; each web server has 1000s of bidirectional flows spread evenly

amongst caches [112]. Prior work notes both the prevalence of partition-aggregate workloads

and the detrimental impact of packet loss and delay in this latency sensitive environment—even

if they only constitute the long tail of the performance curve [129].

Web and cache servers are grouped by type into racks, each housing a few 10s of servers.

A few 10s of racks comprises a pod. Each pod also contains four aggregation switches (Aggs).

Each ToR has four uplinks, one to each Agg. There are a few 10s of pods within the datacenter,

with cross-pod communication enabled by four disjoint planes of core switches (each with a few

10s of cores). Each Agg is connected to the cores in exactly one plane in a mesh.

Due to the effects of ECMP routing, mesh-like traffic patterns, and extensive load

balancing, links at the same hierarchical level of the topology end up with a very even distribution

of a large number of flows. Moreover, if we know which path (i.e., set of links) every flow

traverses, it is straightforward to separate the flows into bins based on the link they traverse at

any particular level of the hierarchy. Hence, we can simultaneously perform fault identification

and localization by considering performance metrics across different subsets of flows.

Operational constraints

Datacenter scale imposes some significant challenges on our system. The large number

of links and switches require our system to be robust to the presence of multiple simultaneous

errors, both unrelated (separate components) and correlated (faults impacting multiple links).

While some errors might be of larger magnitude than others, we must still be sensitive to the

existence and location of smaller errors. In addition, we must detect both packet loss and delay.

The variety of applications and workloads within the datacenter further complicate

matters—an improper choice of metric can risk either masking faults or triggering false positives
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(for example, the reasonable sounding choice of request latency is impacted not only by network

faults but also cache misses, request size and server loads). Moreover, datacenters supporting

multiple tenants clearly require application-agnostic metrics.

Furthermore, we must be able to support measurements from large numbers of servers

describing the health of a large number of links, without imposing large computational or data

overheads either on the servers or on the network. Overheads especially impact network switches,

where relatively under-provisioned control planes are already engaged in critical tasks including

BGP routing. Thus, we are limited to capabilities present in commodity switch ASIC data planes.

5.2.2 System architecture

Our fault localization approach involves functional components at all servers, a subset of

switches, and a centralized controller, depicted in Figure 5.1. Switches mark packets to indicate

network path (1). Hosts then independently compare the performance of their own flows to

generate a server-local decision about the health of all network components (2). These verdicts

are sent (3) to a central controller, which filters false positives to arrive at a final set of faulty

components (4), which may be further acted upon by other systems (5). We elaborate below.

Servers

Hosts run production application traffic and track various per-flow metrics detailed

in Section 5.3.2. In addition, the server is aware of each flow’s path through the network.

Periodically, servers will use collected performance data to issue verdicts for whether it considers

a given subset of flows to have degraded performance, or not. By default, flow metrics are

binned by the set of links they traverse. These bins are then further grouped into what we

call equivalence sets (ESes), i.e., the set of bins that should perform equivalently, allowing us

to pinpoint link-level faults. In the Facebook datacenter, the set of bins corresponding to the

downlinks from the network core into a pod forms one such equivalence set. Alternative schemes

can give us further resolution into the details of a fault: for example, comparing traffic by queue
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Figure 5.1. High-level system overview (single pod depicted).
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or subnet (Section 5.4.4). We discuss the impact of heterogeneous traffic and topologies on our

ability to form equivalence sets in Section 5.5.

We define a guilty verdict as an indication that a particular bin has degraded performance

compared to others in its ES; a not guilty verdict signifies typical performance. We leverage

path diversity and the ability to compare performance across links—if every link in an ES is

performing similarly, then either none of the links are faulty, all of them are faulty (unlikely in a

production network) or a fault exists but might be masked by some other bottleneck (for which

we cannot account). The target case, though, is that enough links in an ES will be fault-free at

any given moment, such that the subset of links experiencing a fault will be readily visible if we

can correlate network performance with link traversed. Even in the absence of path diversity

(e.g., the access link for a server) we can use our method with alternative binning schemes and

equivalence sets to diagnose certain granular errors.

Switches

A subset of network switches are responsible for signaling to servers the network path

for each flow; we describe details in Section 5.3.1. Once faults are discovered by the centralized

controller, switches could route flows away from faulty components, relying on the excess

capacity typically found in datacenter networks. We leave fault mitigation to future work.

Controller

In practice, there will be some number of false positives within server-generated verdicts

for link health (e.g. servers flagging a link that performs poorly even in the absence of an error,

possibly due to momentary congestion) confounding the ability to accurately deliver fixes to the

network. Furthermore, there might be errors which do not affect all traffic equally; for example,

only traffic from a certain subnet might be impacted, or traffic of a certain class. Hence, we

employ a central controller that aggregates server verdicts for links (or other bins) into a single

determination of which links—if any—are suffering a fault. In addition, the controller can drive
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Figure 5.2. Determining flow network path.

other administrative systems, such as those used for data visualization/logging or rerouting of

traffic around faults. Such systems are outside the scope of this work.

5.3 Implementation

We now present a proof-of-concept implementation that meets the constraints presented

above. In order, we focus on scalable path signalling, our choice of server performance metrics

and the required aggregation processing, our verdict generator for aggregated flow metrics, and

the operation of our centralized controller.

5.3.1 Datacenter flow path discovery

Central to our approach is the ability to scalably and feasibly discover flow path informa-

tion within the datacenter. While switch CPU/dataplane limits complicate this task, the regularity

of the network topology aids us.

Topological constraints

Figure 5.2 depicts the pathfinding scheme we use in the Facebook datacenter. To aid

discussion, the diagram shows a restricted subset of an unfolded version of the topology, with

source servers on the left and destinations on the right; the topology is symmetric so our approach
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works in either direction. Note that cross-pod traffic has only two ECMP decisions to make:

which Agg switch (and thus, core plane) to transit after the ToR, and which core switch to use

within the core plane. Each core plane is only connected to one Agg switch per pod, so the

destination Agg switch is fixed given the core plane.

The source and destination racks and ToRs are fixed for any particular server-pair, and

can be determined by examining the IP addresses of a flow. Thus, for cross-pod traffic, the choice

of core switch uniquely determines the flow’s path, as the Agg switches are then constrained on

both sides. For intra-pod traffic it suffices to identify the Agg switch used to connect the ToRs.

In the presence of a total link error, the network attempts to forward traffic using an

alternative, non-shortest path advertised as a backup route. While we do not address this case in

our proof of concept, we discuss the impacts of link failures in Section 5.5.3.

Packet marking

We assign an ID to each core switch, that is stamped on all packets traversing the switch.

Note that the stamp need not be inserted by the core switch itself—the Agg switches on either side

are also aware of the core’s identity and are equally capable of marking the packet. We use Linux

eBPF (Extended Berkeley Packet Filter) [4] along with bcc (BPF Compiler Collection) [3] server

instrumentation to read markings and derive flow paths. Our naive implementation imposes less

than 1% CPU overhead (top row of Table 5.2), but room for optimization remains.

Several candidate header fields can be used for marking, and the best choice likely

depends on the details of any given deployment. One possibility is the IPv6 flow label field; a

20-bit ID could scale to a network with over a million core switches. However, the ASIC in our

Agg switches does not currently support modifying this field. Thus, for our proof of concept, we

instead mark the IPv6 DSCP field, which is supported at line rate and requires only a constant

number of rules (one per uplink).

While DSCP suffices for a proof of concept, its length limits the number of discernible

paths. Furthermore, datacenter operators often use DSCP to influence queuing, limiting the
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available bits. One alternative is to mark the TTL field1. A packet marked at a downward-facing

Agg traverses exactly two more hops before arriving at the destination server; a server could

recover an ID in the TTL field as long as the value was in the range 3–255.

General case

More complex topologies might preclude our ability to compute paths from a single

stamp. In the event that traffic is made up of long-lived flows (as it is, for example, for the web and

cache servers we tested) we can leverage the match/mark capability that many switching ASICs

possess to implement a form of marking reminiscent of previous proposals for IP traceback [114].

Suppose there are H hops between servers, and C routing choices per hop. If we want

to determine the flow path at the first hop where a routing choice must be made, the operating

system can mark C packets, each with the IPv6 flow label set to the possible IDs of each switch

that the packets could transit for that hop. Switches would be configured with a single rule that

would examine the flow label—if it matches the switch ID, the switch would set a single DSCP

bit to 1. When the server receiving the packet notes the DSCP bit set to 1, it could signal the

sender with the ID of the switch that was transited at that hop (that is, the flow label of the packet

when the DSCP bit was set). For example, it could do this by setting a specific DSCP bit in the

ACK packet while setting the flow label of the return packet to the switches ID. Thus, if the flow

sends ≥ (H ·C) packets in total it can discover the entire path, at the expense of just a single

rule per switch. While we have not deployed this approach in production, we validated that our

switch hardware can implement it. While this method finds out path information hop by hop,

partial path information can still be useful to our system. We discuss this further in Section 5.5.4.

5.3.2 Aggregating server metrics & path data

Given the availability of per-flow path information, we show that both transport-layer and

system-call-timing metrics can be used to find under-performing links in real-world scenarios.

1Constraints exist on the use of TTL as well, such as in the presence of traceroute or eBGP session protec-
tion [42].
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We consider both latency-sensitive, client/server production applications [112] and bulk-flow,

large-scale computation applications [5, 46, 70]. Mixed traffic is considered in Section 5.5.2.

Latency sensitive services

Web servers and caches within the Facebook datacenter service user requests, where

low latency is desirable [129]. Faults harm performance, where either drops or queuing delay

can result in unacceptable latency increases. Since loss is often a sign of network congestion,

the TCP state machine tracks various related statistics. These statistics include the number of

retransmitted packets, the congestion window (cwnd) and the slow-start threshold (sstresh).

Latency is also tracked using smoothed round trip time (srtt). When considered in isolation,

these metrics are limited in usefulness; while a retransmit signifies diminished performance for a

flow, it does not provide any predictive power for the underlying cause, or whether a given set of

flows experiencing retransmits are doing so for the same underlying reason. Furthermore, while

cwnd and ssthresh decrease with loss, the specific values depend highly on the application

pattern. For example, bulk flows tend to have a larger congestion window than mouse flows.

Thus, comparing any given flow against an average can be difficult, since it is unclear whether

‘worse’ performance than average is due to a network issue or traffic characteristics.

However, when augmented with path data, these metrics can become valuable indicators

of faults. To illustrate the effectiveness of this approach, we induced a network fault impacting

two servers: one web server, and one cache server. In each case, the local ToR is connected

to four aggregation switches. Using iptables rules, each server dropped 0.5% of incoming

packets that transited the link from the first aggregation switch to the ToR switch. We then

measured the TCP metrics for outgoing flows, grouped by which aggregation switch (and, thus,

rack downlink) was transited on the way to the server.

Rows 1–6 and 9–14 in Table 5.1 depict the cwnd, ssthresh, and retransmission count

distributions grouped by inbound downlink for production cache (C) and web servers (W)

respectively. While we aggregate the values for the non-faulty links into a single series (the even
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rows in the table), each individual non-faulty link follows the same aggregate distribution with

little variation. On the other hand, the faulty-link distribution for each metric is significantly

skewed—towards smaller numbers for cwnd and ssthresh, and larger for retransmits. Rows

17–22 show that cwnd, ssthresh, and retransmits provide a similarly strong signal when the

link fault impacts traffic in the outbound direction instead. srtt is effective for detecting faults

that induce latency but not loss; we defer details to Section 5.4.3.

Bulk data processing

Next, we consider bulk data processing workloads. Commonly used frameworks like

Hadoop involve reading large volumes of data from various portions of the network; slowdowns

caused by the network can have a disproportionate impact on job completion times due to

stragglers. While the TCP metrics above work equally well in the case of Hadoop (not shown),

the high-volume flows in Hadoop allow us to adopt a higher-level, protocol-independent metric

that depends on the buffer dynamics present in any reliable transport protocol.

Consider the case of an application making a blocking system call to send data. Either

there will be room present in the connection’s network buffer, in which case the data will be

buffered immediately, or the buffer does not have enough space and causes the application

to wait. As packets are transmitted, the buffer is drained. However, if a fault induces packet

drops, packets need to be retransmitted and thus the goodput of the network buffer drops.

Correspondingly, the buffer stays full more of the time and the distribution of the latency of

send() and similar blocking system calls skews larger. Delays caused by packet reordering

have similar impacts. Non-blocking sends exhibit this behavior too; we can instrument either the

select() or epoll ctl() system calls to get insight into buffer behavior.

To demonstrate this effect, we consider a synthetic traffic pattern representative of the

published flow-size distributions for Hadoop workloads present in Facebook’s datacenters [112].

Specifically, we designate one server in our testbed (see Section 5.4.1 for details) as a sink

and the remainder as sources. In addition, we induce a random packet drop impacting 1 of 9
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Table 5.2. Server monitoring CPU utilization in production.

Component p25 p50 p75 p95
eBPF (paths) 0.17% 0.23% 0.46% 0.65%
TCP metrics/t-test 0.25% 0.27% 0.29% 0.33%

testbed core switches. For a fixed period of time, each server in a loop creates a fixed number of

simultaneous sender processes. Each sender starts a new flow to the sink, picks a flow size from

the Facebook flow-size distribution for Hadoop servers and transmits the flow to completion,

while recording the wait times for each select() system call.

Rows 23–24 in Table 5.1 show the distributions of select() latencies for flows grouped

by core switch transited in our private testbed—again, the non-faulty distributions are aggregated.

Faulty links on the impacted core yield a dramatically shifted distribution. Additionally, the

distributions for non-faulty cores show little variation (omitted for space). This variation allows

us to differentiate between faulty and normal links and devices. We found the metric to be

sensitive to drop rates as low as 0.5%. Moreover, this signal can also be used for caches, due to

the long-lived nature of their flows. Rows 7–8 and 15–16 in Table 5.1 show the distribution of

epoll() and select() latencies for flows on faulty and non-faulty links in production and on

the testbed, respectively; in both cases, the faulty link distribution skews larger.

Metric collection computational overhead

While the aforementioned statistics provide a useful signal, care must be taken when

determining how to collect statistics. While system-call latency can be instrumented within an

application, that requires potentially invasive code changes. Instead, we again leverage eBPF to

track system-call latencies. For TCP statistics, we directly read netlink sockets in a manner

similar to the ss command. Table 5.2 depicts the overall CPU usage of our TCP statistics

collection and verdict generation agent; the cumulative CPU overhead is below 1%.
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5.3.3 Verdict generation

Earlier, we demonstrated that path-aggregated server metrics can reveal under-performing

links. Here, we develop a decision engine to generate metric-based testable hypotheses.

Outlier detection

Due to distribution clumping sans faults, we hypothesize that observed metric values can

be treated as samples from a common underlying distribution characterizing a fault-free link

given a time period and load. Moreover, a substantially different distribution applies for a faulty

link for the same period. Thus, determining whether a link is faulty reduces to determining

whether its sample distribution is part of the same distribution as the fault-free links.

While we cannot state with certainty the parameters that characterize the fault-free

distribution because of the complexities of network interactions, we conjecture that the number

of faulty datacenter links at any given instant is much lower than the number of working links.

Consider the number of retransmits per flow per link, for all links, over a fixed time period. For

each link, we compare its distribution to the aggregate distribution for all the other links. If

there exists only one fault in the network, then there are two possible cases for any individual

link: the distribution under consideration is faulty and the aggregate (excluding the single faulty

link in this case) contains samples from exclusively non-faulty links, or it is non-faulty and the

aggregate contains samples from 1 faulty link and (N−1) working links. In the former case,

the distribution under test is skewed to significantly higher values with respect to the aggregate;

in the latter, it is skewed slightly lower (due to the influence of the single faulty link in the

aggregate). Thus a Boolean classifier can be used: if the test distribution is skewed higher by a

sufficiently large amount, as discussed below, we consider the corresponding link as potentially

faulty; else, we do not. Concurrent errors across multiple links shift the aggregate distribution

closer to the outlier distribution for a single faulty link. If every link is faulty, we cannot detect

faulty links since we do not find any outliers. However, our method is robust even in the case

where 75% of the links have faults; we examine the sensitivity of our approach in Section 5.4.4.
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Hypothesis testing

Given our ability to collect empirical distributions of various metrics that can indicate

network performance, we still need to devise a suitable methodology determining whether

individual distributions are similar to others, or represent performance outliers. To do so, we

leverage a well-studied branch of statistics called ‘Hypothesis Testing’. Depending on the

characteristics of the metric distributions we are studying, we can choose from among several

well-known statistical tests to perform hypothesis testing.

Differentiating between components in an equivalence set.

On a high level, hypothesis testing allows us to formulate our problem in the following

manner. Consider an equivalence set consisting of individual links (for the purpose of concrete

exposition; our methodology generalizes to equivalence sets made up of any type of component).

Suppose we are determining whether the number of retransmits per flow for a given link

TESTLINK is higher than all of the other links in a given equivalence set, given a set of

distributions corresponding to each link in the set, measured at a single server within some time

period. Each empirical distribution corresponds to exactly one link and is made up several points,

where each point represents the number of retransmits for a specific flow that traversed the link

during the period examined. We refer to the distribution under test as L. Additionally, we create

an aggregate distribution L’ that contains the samples from every link O where O 6= TESTLINK.

Comparing L to L’, we consider as our null hypothesis that the samples within L are from the

same underlying distribution as L’. We set a significance level of α = 0.05. The hypothesis test

will output a p-value ranging from [0, 1]. If the p-value is ≤ α , we reject the null hypothesis

and assume that L and L’ are not sampled from the same underlying distribution—specifically,

since L’ represents all of the other links in the equivalence set, we consider TESTLINK to exhibit

outlier performance and thus potentially host a partial fault, from the viewpoint of the server

running this hypothesis test. On the other hand, if the null hypothesis is asserted, we do not

consider TESTLINK as hosting a partial fault—again, from the point of view of this server.
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The specific choice of test will depend on the metric. While the underlying distributions

may not be known, we do sample a very large number of data points in every distribution—one

for each flow, across 10s of 1000s of active flows. Furthermore, since we are considering the

entire population of flows in every examined time period, we can compute the standard deviation

across the entire population for each metric. Additionally, due to our equivalence set formulation,

we assume that (in the no-error case) the distributions for each link are close to identical, and

that each sample (corresponding to a single flow) is independent of the others (since we assume

flow performance is uncorrelated). Thus, the central limit theorem allows us to assume that the

average computed across all flows in a distribution is approximately normally distributed.

Given these conditions, for TCP retransmit, system-call latency, and TCP-over-IPv6

flow-label relabelling (discussed in Section 5.6) metrics, we use the single-tailed 1-sample

Student’s t-test. The t-test compares a sample mean (from TESTLINK, the link under test, with

the distribution L) to a population mean (from the distribution L’), rejecting the null hypothesis

if the sample mean is larger—in our case, if the tested link has more retransmits or higher

system-call latency than the other links in aggregate. In every time period, each server checks

if the t-statistic is greater than 0 and the p-value ≤ 0.05. If so, we reject the null hypothesis,

considering the link to be faulty.

Due to the large volume of traffic, even small time intervals contain a large number

of samples. Thus, we have to carefully implement our outlier test to avoid significant server

computational overhead. Our approach computes the t-statistic for each link over successive

fixed-length (10 seconds by default) sampling periods. We can compute the t-statistic using a low-

overhead and constant-space streaming algorithm. To do so we need the average and standard

deviation per distribution, and the aggregate average—all of which are amenable to streaming

computation via accumulators, including standard deviation via Welford’s Algorithm [124].

Each server generates verdicts using the t-test for links associated with its own pod.

Thus, for each flow, there are a few tens of possible core-to-aggregation downlinks, and four

possible aggregation-to-ToR downlinks. Having acquired TCP metrics and path information for
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all flows via our collection agent, we bin each sample for the considered metrics into per-link,

per-direction buckets. Thus, each metric is binned four times: into the inbound and outbound

rack and aggregation (up/down)links traversed.

This approach limits the computational overhead at any individual server since it only

needs to track statistics for its own select()/epoll() calls and TCP statistics. The bottom row

of Table 5.2 depicts the CPU utilization at a single production web server for this approach over

12 hours. The t-test computation and netlink TCP statistics reader uses roughly 0.25% of CPU

usage. This result is roughly independent of how often the t-test is computed; the majority of the

CPU usage is incrementing the various accumulators that track the components of the t-statistic.

The bcc/eBPF portion, however, has periods of relatively high CPU usage approaching 1%

overall, due to the need to periodically flush fixed-sized kernel structures that track flow data.

For cwnd, ssthresh and srtt TCP statistics, the student’s t-test may be inapplicable;

in particular, cwnd and ssthresh samples for a given flow across a fixed time period are not

independent of each other as they evolve over time. Furthermore, analyzing TCP state-machine

metrics is fraught with complication due to the complex interactions that can occur depending

on different TCP versions, application demands, and traffic pattern characteristics. Since we

do not make any assumptions on empirically-measured TCP state machine metric distributions,

we fallback to using non-parametric tests for these metrics. Fundamentally, we seek to find the

‘distance’ between two distributions and determine if this distance is ‘large’, which is precisely

the goal of the 2-sample Kolmogorov-Smirnov (KS-2) test. We apply the KS-2 test on two

down-sampled distributions: the 99-point {p1, p2, . . ., p99} empirical distribution for the link

under consideration, and a similarly defined distribution for the other links in aggregate. We

downsample specifically because the large number of points in the original distributions makes

the test too specific—downsampling allows us to compare distributions that have the same rough

shape as the original (and thus, are qualitatively similar) without being unnecessarily sensitive.

While the KS-2 test is applicable in our scenario, other non-parametric tests may suffice as well.
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Understanding underlying distributions and drawing more powerful inferences.

Thus far we have adopted a relatively circumspect approach, testing only the differences

between (metrics associated with the) components in an equivalence set. Due to the applicability

of the central limit theorem in some cases, or the availability of non-parametric hypothesis tests

in other cases, we have not needed to fully understand the underlying empirical distributions we

are testing. Yet, a a deeper understanding of the empirical distributions can unlock the ability to

draw more descriptive inferences. For example, a per-server, per-link packet-loss-probability

confidence interval may be estimated using TCP retransmits as a proxy for packet loss (noting

that in edge cases, retransmits may occur without loss, or a single loss may trigger more than

one retransmit). Here, we discuss whether we can do so for the metrics we study.

A key question to answer is whether any of the metrics we collect are normally distributed.

If they were, it could reduce our dependence on the central limit theorem, potentially allowing

us to sample per-flow metrics from a smaller subset of flows. Confidence intervals can be

easily computed across normal distributions as well, though methodologies often exist for other

underlying distributions if we understand their parameters.

However, for most metrics, normality may not hold. For example, TCP Congestion

windows depend heavily on application demands, and for Facebook cache server traffic the

distribution is close to uniform in the absence of packet loss. For retransmits, we may argue

that if a fault causes uncorrelated packet loss (that is, any given packet is equally likely to be

dropped), then the loss count across a large number of packets can be approximated by a normal

distribution. Thus, since retransmits approximate the number of lost packets, they too will be

approximately normally distributed. However, it may be that a partial fault causes bursts of errors

and drops trains of packets, where packets immediately following a dropped packet are more

likely to be dropped. In such a case, normality may not apply. Thus, we conservatively assume

that our raw metric distributions are not normal. Furthermore, we do not possess enough insight

into TCP state-machine interactions to properly characterize the parameters associated with TCP

state-machine metric distributions, especially given the hysteresis inherent within these metrics.

103



What we cannot do.

We may be tempted to use statistical techniques to root-cause (or at least, more fully

characterize) partial faults after localization, in the vein of prior work [23]. We argue that this

particular goal may be limited by our methodology for a few reasons. First, we make no claims

about underlying distributions. Second, we are not privy to all of the confounding effects and

interactions for the metrics examined. Third, we are passively monitoring metrics. While an

active-probe injection approach might give us further insight into relevant partial-fault behaviours

for a specific fault, here we are limited to observable variations within aggregate traffic behaviour.

Consequently, we cannot compute confidence intervals for the degree of packet loss

on a link, or speculate on the underlying mechanism for a pinpointed partial fault. In other

words, we can claim that a specific link is anomalous and possibly faulty, without being able to

describe exactly why. Neither can we comment on the magnitude of the partial fault we have

localized; while we demonstrate in Section 5.4 that we can rapidly pinpoint a 0.1% packet-loss-

rate inducing partial fault or a 0.2% packet-loss-rate inducing partial fault, we cannot concretely

state what the loss rate is for a given fault that we have localized. In particular, we are unable to

distinguish between loss contributed by the fault vs. loss caused by regular congestion across

the faulty link. That said, we can still use the output of our localization system to trigger active

probe mechanisms [59, 133] to perform this task.

For pinpointing partial faults, however, we demonstrate that all we require is determining

that metric distributions are different in an equivalence set. It is not the specific value that matters;

only whether the value is worse than that of the other components in the specific equivalence set.

5.3.4 Centralized fault localization

While individual servers can issue verdicts regarding link health, doing so admits signifi-

cant false positives. Instead, we collate server verdicts at a centralized controller that attempts to

filter out individual false positives to arrive at a network-wide consensus on faulty links.
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Controller processing

Assuming a reliable but noisy server-level signal, we hypothesize that false positives

should be evenly distributed amongst links in the absence of faults. While some networks might

contain hot spots that skew metrics and violate this assumption, traffic in the Facebook datacenter

is evenly distributed on the considered timescales, with considerable capacity headroom.

We use a centralized controller to determine if all links have approximately the same

number of guilty (or not guilty) verdicts, corresponding to the no-faulty-links case. Hosts write

link verdicts—generated once per link every ten seconds—to an existing publish-subscribe

(pub-sub) framework used for aggregating log data. The controller reads from the pub-sub feed

and counts the number of guilty verdicts per link from all the servers, over a fixed accumulation

period (10 seconds by default). The controller flags a link as faulty if it is a sufficiently large

outlier. We use a chi-squared test with the null hypothesis that, in the absence of faults, all links

will have relatively similar numbers of servers that flag it not-guilty. The chi-square test outputs a

p-value; if it is ≤ 0.05, we flag the link with the least not-guilty verdicts as faulty. We iteratively

run the test on the remaining links to uncover additional faults until there are no more outliers.

Computational overhead

The controller has low CPU overhead: a Python implementation computes 10,000 rounds

for 10s of links in <1 second on a Xeon E5-2660, and scales linearly in the number of links.

Each server generates two verdicts per link (inbound/outbound) every 10 seconds, with O(1000s)

servers per pod. Each verdict consists of two 64-bit doubles (t-stat and p-value) and a link ID.

This yields a streaming overhead of < 10 Mbps per pod, well within the pub-sub’s capabilities.

5.4 Evaluation

We now evaluate our approach within two environments: the Facebook datacenter

described in Section 5.2.1, and a small private testbed. First, we describe our test scenario in
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each network, and provide a motivating example for real-world fault detection. We then consider

the speed, sensitivity, precision, and accuracy of our approach, and conclude with experiences

from a small-scale, limited-period deployment at Facebook.

5.4.1 Test environment

Within one of Facebook’s datacenters, we instrumented 86 web servers spread across

three racks with the monitoring infrastructure described in Section 5.3. Path markings are

provided by a single Agg switch, which sets DSCP bits based on the core switch from which

the packet arrived. (Hence, all experiments are restricted to the subset of traffic that transits the

instrumented Agg switch, and ignores the remainder.) To inject faults, we use iptables rules

installed at servers to selectively drop inbound packets that traversed specific links (according to

DSCP markings). For example, we can configure an server to drop 0.5% of all inbound packets

that transited a particular core-to-Agg link. This methodology has the effect of injecting faults at

an arbitrary network location, yet impacting only the systems that we monitor.2

Our private testbed is a half-populated k = 6 fat tree, consisting of 3 (of 6) pods of 9

servers each, connected via 9 core switches. Each core has three links, one to each pod. To inject

faults, we use a ‘bump in the wire’ to perturb packets on a link. For example, consider a faulty

core that drops (or delays) random packets traversing a link to an Agg. To inject a fault at that

link, we replace the link connecting the core to the Agg with a link connecting it to a network

bridge, which is in turn connected to the Agg. The bridge is a packet-forwarding Linux server

that randomly drops (or delay) packets in a given direction. We implement ECMP using source

routing; the 5-tuple therefore allows us to determine the paths packets traverse in our testbed.

5.4.2 Motivating example

Over a five-minute interval in the Facebook datacenter, we induced faults on links from

three different core switches to the instrumented Agg, denoted A, B and C. In particular, we

2Note that while all monitored servers will see the same loss rate across the link, the actual packets dropped may
vary because iptables functions independently at each server.

106



0.0

0.2

0.4

0.6

0.8

1.0

t-
te

st
 p

-v
al

ue

Link A
Link B
Link C
Non-faulty links

0 100 200 300 400 500 600 700 800 900

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

ch
i-s

qu
ar

e 
p-

va
lu

e

All links
All - {A}
All - {A,B}
All - {A,B,C}

Figure 5.3. Single server t-test output (top) and controller chi-square output (bottom) for three
separate link faults.

induce faults in the order A, B, C, with a one-minute gap; we then removed the faults in reverse

order with the same gap. Each fault is a random 0.5% packet drop (1 in 200 packets). In

aggregate, this corresponds to an overall packet loss rate of < 0.02%.

The top portion of Figure 5.3 depicts the t-test output for a single server. Flows are

grouped according to incoming core downlink, and TCP retransmission statistics are aggregated

into ten-second intervals. For a single server, for every non-faulty link (every series in black,

and the faulty links before/after their respective faults) the t-test output is noisy, with p-values

ranging from 0.15 to 1.0. However, during a fault event the p-value drops down to near 0. Close

to 100% of the servers flag the faulty links as guilty, with few false positives.

These guilty verdicts are sent to our controller. The controller runs the chi-squared test

every 10 seconds using each core downlink as a category; it counts the number of non-guilty

verdicts from the servers as metric and flags an error condition if the output p-value≤ 0.05. Note

that this flag is binary, indicating that there exists at least one active fault; the guilty verdict count

must be consulted to identify the actual guilty link. The bottom portion of Figure 5.3 depicts the

controller output using this mechanism. We depict the output of the test for all paths (in red), and
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(b) Masked fault sensitivity.
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Figure 5.4. Controller chi-square p-value convergence for various faults vs. controller interval
length.

for the set of paths excluding faulty paths {A}, {A,B} and {A,B,C} (in yellow, purple and black,

respectively). These results indicate that the controller will find a fault as long as there is at least

one faulty link in the set of paths under consideration, thus supporting an iterative approach.

5.4.3 Speed and sensitivity

For our mechanism to be useful, it must be able to rapidly detect faults of small impact.

Moreover, we must detect faults that increase packet latency, not just those that cause loss.

Loss rate sensitivity

We performed a sensitivity analysis on the amount of packet loss we can detect in the

datacenter. While loss rates≥ 0.5% are caught by over 90% of servers, we see a linear decrease in

the number of guilty verdicts as the loss decreases past that point—at 0.1% drop rate, only≈ 25%

of servers detect a fault in any given 10-second interval, reducing our controller’s effectiveness.

However, we can account for this by prolonging the interval of the controller chi-square test.

Figure 5.4a depicts the distribution of p-values outputted by the controller for a given loss rate

and calculation interval. Each point with error bars depicts the median, p5 and p95 p-values

outputted by the controller during a fault occurrence; each loss rate corresponds to a single series.

We see that while a 0.25% loss is reliably caught with a 20-second interval, a 0.15% loss requires

40 seconds to be reliably captured; lower loss rates either take an unreasonably large (more than
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Table 5.3. srtt us distribution vs. additional latency and request size. The no-additional-
latency case is aggregated across all non-impacted links, while the others correspond to a single
(faulty) link.

Request
bytes

Latency
msec

p50 p75 p95 p99

100 - 1643 1680 2369 2476
100 0.1 3197 3271 4745 4818
100 1.0 10400 10441 19077 19186
8000 - 4140 4778 619 7424
8000 0.1 6809 7510 9172 11754
8000 0.5 11720 14024 18367 21198

a minute) period of time to be caught or do not get detected at all. Note that in the no-fault case,

no false positives are raised despite the increased monitoring interval.

High latency detection

In our private testbed, we induced delays for traffic traversing a particular core switch.

To do this, we used Linux tc-netem on our ‘bump-in-the-wire’ network bridges to add constant

delay varying from 100 microseconds to 1 millisecond (a typical 4-MB switch buffer at 10 Gbps

can incur a maximum packet latency of roughly 3 milliseconds before overflowing). We then ran

client/server traffic with a single pod of 9 HHVM [6] servers serving static pages, and two pods

(18 servers) configured as web clients running Apache Benchmark [1]. Each server handled 180

simultaneous clients and served either small (100-B) or medium (8-KB) requests.

Table 5.3 depicts TCP srtt us distributions as a function of induced latency and request

size. As before, the distributions of non-impacted links are similar, while the distribution of the

latency heavy link is clearly differentiable. No drops were detected in the 100-B case; due to

our use of 1-Gbps links, a handful of drops comparable to the no-fault case were detected in

the 8-KB case. The modified KS-2 test operating over a 10-second interval correctly flags all

intervals experiencing a latency increase, while avoiding false positives.
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5.4.4 Precision and accuracy

Next, we demonstrate the precision and accuracy of the system in the presence of

concurrent and correlated faults, as well as the absence of false positives.

Concurrent unequal faults

A large network will likely suffer concurrent faults of unequal magnitude, where the

largest fault may mask the presence of others. While we surmise that the most visible fault will

be easily diagnosable, ideally it would be possible to parallelize fault identification in this case.

We consider a scenario in the Facebook datacenter with two concurrent faults on distinct

core-to-Agg switch links: one causing a packet loss rate of 0.5%, and one with a rate that varies

from 0.25% to 0.15% (which we can easily identify in isolation). Using TCP retransmit statistics,

the high-loss fault was flagged by almost all the servers the entire time, while the flagging rate

for the lower-impact fault depends roughly linearly on its magnitude. However, the drop-off in

guilty verdicts is steeper in the presence of a masking, higher-impact fault. As a result, the 10-

and 20-second controller intervals that flag the low-loss-rate faults in isolation no longer suffice.

Figure 5.4b depicts the controller chi-square p-value outputs for the set of paths excluding

the one suffering from the readily identified larger fault; each series corresponds to a different

loss rate for the smaller fault. The interval needed to detect such “masked” faults is longer;

a 0.25% loss rate requires a 40-second interval to reliably be captured vs. 20 seconds in the

unmasked case (Figure 5.4a), while a 0.15% rate requires over three minutes.

Large correlated faults

So far, we have considered faults impacting small numbers of uncorrelated links. How-

ever, a hardware fault can affect multiple links. For example, each Agg switch contains several

core-facing linecards providing cross-pod capacity. A linecard fault would affect several uplinks.

Similarly, a ToR-to-Agg link might be impacted, affecting 25% of the uplinks for that rack’s

servers. Our approach relies on the student’s t-test picking outliers from a given average, with the
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Table 5.4. TCP congestion window and retransmit distributions when binning by remote rack
with a faulty rack inducing a 0.5% drop rate.

Metric Error p50 p90 p95 p99
retx - 0 0 1 2
retx 0.5% 1 3 4 5
cwnd - 10 18 26 39
cwnd 0.5% 9 10 16 28

assumption that the average represents a non-faulty link. However, certain faults might impact

vast swaths of links, driving average performance closer to that of the faulty links’.

To test this scenario, we induce linecard-level faults on 25%, 50%, 75% and 100% of

the uplinks on the instrumented Agg switch in the Facebook datacenter. The per-link loss rate

in each case was 0.25%. With 100% faulty links, our method finds no faults since no link is an

outlier—a natural consequence of our approach. However, in all other cases our approach works

if the servers declare paths faulty when the p-value ≤ 0.1. Figure 5.4c shows the controller

performance for various linecard-level faults as a function of interval length. A 10-second

interval captures the case where 25% of uplinks experience correlated issues, but intervals of 20

and 40 seconds, respectively are required in the 50% and 75% cases.

False positives

The longer our controller interval, the more sensitive we are to catching low-impact faults

but the more likely we are to be subject to false positives. We ran our system in production in

the absence of any (known) faults with intervals ranging from 10 seconds to an hour. Even with

30-minute intervals, the lowest p-value over 42 hours of data is 0.84; only one-hour intervals

generated any false positives (p≤ 0.05) in our data. We note, however, that we need not support

arbitrarily large intervals. Recall that an interval of roughly three minutes is enough to get at

least an intermittent fault signal for a 0.1% loss rate.
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Granular faults and alternative binnings

By default, our approach bins flow metrics by path. In certain cases, however, a fault

may only impact a specific subset of traffic. For example, traffic from a particular subnet might

exhibit microburst characteristics, periodically overflowing switch buffers and losing packets.

Alternative binnings can be employed to identify such “granular” faults. To illustrate,

we induced a fault at a single cache server, in which packets from exactly one remote rack

are dropped at a rate of 0.5%. We then binned traffic by remote rack. Table 5.4 depicts the

distribution of congestion window and retransmit by remote rack; as before, the distributions for

non-impacted bins are all close to each other. The KS-2 test and t-test successfully pick out the

fault without false positives using the cwnd and retransmissions metrics respectively. Note such

alternative binning can help diagnose faults even if there is no path diversity—in this case, the

alternatives are provided by application load balancing.

5.4.5 Small-scale deployment experience

While our experiments focus on injected failures, we are obviously interested in deter-

mining whether our system can successfully detect and localize network anomalies “in the wild”.

Thus, we examine the performance of our system over a relatively long time period (in the

absence of any induced failures) to answer the following questions: “Does our system detect

performance anomalies?” “Do non-issues trigger false positives?” “Do we notice anomalies

before or after Facebook’s existing fault-detection services catch it?”

To answer these questions, we deployed our system on 30 servers for two weeks in early

2017. As an prototype, deployment was necessarily restricted; our limited detection surface thus

impacted our chance of detecting partial faults. Another large-scale datacenter operator suggests

that, in their experience, roughly 10 partial faults a day occur in a network containing O(1M)

servers [97]. It is unsurprising, then, that our two-week trial on only 30 servers did not uncover

any faults. We were, however, able to derive useful operational experience that we relate below.
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Response to organic failure

On January 25th, 2017, the software agent managing a switch linecard that our system

was monitoring failed. The failure had no immediate impact on traffic; the dataplane continued

to forward traffic according to the most recent ruleset installed by the agent. Thus, the initial

failure is invisible to and explicitly outside the scope of our tool, which focuses only on faults

that impact traffic.

Roughly a minute later, however, as the BGP peerings between the linecard and its

neighbors began to time out, traffic was preemptively routed away from the impacted linecard.

Thus, applications saw no disruption in service despite the unresponsive linecard control plane.

Yet, we observe that as traffic was routed away from the failed linecard, the distributions of TCP’s

cwnd and ssthresh metrics for the traffic remaining on the linecard’s links rapidly diverged

from the values on other links in the equivalence set. Figure 5.5 depicts the per-link mean

congestion window measured by every server, aggregated per-linecard and averaged across every

corresponding server, with the afflicted linecard colored red.

Deviations are immediate and significant, with mean cwnd dropping over 10% in the

first interval after most traffic diverts, and continually diverging from working links thereafter.

Furthermore, measured flow volume at each server traversing the afflicted linecard rapidly

drops from O(1000s) to O(10s) per link. By contrast, one of Facebook’s monitoring systems,

NetNORAD [11], took several minutes to detect the unresponsive linecard and raise an alert.

It is important to note that in this case, we did not catch the underlying software fault

ourselves; that honor goes to BGP timeouts. However, we do observe a sudden shift in TCP

statistics in real time as traffic is routed away, as our system was designed to do. With respect

to our stated goal—to pinpoint the links responsible for deleterious traffic impact—our system

performs as expected. Thus, this anecdote shows that our system can compliment existing fault-

detection systems, and provide rapid notification of significant changes in network conditions on

a per-link or per-device basis.
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Figure 5.5. Mean cwnd per (server,link) during linecard fault.

Filtering normal congestion events

During the monitoring period, no other faults were detected by the system. While a

small number of false positives were generated in every interval, the controller filters out these

indications since the noise is spread across the monitored links. However, we noticed that the

number of false positives had periodic local maxima around 1200 and 1700 GMT. Furthermore,

these were correlated with the raw (i.e., independent of flow/path) TCP retransmit counts tracked

by the servers. Given that they occurred at similar times each day and were evenly spread across

all the monitored servers, we surmise that these retransmits were not due to network faults, but

organically occurring congestion. This experience provides some confidence that our system

effectively distinguishes between transient congestion and partial faults.
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5.5 Applicability

Here, we consider the applicability of our approach in various challenging scenarios,

e.g., datacenters with heterogeneous traffic patterns, topologies less amenable to single-marking

path discovery (either by design or due to failed links re-routing traffic), virtualized multi-

tenant environments, and more. We first list some conditions to which our approach is resilient.

Subsequently, we clarify the extent to which traffic homogeneity, link failures and topology

impact the suitability of our approach. We conclude with a discussion on known limitations.

5.5.1 Surmountable issues

While we have access to only one production environment, we have conducted sensitivity

analyses in our testbed to consider alternative deployments. Due to space limits, we summarize

our findings here, but provide more extensive discussion in Appendix 5.8.

1. VMs and high CPU load: Our datacenter tests were on bare metal; our system works

equally well in a VM-serving environment, even when the hardware CPU is fully taxed.

2. Mixed, over-subscribed and uneven traffic: The Facebook datacenter lacks saturated

links and uneven load. We consider a mixed workload with latency sensitive and core-

saturating bulk traffic, where server load ranges from 1×—16×.

3. TCP settings: Datacenter servers employ NIC offload features such as TSO. Turning

these optimizations off does not obscure TCP or timing-based signals; neither does varying

buffer sizes across three orders of magnitude (16 MB—16 KB).

5.5.2 Traffic homogeneity

Facebook traffic is highly load balanced [112], aiding our outlier-based detection ap-

proach. We are optimistic, however, that our method is also applicable to datacenters with more

heterogeneous and variable workloads. That said, outlier analysis is unlikely to succeed in

the presence of heterogeneous traffic if we do not carefully pick the links or switches that we

compare against each other—specifically, if we fail to form a valid ES.
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In the case of our experiments at Facebook, the ES we used was the set of downlinks

from the network core into a pod. ECMP routing ensured that these links did form an ES; all

cross-pod flows had an equal chance of mapping to any of these links, and the path from these

links down to the servers were equal cost. This characteristic notably holds true regardless of the

specific mix of traffic present. Thus, we hypothesize that on any network where such an ES can

be formed, our approach works regardless of traffic homogeneity. To demonstrate this, we ran

our fat-tree testbed with a worst case scenario of heterogeneous traffic: running synthetic bulk

transfer and latency sensitive RPC traffic, with heavy traffic skew (with per server-load ranging

from 1–16× the minimum load). Furthermore, we overloaded the network core by artificially

reducing the number of links. Even in this case, our t-test classifier operating on the select()

latency metric was able to successfully differentiate the outlier link.

5.5.3 Link failures

In addition to being able to detect and localize partial faults, our system must be able to

account for total link failures, which can confound our ability to determine a flow’s path through

the network due to re-routing. Consider the outcome of a total link failure on the fate of traffic

routed via that link. There are three possible outcomes for such traffic: (1) traffic is redirected

at a prior hop to a working alternative path, (2) traffic is re-routed by the switch containing the

dead-end link to a backup non-shortest path, and (3) traffic is black holed and the flow stops (the

application layer might restart the flow).

Cases (1) and (3) do not affect our approach. ECMP routing will ensure that flows are

evenly distributed among the surviving links, which still form an ES (albeit one smaller in size

than before the failure). Case (2) can impact our approach in two ways. First, traffic taking a

longer path will likely see worse performance compared to the rest of the traffic that traverses

links on the backup path—harming the average performance on that path. Moreover, backup

path performance might drop due to unfair loading as more flows join. Presuming rerouting is

not silent (e.g., because it is effected by BGP), the former effect can be accounted for; traffic
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using backup routes can be marked by switches and ignored in the server t-test computation. The

latter can be mitigated by careful design: rather than loading a single backup path unfairly, the

load can be evenly distributed in the rest of the pod. Even if an imbalance cannot be avoided,

two smaller ESes can yet be formed: one with links handling rerouted traffic, and one without.

5.5.4 Topologies

Our system leverages the details of Facebook’s datacenter topology to obtain full path info

with a single marking identifying the transited core switch. The topology also allows us to form

equivalence sets for each pod by considering the core-to-pod downlinks. Other networks might

provide more challenging environments (e.g. middleboxes or software load balancers [105]

might redirect some traffic; different pods might have varying internal layouts; links might

fail) that confound the ability to form equivalence sets. In an extreme case, a Jellyfish-like

topology [118] might make it extremely difficult to both extract path information and form ESes.

In certain cases, though, even networks with unruly layouts and routing can be analyzed

by our approach. Consider a hybrid network consisting of a Jellyfish-like subset. For example,

suppose a single switch in the Jellyfish sub-network is connected to every core switch in a

multi-rooted tree, with identical link bandwidths. While we cannot reason about traffic internal

to the Jellyfish, we can still form an ES for the links from the single switch connecting to the

regular topology, for all traffic flowing into the regular sub-network. No matter how chaotic the

situation inside the Jellyfish network, the traffic should be evenly distributed across core switches

in the regular sub-network, and from then on the paths are equivalent.

Note that here, we only consider the subset of the path that lies within the regular topology.

As long as an ES can be formed, the path behind it can be considered as a black box. Thus, we

argue that even on topologies where we cannot find the full path, or where inequalities in path

cost exist, we can run our approach on subsets of the topology where our requirements do hold.
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5.5.5 Limitations

On the other hand, there are cases where our current approach falls short. To begin,

we presume we are able to collect server metrics that reflect network performance. While we

believe our current metrics cover the vast majority of existing deployments, we have not yet

explored RDMA-based applications or datacenter fabrics. Our current metrics also have limits to

their precision; while we can detect 0.1% drop rates in the datacenter we studied, past a certain

point we are unable to discern faults from noise. Moreover, the production datacenter is well

provisioned, so fault-free performance is stable, even in the tail. Hence, we do not consider the

inability to detect minor impairments to be a critical flaw: If the impacts of a fault are statistically

indistinguishable from background network behavior, then error severity may not be critical

enough to warrant immediate response. Datacenters operating closer to capacity, however, may

both exhibit less stable fault-free behavior, as well as require greater fault-detection sensitivity.

Despite extensive use of ECMP and application load-balancing, datacenters with mixed

workloads may include links that see more traffic and congestion than others. That said, we have

not encountered enough network load variability to trigger enough per-server false positives to

confound the accuracy of our method in either production or under our testbed, and thus cannot

yet quantify under what circumstances this degradation in detection performance would occur.

Furthermore, for links lacking alternatives—such as an server to top-of-rack access link in the

absence of multihoming—we cannot pick out an outlier by definition since there is only one link

to analyze. We can, however, still perform our analysis on different groupings within traffic for

that link; for example, when traffic to a particular subnet is impacted.

5.6 Applicability for high-variability bulk-traffic workloads

Outlier-analysis-based partial fault detection appears well-suited to web and cache server

traffic at Facebook. In particular, the high degree of temporal stability and load-balancing,

characteristic to both Facebook web and cache (henceforth, front-end) servers enables rapid
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partial fault detection. To find lossy links servicing front-end servers, our approach requires only

a few tens of seconds with loss rates on the order of 0.1%. However, not all services possess

such favourable characteristics; instead, traffic can be spatially imbalanced, or possess temporal

hot spots on timescales of 10s of seconds, confounding our approach. Here, we examine such

traffic patterns at Facebook—in particular, we determine the applicability of our partial-fault

localization system to Hadoop and WarmStorage [51] (henceforth, bulk-traffic) servers.

Hadoop [5] is a well-known batch data processing system, characterized by relatively few

bulky flows in comparison to Facebook front-end servers. On a per-second basis, traffic is highly

variable compared to both front-end servers, as well as more rack-local. WarmStorage [51] is

a storage disaggregation system targeted at fixing various shortcomings present in HDFS (the

Hadoop Filesystem) when used at Facebook’s scale. Traditionally, Hadoop aims to leverage data

locality, running computational tasks at servers where relevant data is known to reside [69] to

avoid network utilization. However, WarmStorage discards this as a desired goal, and instead

performs disaggregation of computation and storage—all storage access occurs remotely over

the network. Since WarmStorage is aimed at supplanting HDFS, however, the notion of bulky

and likely imbalanced flows applies to it as well.

5.6.1 Fundamental challenge: load balancing and temporal behaviour

Bulk-traffic workloads exhibit greater load imbalance and higher temporal variance

compared to front-end servers, which can confound our ability to form equivalence sets. For

example, consider a workload with high temporal variance, such as the type exhibited by Hadoop

servers at Facebook [112]. Within a given 5-millisecond period, Hadoop servers have on average

25 concurrent active flows (defined by 5-tuple), though within the median-case millisecond, just

2 of these flows account for more than half the traffic sent in terms of volume in bytes. Consider

also that the lifespan of individual flows within Hadoop servers range from approximately 10

seconds (in the roughly median case) to around 100 seconds (in the 95th percentile). Furthermore,

only a subset of these flows will be leaving the server rack.
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Thus, if we consider inter-rack traffic sent by the Hadoop server within a 10-second

interval, unlike the front-end servers, it is likely that the traffic will not be evenly spread amongst

the top of rack switch uplinks within that period. This effect is exacerbated at higher levels of the

network topology. A similar argument can be made for traffic destined to a Hadoop server within

a 10-second period, as 99.8% of Hadoop server traffic is destined to other Hadoop servers [112].

Consequently, we cannot call the set of ToR uplinks or Agg switch uplinks an equivalence set at

this timescale—they do not handle equivalent amounts of traffic during the period. Here, we

consider effects like retransmits to be more likely to occur for links more traffic.

Solution: Waiting out temporal instability.

Despite second-by-second Hadoop traffic variability, there are sufficiently large time

periods over which traffic does balance out—in particular, no inter-rack hot spots emerge for

Hadoop clusters over a 24-hour period. This result suggests that outlier analysis may be possible

if we consider a longer time interval than for front-end servers. One option for limiting the length

of the required interval is to aggregate data from multiple servers together; instead of considering

per-server data for the T-Test, we can aggregate information on a per-rack basis.

In Section 5.6.3 we see that performing a per-rack T-Test over 1-minute intervals or

more (rather than 10-second intervals on a per-server basis as in the front-end case) allows

us to continue to successfully use outlier analysis to find partial faults. However, simply

increasing time intervals for applying our hypothesis tests were not enough, due to certain

implementation challenges related to finding a suitable measurement metric for our tests given

our path identification method. We discuss these challenges and how we overcame them next.

5.6.2 Implementation challenge: path information and metric choice

Earlier, our testbed experiments in Section 3.3.2 correlated outbound flow and application

performance metrics with outbound path. Thus, if an outbound packet was lost, it would trigger

an outbound retransmit which we correlated with links on the outbound path. This effect allowed

us to use TCP metrics (retransmits, smoothed round trip time, etc.) in our testbed, for both
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synthetic front-end server style traffic and for Hadoop. A subtlety applies within our Facebook

testing, where we measured outbound metrics but correlated it with inbound path information to

pinpoint per-link packet loss in the inbound direction. Here, we explain why this correlation is

suitable for front-end traffic but not bulk-traffic. To continue supporting outlier-based partial

fault localization for bulk-traffic servers, we discuss an alternative metric that we use instead.

At Facebook, our path-recovery methodology does not reveal path information for

outbound flows. Due to our packet marking methodology, servers instead only have access to

inbound flow path. However, TCP metrics collected at a server refer to performance for outbound

flows, not inbound. Despite this, though, we are able to correlate outbound TCP flow metrics

with the path taken by their corresponding inbound flows,and are able to use these correlations

to detect inbound packet loss on a link by link basis, as we demonstrated in Section 5.4.

At first glance, this is a surprising result. Since outbound and inbound flows likely

traverse different paths through the network, it appears strange that outbound flow performance

should correspond with inbound flow path. We speculate that this is a consequence of the

RPC-style nature of web and cache server traffic. Suppose a web server sends a request to a

cache server. Prior studies suggest single-packet requests of approximately 200 Bytes [112]

and typically, single-packet responses of an average of around one to a few hundred bytes [34].

Before a response is sent, however, the request packet may be acknowledged by a bare TCP-ACK

packet. Suppose, further, that a single link in the path taken by the returned ACK exhibits

partial-fault behaviour; in particular, it randomly loses packets.

Due to this fault, the returned ACK packet may be lost. At the web server sending the

original request, the ACK is thus never received, and TCP interprets this as a loss of the original

request packet. Thus, it resends the request and increments a retransmission counter for the flow.

This outbound retransmit is thus caused by lossy behaviour for a link on the inbound path for

the reverse-direction inbound flow. Consequently, we can correlate outbound TCP metrics like

retransmit and congestion window with the links taken by the corresponding inbound flow, to

find packet loss for inbound traffic on links.
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What happens if we have a bulk-flow traffic pattern instead? Suppose, instead of sending

a single packet, our flow must send several packets, as would be the case for data transfers in

Hadoop and WarmStorage. In this case, an inbound ACK may still get lost, as before. However,

consider that TCP stacks typically ACK every other packet within bulky flows. Thus, even if a

particular ACK packet was lost, a subsequent ACK packet is likely to be received within a short

period of time anyways, and thus no outbound retransmit occurs. Empirically, we notice that

outbound packet retransmits and congestion window no longer appear to respond to inbound

packet loss. Despite outbound retransmits correlating with inbound flow path for front-end

servers, no such correlation appears for bulk-traffic servers. Thus, these metrics do not suffice as

a proxy for inbound packet loss as was the case for front-end servers.

Recovering packet loss information with flow-label churn.

Since we cannot correlate outbound TCP metrics with inbound flow performance for

bulk-traffic, we have two options: either we attempt to recover outbound path information for cor-

relation with TCP metrics, or find a suitable inbound flow performance metric. To find outbound

path information, one possible approach is to set up signalling between a communicating server

pair, where the destination conveys the path taken by a received flow to the sender. However, this

would require significant implementation effort and roll-out to be useful at Facebook’s network

scale—a large fraction of servers would need to participate in order to derive enough information

for outlier analysis. While this is feasible to do, it requires more engineering effort than was

available for a small scale prototype partial-fault localizer.

Thus, we must use an alternative metric that correlates with packet loss for inbound

traffic. Since Facebook traffic is mostly TCP over IPv6 on Linux, an unexpected opportunity

presents itself in the form of IPv6 packet header churn. The authors of Flowbender [75] proposed

that, when faced with degraded performance, server network stacks may consider changing bits

within a packet header in an attempt to influence packet routing through the network. Flowbender

assumes that the bits in question are used by mechanisms such as ECMP routing, and that the

network does possess multiple alternative paths—both of which are true at Facebook. Hopefully,
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if a particular link or switch was responsible for degraded performance, the new path may avoid

that particular component and thus benefit flow performance.

Recent versions of the Linux kernel possess a similar feature; specifically, when a certain

number of retransmit timeouts occur for TCP over IPv6, the kernel network stack will modify

the 20-bit wide IPv6 flow-label field in the hope that this field is consulted by network switches

when making forwarding decisions within ECMP groups.

Thus, suppose a Hadoop or WarmStorage server is the recipient of a bulk-flow from

another server running a recent Linux kernel. As in the front-end server case, the Hadoop or

WarmStorage server can associate individual flows with every link the flow traversed through the

network. It can then look for changes in the IPv6 flow-label field, and associate the resulting

churn with the link the flow traversed when the churn occurred. The intuition here is that if the

flow suffers from loss, the sending host will notice this loss and attempt to reroute the flow to

avoid this loss, in a way that is visible to the destination server with the path information. Then,

if a particular link has a higher than normal amount of associated flow-label churn, it could be

due to a partial fault centered at that link.

Note that this is a significantly more sparse signal than retransmits; in particular, while a

retransmit occurs for every lost packet, the flow-label will be modified only if several retransmit

timeouts occur. By their nature, these are more rare than regular packet loss. While at least one

retransmit occurs for any lost packet, a retransmit timeout only occurs if the packet at the end of

a send window was lost. If a mid-window packet is lost, mechanisms such as duplicate ACK

signalling will enable the sending server to resend a packet without suffering from a retransmit

timeout, and thus, without changing the flow label.

In order to demonstrate this effect, we instrumented several Hadoop and WarmStorage

servers with a collection agent that would correlate per-flow instances of flow-label churn with

the specific link the flow was on when the churn occurred. We induced intermittent packet loss

on one of the downlinks from either the datacenter core layer to a single pod aggregation switch

serving the servers in question (WarmStorage), or from a single pod aggregation switch to the
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Figure 5.6. Normalized flow-label churn per link for WarmStorage.

ToR switch (Hadoop). To verify that flow-label churn responds to packet loss, we measured four

hours of data and tracked the number of flow-label changes per link using 300-second intervals.

Figure 5.6 depicts the number of flow-label changes per link for each 300-second interval,

normalized to the median number of flow-label changes across all surveyed links within the

interval. While effect magnitude varies by time and network load, we see that the induced-fault-

carrying link has a higher number of flow-label changes throughout the four-hour period.

Given that flow-label churn on a link-by-link basis can signal the presence of packet loss,

the rest of our fault localization system simply uses this signal as input to the per-server T-Test as

in the front-end server case. Specifically, by examining flow-label churn, we generate a timeline

of flow-label churn (and thus, suspected packet loss for the sender) on a per link basis. Suppose

we wanted to run the T-Test once every 60 seconds. We generate a distribution for each link and

for each 60 second period by taking the following steps:

1. We arbitrarily subdivide the 60-second period into 100-millisecond chunks.

2. For each chunk, for each link, we count the number of flow-label changes across all flows.

We discard the chunks where none of the links have any flow label change events.
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3. For the remaining chunks, at least one link had a flow-label change. For links where no

such change occurred within that 100-millisecond period, the value is 0. These counts are

used to form a per-link distribution for the 60-second period.

4. We apply the T-Test for each link in the equivalence set; comparing its distribution to the

aggregate distribution of the other links, as we did previously for front-end servers. T-test

execution can occur, as mentioned, on a per-server level or on a per-rack level. The results

can be processed, as before, by a centralized controller running the Chi-Square test.

5.6.3 Evaluation

Having described our updated mechanism for detecting partial faults at bulk-traffic

servers, we evaluate it within a datacenter pod hosting WarmStorage servers. We focus primarily

on the continued applicability of the per-server or per-rack T-test. We focus on the precision

(low false positives) and recall (low false negatives) of the T-Test when operating at different

frequencies, and for different intermittent packet loss rates.

Experiment setup

We instrument three racks of WarmStorage servers in a single pod, comprising 60 servers

in total. We install our packet-marking rules onto a single pod switch, revealing to each server

the path of all inbound traffic. Of the links connecting the Agg. switch to the network core, we

induce partial fault behaviour affecting traffic transiting exactly one link by installing firewall

rules at servers which randomly drops a small percentage of packets carried by the link.

Having thus induced intermittent packet loss, we configure the servers to track packet

IPv6 flow-label fields for each flow over time, and generate per-link distributions for per-server

and per-rack T-tests as described earlier. We compute T-test results over various intervals over an

overall period of several hours.

To characterize the precision and recall of the T-test with the flow-label churn signal, we

vary the degree of the packet loss from 0% (no loss) to 0.5%, and the frequency with which the
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Figure 5.7. T-test p-value distribution as a function of T-test aggregation interval and packet loss
rate for WarmStorage racks.

T-test is run from 60 seconds to 600. We also compute the T-test on a per-server and per-rack

basis, as well as across all 60 servers combined to determine the degree to which aggregating

measurements across servers is helpful or not.

T-Test precision and recall

Due to the sparseness of the flow-label churn derived signal, we find that the T-test hit

rate, or recall, on a per-server basis, is low when calculating the T-test every 60 seconds. For

example, for a 0.5% drop rate, the T-Test yields a p≤0.05 approximately 15% of the time (c. f.

nearly 90% of the time for front-end servers with a 10 second interval). For 0.2% drop rates, the

distribution of T-test p-values is indistinguishable from the no-error case.

However, this does not mean that we are unable to leverage this methodology—rather

than treat each server individually, we still have the ability to aggregate collected data and treat

each server rack as a ‘large’ server. Figure 5.7 depicts, for a variety of packet-loss rates and

T-test aggregation frequencies, the distribution of the T-test results from the three measured racks

over the four-hour runtime of the experiment. For example, if we consider the case where the
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T-test runs every 60 seconds, we receive 3 data points (one for each rack) per 60 second interval,

and thus 3*240 = 720 data points over the four-hour period. A typical pod consists of a few tens

of racks and could collectively generate the same volume of data points within a few minutes.

Each series in Figure 5.7 uses colouration to depict loss rate, where red, purple and orange

depict 0.5%, 0.3% and 0.2% respectively. Each marker style depicts the T-test aggregation period,

where circle markers correspond to 60 seconds and diamond markers correspond to 120 seconds.

As an example, if we consider a 0.3% packet loss and run the T-test once every 60 seconds, then

close to 80% of the resulting T-test p-values are ≤ 0.05, giving us a hit-rate of close to 80%.

Recall that for front-end servers under a 0.25% loss, the T-test had a hit-rate of roughly 75%;

across 90 servers worth of data, this provided enough confidence for a centralized controller

running the Chi-square test to correctly deduce the presence of a partial fault.3 Thus, given a 0.3%

or higher loss rate, per-rack aggregation and a 60-second T-test interval, outlier-analysis-based

partial fault localization appears to be applicable to WarmStorage workloads.

However, a 0.2% loss has a significantly lower hit rate of ≈ 20% with a 60-second test

interval. Increasing the test interval to 120, 300 and 600 seconds does boost hit rate to ≈ 40%,

70% and 90% respectively, however. In the front-end scenario, these hit-rates did allow the

Chi-Square test to deduce the presence of a faulty link, though a 40% hit-rate required the

controller to aggregate multiple rounds of T-test results for detection to occur. Thus, even for a

0.2% loss rate, outlier analysis is applicable for partial-fault detection. However, the signal was

not strong enough to catch a 0.1% packet loss rate; at that point, the signal was not strong enough

to rise above the noise of the usual incidence of flow-label churn we see in the no-error case.

That said, the behaviour of the T-test p-value distribution in the no-error case does suggest

an alternative approach. In particular, the no-error case yields a roughly uniform distribution of

p-values regardless of T-test interval. On the other hand, for a 0.2% loss when using a 60-second

T-test, we observe a decidedly non-uniform distribution. For any T-test interval, for a 0.2% or

higher loss rate, we see a marked shift to the left for the p-value distribution.

3For front-end servers, though, the T-test only had to run for 10 seconds instead of 60.
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Thus, instead of running the Chi-Square test by bucketizing by link and counting the

number of T-test hits per link as we did for front-end servers (where a T-test hit is a p-value ≤

0.05 and we look for outlier links/Chi-square buckets), we could run a separate instance of the

Chi-Square test per link and determine whether the p-value distribution was uniform or not, and

use that to determine if a fault was present. This approach would hypothetically allow us to catch

the 0.2% loss fault within 60 seconds, if we formed a distribution using every rack in the pod.

5.7 Alternative methods

Alternative methods abound for investigating datacenter faults. One option is to couple

switch counters with programmable switches. For example, suppose a switch is configured such

that when a packet is dropped, either due to error or queuing pressure, it is probabilistically

sampled to the switch CPU (note that with switches shifting millions of packets a second,

examining all packets leads to unacceptable CPU overhead). Additionally, some switches can be

configured to sample packets from high occupancy queues. Thus, counters could indicate a fault,

while sampled packets could be used to build a picture of which traffic is impacted.

While this method can alert network operators to faults, it is slow in determining impacted

traffic. Suppose a link carrying 2,000,000 packets per second develops a 0.5% drop rate, leading

to 10,000 drops per second. Such a link might be carrying 10s of 1000s of flows, however. With

a relatively high 1 in 100 sampling rate (100 packets per second), and with just 10,000 flows

carried (a large underestimation) it would take around 100 seconds to determine all the flows if

the sampling was perfect and captured a different 5-tuple each time. Furthermore, sampling is

subject to bias; a lightweight flow carrying control traffic might lose packets but fly under the

radar of sampled dropped packets. One heavy handed potential approach could be to disable

the entire link; however, consider the case of a partial fault only affecting a subset of traffic (for

example, a misconfigured routing rule). In such a case, disabling the entire link would penalize

all traffic routed through that link without providing any insight to the underlying problem.
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For contrast, our proposed system can quickly identify all the flows impacted by a link

error in a less than a minute in several tested cases. In the case of granular errors affecting

only a subset of traffic (by source or destination subnet, application port, queuing policy, etc.)

our mechanism can still detect outliers, enabling servers to reroute around damaged links for

afflicted traffic as a stopgap measure. Note that switch counters can be used in conjunction with

our methods; features of sampled dropped or latency enduring packets could be used to guide

our system’s binning of flows in order to converge on which traffic is affected by link faults

even quicker. Furthermore, our proposed system is ASIC agnostic since we do not rely on the

features of any given chipset. Finally, it is robust to unreliable reporting by switches, as well as

the uncertainty of counters that might arise within environments using cut-through routing.

5.8 Metric robustness

Here, we demonstrate the effectiveness of our approach in the presence of pathological

confounding factors. These experiments are performed on our private testbed, since we could not

induce harmful configuration changes in production traffic. We focus on syscall latency metrics,

which are less obviously robust to many of these factors. To save space, we omit similarly strong

results using TCP statistics.

5.8.1 CPU utilization

Datacenter networks run a variety of applications, frequently with stringent CPU require-

ments and high utilization. To be general, our approach needs to cope with high utilization figures.

Furthermore, while some datacenters run applications on bare metal hardware, a significant

number of installations use virtual machines.

To ascertain the impact of virtual machine hardware and high CPU utilization on our

approach, we set up an experiment where each server in our private testbed runs two virtual

machines, cpuvm and netvm. Each instance of cpuvm runs a variety of simultaneous CPU

intensive tasks: specifically, a fully loaded mysql server instance (with multiple local clients), a
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Figure 5.8. select() latencies per core switch for the two-VM CPU stress test.

scheduler-intensive multithreading benchmark, and an ALU-operation-intensive math benchmark.

These tasks cause the CPU utilization of the bare metal server to go to 100%. Meanwhile, each

instance of netvm runs a bidirectional client-server communication pattern using flow size

distributions prevalent in certain datacenters [112]. This situation is analogous to the case where

one VM is shuffling data for a map-reduce job, while another is actively processing information,

for example. Figure 5.8 depicts the distribution of select() latencies across each core switch

in the presence of this extreme CPU stress. The distribution corresponding with paths through

the faulty switch are clearly distinguishable, with a median value over three orders of magnitude

greater than the no-error case. These variations enable a 100% accuracy rate of flagging the

faulty link using our chi-squared test over 1-minute intervals for a 5-minute long test.

5.8.2 Oversubscription and uneven load

Thus far, all our experiments have networks without saturated core links. While this is

a desirable quality in real deployments, it might not be feasible depending on the amount of

130



oversubscription built into the network. Furthermore, in heterogeneous environments such as

multi-tenant datacenters, it is conceivable that not every server is participating in monitoring

traffic metrics. Finally, not every system that is being monitored is subject the same load.

To determine how our approach deals with these challenges, we devised an experiment

in our private testbed where 1/3rd of our 27 servers are no longer participating in monitoring.

Instead, these servers suffuse the network with a large amount of background traffic, with

each so-called ‘background server’ communicating with all other background servers. Each

background server sends a large amount of bulk traffic; either rate limited to a fraction of access

link capacity, or unbound and limited only by link capacity. In conjunction with this, our network

core is reduced to 1/3rd of normal capacity: from 9 core switches to 3. Thus, the background

servers can, by themselves, saturate core capacity. Our remaining 18 servers continue to run the

bidirectional client-server network pattern, with one important difference: rather than all servers

having the same amount of load, they are partitioned into three classes. The first class chooses

flow sizes from the Facebook cache server flow size distribution [112]; the other two classes

choose flow sizes from larger 4× and 16×multiples of the Facebook distribution. In other words,

the 4× distribution is simply the regular distribution, except every value for flow size being

multiplied by 4. Thus, the link utilizations of the 4× and 16× distributions are correspondingly

higher than normal. While the regular distribution has a link utilization of roughly 100 Mbps in

this case, the 4× case and 16× cases bring us to roughly 40% and 100% utilization respectively.

Figure 5.9 depicts the select() latency distribution for this scenario as a multi-series

CDF. Each series represents the distribution for a single network path; there is one faulty path and

two working paths in this case. The x-axis depicts nanosecond latency. Despite the combination

of confounding factors, the faulty-path distribution remains significantly higher (skewed higher

in the figure) than non-faulty paths (possessing similar distributions). Correspondingly, select()

latency signal remains useful. Using 1-minute intervals, the chi-squared test output remained

close to p= 0 when we considered all paths, and close to p= 1 when the faulty path was removed

from the set of candidate paths; thus, we successfully find the faulty link in this scenario.
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Figure 5.9. select() latencies per core switch for the oversubscribed background traffic uneven
server test.

5.8.3 Sensitivity to TCP send buffer size

Our system call latency approach uses the latency of select()/epoll() calls by servers

that are sending data over the network as a signal. As a reminder, when an application calls

select()/epoll() (or send()) on a socket, the call returns (or successfully sends data) when

there is enough room in the per-flow socket buffer to store the data being sent. Thus, the

distribution of results is fundamentally impacted by the size of the per-flow socket buffer. Note

that with the advent of send-side autotuning in modern operating systems, the size of this buffer

is not static. In Linux, the kernel is configured with a minimum size, a default (initial) size and a

maximum size, with the size growing and shrinking as necessary.

By default, our testbed systems are configured with a maximum send buffer size of 4

MB. Values for median buffer size vary from 1.5–2.5 MB for servers and 0.8–1.2 MB for clients

in our bidirectional traffic pattern. To determine the sensitivity of our approach to buffer size,
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Figure 5.10. select() latencies per core switch for the 10-Gbps 16-KB socket send buffer test.

we first increased the buffer size to values of 8 and 16 MB. Then, we decreased the buffer size

significantly, to values of 52, 26 and 16 KB (note that 16 KB is the default initial size). We

noticed that TCP autotune prevents the buffer from growing too large even if the maximum is set

significantly higher than default; accordingly, raising the maximum had little to no impact.

Reducing the maximum buffer size, however, is expected to have a larger impact on our

metrics. Intuitively, a smaller buffer should correspond with higher overall buffer occupancy;

thus, a larger percentage of select() and send() calls would need to wait until the buffer is

drained. Buffer reductions should have the two-fold effect of shifting the select() latency

distributions to the right—since more calls to select() wait for longer—and decreasing the

distance between a faulty-path distribution and the normal case.

To test this case, we ran our bidirectional client-server traffic pattern with 1-Gbps NICs

on our k = 6 testbed, and with 10-Gbps NICs on our three system setup. We ran a low-intensity

(roughly 50 and 300 Mbps link utilization per client and server, respectively) and a high-intensity

test (roughly 1–2 and 5–7 Gbps for clients and servers respectively in the 10-Gbps case, and
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Figure 5.11. select() latencies per core switch for the no-offload test with CPU stress.

saturated server links in the 1-Gbps case). We noted that in all the low-intensity test cases, and

in the 1-Gbps high-intensity cases, we were able to derive a clear signal and successfully pick

out the faulty link using 1-minute intervals. In our worst-case scenario of 10-Gbps links and a

16-KB send buffer size, we note a significant skew to larger values by ≈ 3 orders of magnitude,

as predicted, as depicted in Figure 5.10. While the faulty distribution is closer to the non-faulty

distributions, there is enough divergence to differentiate it from the pack, albeit requiring our

statistical tests to run over longer time intervals. We note, however, that such small send socket

buffer sizes are unlikely in real-world deployments.

5.8.4 The effect of NIC offloads

Contemporary NICs have a variety of offload features designed to cut down on server

CPU utilization (which may be heavily utilized in datacenter environments). For example, TCP

discretizes a continuous stream into individual packets determined by path MTU; a feature called

”TCP Segmentation Offload” allows the NIC to perform this discretization, saving CPU effort.
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NICs typically implement three common offload features: TCP Segmentation Offload,

Generic Segmentation Offload and Generic Receive Offload. All our previous experiments had

these features turned on in every server. To test the sensitivity of our approach to the availability

and state of these features, we re-ran the bidirectional client-server traffic pattern with all three

offload features turned off. Figure 5.11 depicts the select() latency distribution for two clients

and one server within our private testbed with all offloads turned off and a CPU utilization of

100% using the combination of programs described in the CPU stress test earlier. This scenario

represents a sort of worst case for our approach due to the high CPU utilization required to push

multiple gigabits of traffic without offload; despite this, our approach is still able to correctly flag

the faulty path over a 30-second interval.

5.9 General-case topologies

The characteristics of the production datacenter we examined in this work lends itself to

relatively simple diagnosis of which link is faulty based on per-link performance metric binning;

however, alternative scenarios may exist where either traffic is not as evenly load balanced, or

a different topology complicates the ability to subdivide link by hierarchy for the purposes of

comparison (for example, different pods in a network might have different tree depths).

Our method fundamentally depends on finding roughly equivalent binnings for flow

metrics, such that outliers can be found. In the case of a network with hot spots or complicated

topologies, which can confound this process, we can still make headway by considering links at

every multipath decision point as a single equivalency group. If one of these links exhibits outlier

performance, the flows traversing the link can be marked individually as faulty rather than the

link as a whole, and the flow and the traversed path can be submitted as input to a graph-based

fault localization algorithm such as SCORE [84] or Gestalt [104]. We leave the evaluation of

such a scenario to future work.

135



5.10 Summary

Having presented our primary contribution, we now revisit the partial-fault localization

success criteria we presented earlier to determine how our methodology reaches and falls short

of our goals. We claim considerable success on reaching every criteria described:

1. Speed of detection Traffic temporal stability plays a key part in determining partial-fault

detection speed. Facebook web and cache server traffic possesses per-second stability—in

other words, every second of traffic possesses similar aggregate characteristics compared

to the seconds before and after—and allows us to successfully detect a partial fault with as

little as 0.5% randomized packet loss in 10 seconds. Even as drop rates diminish to 0.1%,

it is still possible to detect the partial fault responsible within two minutes.

For temporally-variable traffic like Hadoop and WarmStorage, timescales around

1 (0.5% packet loss) or 2 (0.2% packet loss) minutes were sufficient, despite the heavy

variations noted in traffic on a minute-by-minute basis [112]. In either case, we note a

significant improvement over manual-intervention methods that can take hours [126].

2. Sensitivity to minuscule faults and false negatives Sensitivity to minuscule faults, and

thus our false-negative rate, also depends on traffic. When examining Facebook web and

cache traffic, our approach pinpointed packet-loss rates of 0.1%; when examining bulk

Hadoop and WarmStorage we detected losses of 0.2% or greater. These rates are comport

with studies revealing 0.1-0.2% ambient loss occurring in Facebook ToR switches [131].

We hypothesize that higher standing switch buffer utilization associated with Hadoop [131],

coupled with greater temporal instability [112] are responsible for the greater ambient

packet loss and thus reduced partial fault sensitivity by our methodology.

3. Accuracy and false positives in the face of network variability Due to centralized

filtering of per-server fault indications and looking for consistent outliers, we did not

encounter any false-positive events during the weeks that our prototype was active.
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4. Ability to detect varied faults Our methodology detects faults due to their impact on

perceived packet loss and latency, thus making it agnostic to the underlying cause of the

fault. Furthermore, we were able to detect changing aggregate traffic characteristics due to

routing anomalies caused by a control-plane fault, thus indicating that any event with a

performance impact should be detectable by our system.

5. Ability to pinpoint fault location and correlate application impact By construction,

our system is able to both localize faults to a particular link, switch or port and allow users

to determine specifically what traffic is impacted by the fault located at each component.

6. Resilience against faulty monitors Since our method does not depend against switch-

based monitoring and since it does not require every server to successfully detect a fault

in order to pinpoint the fault, we claim that it is wholly resilient to faulty or unreliable

switch-based monitoring and partially resilient to unreliable servers that incorrectly fail

to diagnose faults. Note, however, that we do not claim resilience against malicious and

coordinated incorrect reporting of faults.

7. Computation, storage and network overheads Our methodology minimizes network-

switch CPU requirements (since packet marking uses ASIC support) and servers (empiri-

cally measured). It also imposes low network and storage overheads for aggregated data

that is sent to the centralized controller that performs the actual localization step.

8. Need to modify hardware and application software Finally, our methodology requires

no user application or server kernel changes (assuming, of course, utilization of recent

Linux kernels) and leverages existing switch features for path marking.

Thus, we consider our equivalence-set based approach as providing an effective and

realizable solution for quickly and accurate localizing partial faults within contemporary data-

center environments, in a manner that is fundamentally agnostic of the root-cause of the fault

and that applies to varying kinds of applications. Next, we will consider how our approach may

be impacted within so-called ‘Cloud’ or ‘Tenant’ centric datacenters.
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Chapter 6

Monitoring virtualized cloud datacenters

Previously, we focused on private ‘first-party’ datacenters that are owned and operated

by a single entity that controls all of the infrastructure and traffic within the datacenter. Of

ever-increasing importance, however, is the so-called ‘cloud’ datacenter, whose operators lease

computing and networking infrastructure to third-party tenants.

Web service operators and IT-dependent enterprises alike are increasingly relying on

cloud providers to address their computational needs. Cloud tenants simultaneously expect high

reliability and performance in order to deliver quality service for their own users. Performance

and reliability expectations are typically codified through service level agreements (SLAs). It is

critical for cloud providers to detect and mitigate infrastructure faults in a timely fashion.

Certain cloud datacenter characteristics complicate fault localization. To support po-

tentially conflicting customer use-cases, cloud providers employ extensive virtualization: host

virtualization provides isolation and resource multiplexing so that multiple tenants can share the

same server. Similarly, network virtualization allows tenants to operate within cloud datacenters

without undue complexity or contention. Rather than sharing IP addresses and logical network

topology with other customers, tenants typically operate inside of virtual networks within a

software-defined network (SDN) overlay provided by the datacenter operator.

Much is known about managing physical datacenter infrastructure faults. On the other

hand, comparatively little has been published regarding the operational realities of managing
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virtualized, multi-tenant networks utilizing logical network overlays networks to provide strong

isolation in multi-tenant datacenters. While the end goal of fault monitoring is the same,

virtualized networks impart both additional management powers and monitoring challenges in

the form of indirection layers, black-box tenants, and additional infrastructure complexity.

As cloud datacenters increase in scale, complexity and popularity, it is important to

consider reliability and fault localization in the context of cloud-specific challenges. This

includes characterizing the additional complexities incurred by virtualized tenant datacenters,

the types of faults that may occur (above and beyond those that affect non-virtualized private

datacenters) and the effectiveness of cloud datacenter monitoring.

We present a first look into the nuances of monitoring these “virtualized” networks

through the lens of Microsoft Azure, a large-scale cloud provider, focusing on tenant virtual

network (VNET) monitoring. Specifically, we describe VNET Pingmesh, a VNET liveness

and latency monitoring system, focusing on the challenges associated with building a fault

monitoring system in a cloud environment. In addition, we present a preliminary study of the

data it has collected in production, allowing us to answer these high-level questions:

1. How can cloud operators (as opposed to tenants) effectively monitor VNET performance,

given black-box tenants? Can physical network monitoring tools [64,113,133] be usefully

adapted to virtualized networks? How does virtualization impact monitoring precision?

2. What additional risks—beyond those also present in non-cloud datacenters—do virtual

environments pose? What additional classes of faults occur, and how might they impact

tenant performance?

While VNET Pingmesh has yielded several monitoring and fault diagnosis wins in

production, we find that subtle interactions between SDN network virtualization, tenant behavior,

and non-network infrastructure can reduce monitoring precision—complicating fault diagnosis

by either raising alerts that do not correspond with customer impact, or potentially overshadowing

the impact of actual network faults.
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We highlight two specific interactions involving local disk I/O and tenant-deployed

middleboxes. In both cases, VNET Pingmesh measurements suggested network performance

anomalies yet customers were not complaining. Moreover, physical network monitoring tools

indicated the underlying datacenter network was performing well. We diagnose the specific

mechanisms that cause these measurements, finding that interactions involving both SDN

infrastructure and tenant behavior together can induce false-positive indications of poor network

performance despite a lack of actual customer impact. Finally, we describe how we account for

each effect. Our preliminary experience suggests two takeaway lessons:

VNET monitoring must be subject to ongoing validation to ensure precision. While

confounding effects can be handled when found, the ever-increasing search space of cross-layer

interactions coupled with ever-expanding network feature sets suggests that handling all possible

effects a priori is infeasible, turning VNET performance validation into an ongoing task.

End-host behavior can induce networking anomalies and complicate mitigation. End-

host participation in the network plane, including the use of software virtual switches, means that

faults or performance anomalies hitherto contained within individual end hosts can now affect

disparate servers across disjoint virtual networks. Even when faults are diagnosed, mitigation is

not always straightforward: while an operator can route around damage in a physical network,

she may not be able to “route around” virtual switches or reboot misbehaving servers as easily.

While we do not evaluate this dissertation’s main contribution—specifically, our partial-

fault localization system—at Microsoft Azure, we do speculate on how the additional challenges

imposed by cloud datacenters may impact our system’s operation.

6.1 Datacenter fault monitoring

Contemporary large-scale, multi-path datacenter network fabrics have been subject to

considerable scrutiny; various studies have provided both taxonomies of common network

failures [64, 117, 126, 131, 133], networked application performance [112, 126], and methods for
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pinpointing the cause and location of performance-sapping faults [22, 23, 113, 126]. In addition

to the contribution made by this dissertation, network performance monitoring and anomaly

detection has received significant study. Contemporary approaches include active-probing

techniques, where specially crafted traffic is injected into the network in order to ascertain

liveness and adequate performance [11, 59, 64, 130]. Tracing infrastructures correlate network

behavior with packet network paths, in case a fault is deep within the network core [22, 133].

Server statistics [23, 100, 112] and switch counters [38] are also used to monitor networks.

VNETs may be impacted by the same ailments as physical networks, and accordingly

tools such as Pingmesh [64] do see use in multi-tenant datacenter networks. However, they are

not always easily applied; customer applications may run within a VM, where neither application

metrics, OS level metrics or the ability to run code are available to the network operator. Some

strategies can still be applied, however; VMs often use a server-based virtual switch to access the

network that the network operator does control, allowing the recovery of some transport-level

statistics [57] or other potentially useful indications like Vswitch drop counters.

Microsoft Azure leverages a monitoring system that can be deployed by a datacenter

operator without tenant involvement, yet accurately reflects customer experience. Moreover,

in order to meet stringent SLA requirements, it is lightweight enough to be run continuously.

After describing the tool below, we examine the statistics gathered from the deployment of this

system on a large cloud providers network and discuss what they reveal about the impact of

VNET overlays on network performance.

6.2 Azure VNET overview

Microsoft Azure consists of datacenters within geographic regions across the world. Each

region can contain several datacenters, each of which can contain several clusters. A cluster

contains multiple racks aggregating (physical) servers. Azure VMs are multiplexed across these

servers, and are organized into isolated, non-interfering VNETs.
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6.2.1 VNET addressing and packet handling

VNETs are topologically flat, L3-addressed IP network overlays built atop the physical

topology. VNETs can aggregate thousands of individual VMs, each with one or more virtual

NICs. Each NIC has a customer-chosen virtualized “customer IP address” or “CA”. Customer

applications on a VM will address other VMs in the VNET using CAs.

VM network access is provided via a bespoke physical-server-based virtual switch

(“Vswitch”) called VFP [54]. Each VFP instance has several virtual ports; one is connected to a

physical NIC and the others to VM virtual NICs. An outbound VM NIC packet is transformed

by per-port processing layers, each with distinct tasks (like metering traffic or implementing

customer ACLs [54]). One layer translates CAs to an IP “physical address” (“PA”) that is routable

on the underlying network, providing VNET isolation. CA⇒ PA mappings are dynamic; actions

like creating or deleting a VNET or VM can change mappings. Mappings reside in a reliable

distributed directory. A per-server userspace agent receives updated mappings from this directory

as network allocation state evolves. When a VM starts a network flow to a given CA, the CA⇒

PA mapping for the flow is queried from the userspace agent and cached in the kernel datapath;

subsequent packets leverage this cache. Cached mappings are evicted after inactivity timeouts.

6.2.2 Monitoring via VNET Pingmesh

Reliable, low-latency inter-VM connectivity is essential to network performance. Ping-

based liveness testing aids physical network monitoring [11, 64], suggesting one strategy may

be to uplift such systems and measure liveness between VMs within VNETs. Thus, we devise

VNET Pingmesh to measure VNET-layer network quality from the tenant’s point of view. For

VNETs comprising ≥ 1 CA, we track full-mesh CA⇒CA ping latencies (cf. Pingmesh [64],

where full-mesh statistics are impractical due to scaling considerations). While straightforward

in principle, several cloud-specific subtleties emerge that we must account for, above and beyond

existing challenges inherited from physical-layer systems like physical Pingmesh.
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Fundamentally, we need to measure VM-observed network health without VM access

(preventing VM deployment of Pingmesh or monitoring VM TCP statistics). Experience shows

that VM-host monitoring alone does not suffice due to the potential for VNET-specific perfor-

mance anomalies. To measure VNETs, we leverage Vswitch-level control and inject specially

crafted TCP-based pings that appear to the network as if they were generated by the VM itself.

The receiving Vswitch transparently responds to these pings; VMs never see these ping packets,

enabling us to measure observed VNET latency without disturbing customers.

While physical Pingmesh measures end-to-end latency from a userspace agent on the

physical server OS, VNET Pingmesh latency is measured from the kernel of the physical server

where VFP operates. Thus, VNET Pingmesh probes—when they hit in the mapping lookup

cache—are not subject to context switching and scheduler variation, and thus can deliver lower

(likely closer to actual) latency measurements than physical Pingmesh. On the other hand, unlike

physical-layer tools, we have to anticipate and account for tenant-environment and SDN-specific

confounding behaviors. Private datacenters are advantaged because, at a high level, a single

entity drives all network behaviors and configuration. Similarly, non-SDN datacenters are

relatively uncomplicated and well-understood. In contrast, cloud networks are driven by the

network operator and tenants and possess additional moving parts. Thus, if unaccounted for,

these qualities may reduce monitoring precision.

Some interactions are easily foreseeable and accounted for by the initial VNET Pingmesh

deployment. Other interactions, however, were unexpected and discovered only during validation

of production statistics; we discuss these statistics and the cases they reveal in Section 6.3. Both

classes of impacts result from VNET Pingmesh being impacted by tenant actions and reporting

measurement artifacts that do not correspond with actual customer impact. While the fixes may

be straightforward (or not) in either case, accounting for every possible effect is difficult in a

complex system with ever-increasing scale and feature sets.
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Interactions with customer rulesets

While full intra-VNET VM connectivity is desirable, customers can install ACL rules

to support firewalls and gateways which can interfere with VNET Pingmesh. To avoid ACL

traps (and avoid metering pings as customer traffic), we simply inject pings after ACL and meter

VFP layers [54]. Similarly, customers can install “User-Defined Routes” (“UDRs”) to support

middleboxes. While ACL interactions were easy to foresee and account for, UDRs resulted in

unanticipated interactions with VNET Pingmesh. We discuss UDRs further in Section 6.3.2.

Interactions with customer VM lifecycle

Tenant networks possess significant churn due to unpredictable creation or destruction of

VMs and VNETs. If a VM is shutdown or disconnected, VFP disconnects the corresponding

Vswitch virtual port, and pings to the port are ignored. Thus, if a VM is destroyed, one can expect

transient ping failures until the VM is delisted. However, rather than only causing occasional

loss spikes, this effect can cause severe, persistent and cyclical false-positive loss indications

within certain VNETs. Specifically, some clients shut down multiple VMs during non-business

hours to save costs. Unaccounted for, this can manifest as large-scale loss.

Despite not anticipating how common VM shutdowns would be in practice, we foresaw

the need to filter statistics. We correlate VM and VM-NIC liveness from separate monitoring

systems with VNET Pingmesh and filtered out connectivity loss indications from shutdown VMs,

and are investigating Vswitch mechanisms that can disambiguate between a failed VM and an

administratively disabled one.

6.2.3 Successful monitoring outcomes

VNET Pingmesh indicates good overall VNET performance; in a randomly chosen

period, across all Azure, ≥ 94% of VNETs meet or exceed latency requirements ≥99.999% of

the time when considering per-VM 5-minute averages. Furthermore, measurements indicate that

Azure achieves just under five-9’s connectivity across every VNET in a typical hour. Despite
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favorable high-level metrics, large network scale means that faults do occur. Here, we discuss

representative success stories before focusing on confounding effects for monitoring.

In March 2017, a datacenter incident prompted various clients to raise support requests

complaining about high VM-to-storage latency. Initially, storage was suspected, however, a

correlated VNET Pingmesh latency spike suggested a network cause. No physical network or

‘Canary’ (VMs deployed in each rack in the datacenter that periodically initiate connections on

various common ports, monitor, and alert on these connection’s failures) alarms were triggered.

Later correlation with physical Pingmesh along with address resolution failures during the

affected time-period confirmed a network fault. Detailed investigation revealed a linecard

configuration and attendant congestion as the root cause. Another incident involved customer

VM connectivity issues, confirmed through a transient but significant drop in VNET Pingmesh

connectivity. Correlation with other monitoring systems identified a ToR reboot as the root cause.

In both cases, VNET Pingmesh, coupled with time-based correlation with other mon-

itoring systems proved invaluable in incident diagnosis. In these instances, VNET Pingmesh

alarms were true positives: its latency metrics correlated strongly with customer-reported impacts.

On other occasions, however, VNET Pingmesh’s measurements frustrated operators, both due

to wasted effort diagnosing alerts with no customer impact, and by failing to identify actual

performance issues. We discuss these realities in the next section.

6.3 Measuring Azure VNETs

In a network comprising O(1M) virtual servers, incidents are inevitable. Diagnosing

incidents with VNET Pingmesh depends on monitoring precision, which cloud-network-specific

effects can impact. Previously, we described several confounding effects that we anticipated

and accounted for during VNET Pingmesh’s initial design. Ongoing validation of our statistics

revealed further interactions that, while simply understood with the benefit of hindsight, were

not apparent before large-scale rollout. Here, we describe the metrics captured by VNET
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Pingmesh and certain unforeseen interactions that yielded false-positive indications of poor

network performance, despite no actual impact to customers.

While we have adapted VNET Pingmesh to account for these interactions, we highlight

high-level similarities in these cases that suggest that accounting for every possible confounding

effect a priori is unrealistic. First, each issue was influenced by actions driven by non-network

actors: either another layer of Azure infrastructure, or by tenant network usage. Second, each

issue was an edge case, which both complicated initial analysis and can be hard to speculate

about. Third, the continued growth of Azure’s feature set both increases the future likelihood of

such interactions and complicates the task of searching the state space of all possible interactions

a priori. Thus, even though accounting for a given issue is relatively simple, it may have to be a

reactive process as tenant networking continues to evolve.

6.3.1 Server utilization and fake latency spikes

Physical network latency can be explained by differences in locality (inter-pod latency

is higher than intra-pod), queuing delay (causing relatively small increases in latency) and

packet loss (larger, multi-millisecond increases in TCP latency). Deviations from baseline

performance have been considered as evidence of network faults [11, 64, 113]. While VNET

latency anomalies often correlate with physical network faults, we discovered interactions

between VNET infrastructure and other parts of the Azure infrastructure could confound our

ability to determine if a high-latency indication was an actual customer issue or a false-positive.

Pingmesh [64] leverages physical network structure and locality to present a 2-D heatmap

network view, where specific failures yield characteristic visual patterns. VNETs discard that

structure due to the locality-independent flat address space model. However, we can project

VNET latency data onto the underlying physical network. Figure 6.1 depicts latency measured

in a single cluster over one hour, projected to physical rack. Every cell depicts latency between a

source (x-axis) and destination (y-axis) rack, measured as the average latency of all VMs in all

VNETs present in all servers in the source rack. Several interesting features emerge:
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1. Latency averages are on the order of hundreds of microseconds to a millisecond, higher

than expected for datacenters. Intra-rack latency is ≥ 2.5× inter-rack latency on average.

2. Several racks have an average latency of ≥ 1.5× the median rack, delineated by darkly-

colored intersecting horizontal and vertical stripes. On the other hand, some racks experi-

ence ping latency averages an order-of-magnitude smaller than other servers.

3. While omitted for space reasons, other clusters contain servers with outbound latency

(pings generated by the server) ≥ 2× inbound latency.

These effects are due to misses in the kernel CA⇒ PA mapping cache. Since VNET

Pingmesh iterates through CAs consecutively, large VNETs with sparse traffic matrices may

lead to cache misses for a given ping, unless the VM was actively communicating with the

pinged VM. High average latencies can thus be explained by large VNETs—as a large fraction

of measured latencies are due to large VNETs, their performance dominates. High intra-rack

latency can also be explained by large VNETs; since VM placement within a cluster is random,

pinging a VM in the same rack is more likely for large VNETs. Cold stripes correspond with

either servers handling VMs within small VNETs exclusively (if the VNET size is small enough,

mappings will always be within the cache due to VNET Pingmesh) or VMs in large VNETs that

constantly communicate with other VMs.

Thus, for small VNETs, VNET Pingmesh measures actual network latency from the

local Vswitch to the remote server’s Vswitch, and comports with physical Pingmesh behavior.

Figure 6.2 depicts the latency for small and large VNETs, bucketed by the locality of the

destination. Small VNET latency values are on the order of 10s of microseconds at most for intra-

cluster destinations, and are correlated with the locality of the destination server. Large VNET

latency is higher, cluster-dependent, and noisier. Latencies range from 100s of microseconds to a

millisecond depending on cluster, with a deviation on par with the total latency for small VNETs.

Locality and latency trends vanish—instead, mapping-lookup context-switch jitter dominates.
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Table 6.1. Probability that physical layer Pingmesh ≥ 1.5× cluster average if VNET latency
≥ 2× average for a VM.

Category % incidents % physical
anomalous

Total 100 40.90
Large VNETs only 59.00 23.50
Small VNETs only 22.60 55.00
Large and small VNETs 18.40 79.00
Server->ToR packet loss 2.20 92.60

Meanwhile, a stubborn minority of servers yielded consistently high latency (i.e. ≥ 2×

other servers for the same VNET) for large VNETs, despite low average resource utilization

and without any corresponding issues for co-located small VNETs or physical latency. Over

a randomly picked hour with no active networking alerts, we considered servers hosting ≥ 1

VM with an average outbound ping latency of ≥ 2× the average within its corresponding VNET.

We categorize each server into one of three categories, depending on whether all of the VMs

onboard with poor latency belong to large VNETs only, small VNETs only, or a mix of large

and small VNETs. Table 6.1 depicts the probability that physical Pingmesh reports a latency

anomaly on a server, given that at least one VM on the server has ≥ 2x the average latency for

its VNET, grouped by the kinds of VNET impacted. We call physical latency anomalous if the

average server ping latency is ≥ 1.5x the cluster average.

Almost 20% of the time, both large and small VNETs are impacted. These seem to

correlate highly with network fabric based latency woes—nearly 80% of the time, physical

Pingmesh is also impacted in these cases. On the other hand, around 60% of high latency

indications impact large VNETs only. A relatively small fraction of this number includes VNETs

that may also be impacted by physical network fabric issues (only 23.5% of the incidences

coincide with physical Pingmesh latency anomalies) suggesting that these false-positives may

confound detection if not accounted for.
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Thus, as initially deployed, VNET Pingmesh complicates large VNET latency analysis

in two ways. First, mapping lookup jitter and magnitude may wash out actual network latency

spikes. Second, two effects confound interpreting latency: traffic patterns can induce cold spots,

and mapping lookups can cause hot spots. Thus, VNET Pingmesh may not provide an accurate

picture of customer-experienced latency; some high latency indications are not performance

concerns, but still generate occasional monitoring alerts.

Some VNET-only latency spikes do impact customer performance, however, so effective

diagnosis is critical. Does the blame rest within VNET, or an external factor?

Finding the root cause.

The breakthrough was a VNET latency alert correlating with an OS-update roll-out

performed by an internal team. Detailed investigation showed that sustained high disk I/O was

interfering with user-space address mapping lookups due to a logging statement blocked on

disk I/O. Thus, while small VNETs and existing (mapping-cache hitting) connections were

not impacted, connections requiring a mapping lookup from user-space were. (Client disk

traffic was not impacted due to storage disaggregation.) Subsequent analysis of high VNET

latency indications across Azure showed a correlation between server I/O utilization and high

(false-positive) latency indications.

To quantify this effect, we examined the prevalence of latency alerts as a function of

server utilization in terms of both disk I/O and CPU. Figure 6.3 plots the likelihood that average

VNET latency for a server exceeds 2 milliseconds, as a function of disk and CPU utility. Both

graphs are normalized to the baseline probability at nominal utilization levels. We see a clear

correlation between utilization and latency; as average disk utility passes 10%, we see a sharp

increase in likelihood that latency is past acceptable boundaries.

We surmise that the same should be true for CPU utilization; in particular, that a heavily

loaded CPU may result in effects such as delayed scheduling for crucial VNET management

processes. One confounding factor is that CPU use can be bursty; since we measure utilization

as a 5-minute average, we cannot distinguish between a server CPU constantly at 5% utilization
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Figure 6.3. Multiplicative likelihood of high VNET Pingmesh latency vs. server utilization.
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(unlikely to incur significant increases in VNET latency) or at 100% utilization for roughly 5%

of the time—which would significantly impact latency during that period. Even so, a (weaker)

correlation between CPU utilization and high latency emerges.

Solution.

Having diagnosed the mechanism for VNET Pingmesh false positives, recovering mean-

ingful latency measurements for large VNETs is simple—we modify VNET Pingmesh to ping

more than once, and consider latencies after the first ping to show network latency while the first

ping can reveal mapping latency for large VNETs. In addition, modifying the mapping-lookup

user-space agent removes the interaction with disk utilization.

These results suggest that heuristically, we can use a simple classification for latency

anomalies—if only large VNET mapping latency is impacted, we may investigate VNET

infrastructure and server metrics first; if multiple VNETs of differing sizes suffer, we may

suspect a physical network root cause. Experience with physical network Pingmesh shows that

the amount of latency elevation can suggest the cause: small increases or jitter can correspond to

high buffer occupancy, while large increases may correspond to packet loss. Unfortunately, the

same is not true with VNET Pingmesh: the complexity of address mapping lookups means that a

variety of contending effects can increase latency by unpredictable amounts (server utilization

can drown out latency caused by the network) or decrease latency (traffic pattern), making it

harder to reason about differences in latency measurements over time.

6.3.2 Middleboxes and fake connectivity loss

Connectivity measurements also revealed persistent subnet-level connectivity loss, within

several VNETs. Despite alarming connectivity statistics for these VNETs, no customer issues

were raised. Investigating confirmed it was a false-positive indication of connectivity loss related

to a relatively subtle monitoring bug. Specifically, ‘User-Defined Routes’ (or ‘UDRs’, commonly

supporting middleboxes like gateways and firewalls) were, for some VNETs, stealing Pingmesh

ping responses, manifesting as a subnet-level loss in connectivity for VNETs with tunneling
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rules. Diagnosis was confounded by the infrequent incidence of the problem; a relative minority

of VNETs possess UDRs, a minority of which actually triggered the packet loss. Furthermore,

the behavior of the UDRs (and thus VNET connectivity) were subject to tenant modification,

providing limited windows of diagnosis opportunity for each VNET.

Once diagnosed, fixing the issue was simple; we simply modified VNET rulebase

generation to prevent UDRs from processing VNET Pingmesh packets, fixing the connectivity

metrics for the affected VNETs. In effect, this issue is akin to a routing black-hole, a classic

failure mode for physical networks. However, certain differences applied for VNETs that

complicated diagnosis. Physical routing black holes tend to have a large and obvious impact as

application traffic ceases entirely; here, though, we were faced with an edge-case black hole only

impacting monitoring traffic. Furthermore, while the network operator is responsible for physical

routing, tenant networks have the additional difficulty of user-influenced black holes forming.

6.4 Implications for partial fault localization

While we have not adapted or evaluated this dissertation’s primary contribution at

Microsoft Azure, we speculate here on how virtualized tenant datacenters provide additional and

significant challenges that can complicate our system’s task.

1. ‘Network’ partial faults may be caused by servers. Because servers are packet forward-

ing devices in VNETs, it naturally follows that server performance anomalies will now

manifest, both to customers and initially to network operators, as network anomalies. Thus,

fault diagnosis can gain complexity over first-party datacenters; servers may run more

black-box software contending for resources than network switches, possibly complicating

root cause analysis.

2. Server-based partial fault mitigation may be harder. Server-driven, network-impacting

partial fault mitigation can be daunting since, unlike the physical network case, datacenter

operators can neither route around faults (it is not obvious how to avoid impacted Vswitches
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or VMs) nor reboot or replace the server without potentially disrupting customers, though

VM live-migration will help alleviate this issue when deployed.

3. Path information is harder to recover. Middleboxes, load balancers, and user-defined

routing prevent us from unambiguously recovering full flow network path using a single-

switch marking as in the Facebook case. In particular, we can no longer rely on topology

characteristics to lock down flow path. Note that this is a surmountable challenge using

techniques like traceroute [22] or the alternative strategies we discuss in Section 5.3.1.

4. Equivalent sets may be harder to form. In the Facebook scenario, each server possessed

thousands of active flows each minute traversing the network core. Within Azure, different

tenants display varying network utilization and traffic patterns. While some VNETs

may allow formation of per-server measured equivalence sets due to sufficient traffic

pattern volume and spread, others may possess too sparse a traffic matrix to satisfy the

requirements for forming an equivalence set.

5. Analyzing application performance impact is more difficult. Since tenant VMs are

black boxes to the datacenter operator, metrics like TCP retransmits are harder to acquire,

though still possible via Vswitch interposition techniques [57]. Application metrics are

no longer available due to privacy concerns. Active-probing techniques are usable, but

requires care. Specifically, repurposing physical-network targeting techniques [64] for

monitoring virtual network overlays requires understanding the additional complexities

and modes of operation that the overlay imposes on network packet handling. Without

doing so, unexpected interactions may lead to inaccurate connectivity statistics (tunnels

stealing probe packets) or latency statistics (we may be monitoring either network fabric

latency or server mapping latency depending on the VNET in question).

Despite these challenges, we surmise that we may be able to form equivalence sets at a

higher level of the topology. Rather than examine traffic collected at a single VM or server, we

may possess enough traffic volume to form equivalence sets if we consider aggregate traffic at
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ToR switches. For example, one possible equivalence set could be the uplinks connecting the

ToR to the pod aggregation switches. We defer a full evaluation, however, to future work.
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Chapter 7

Conclusions and future work

This dissertation asserts that the fundamental design goals of contemporary datacenter

networks, and the resulting characteristics of datacenter topologies and application traffic loads,

enabled an outlier-analysis based partial-fault localization methodology. In particular, it claimed

that the combination of large-scale load-balanced multipath topologies and high-volume data-

center traffic enables simple, low-overhead and application and root-cause agnostic partial fault

localization via passive link-by-link outlier analysis of application network performance.

For a variety of different applications, within real-world datacenters and within artificially

constrained testbeds with pathologically compromised conditions, this claim bore fruit—if we

could create ‘Equivalence Sets’ out of components such as links or switches in the network,

we could interpret (poor) performance outliers with faulty components with a high degree of

precision (low false-positives) and recall (low false-negatives).

At the same time, we characterized the cases where this approach fell short for physical

network fabrics; for example, non-homogeneous network fabrics where we could not form

equivalence sets due to effects such as unequal link capacity or buffering. Even so, this was

borne of an inability to form equivalence sets, not due to a failing in the overall concept.

However, we may be unable to form equivalence sets in certain scenarios; in particular,

the advent of virtualized, third party tenant ‘Cloud’ datacenters means we cannot expect server-

by-server similarities found in more homogeneous Facebook datacenters. While a case may be
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made for applying our approach to the underlying physical network fabric in a cloud datacenter

(assuming we can still correlate flow performance to network component; they do, after all, still

use equal cost paths and aggregate large amounts of traffic), it does not commonly apply to

server-by-server measurements that are commonly tracked within cloud datacenters.

However, it is still imperative for cloud datacenter operators to be able to detect and

pinpoint failures within virtualized network overlays. While there is no shortage of physical

network monitoring tools that can be adapted for use within cloud networks, these tools have

an uphill battle. While virtual network overlays do provide the illusion of an isolated, regular

physical network to tenant applications, maintaining this facade means that the network overlays

perform significant amounts of interposition on customer traffic; for example, remapping virtu-

alized packet addresses or handling broadcast traffic for protocols like ARP. The net result is

that server-based performance problems can now manifest as network performance problems,

across a wide variety of private virtual networks. In particular, they can manifest in addition to,

and with similar symptoms as physical-network partial faults, randomly delaying or dropping

network traffic. From the point of view of a tenant network, the outcome is the same.

Thus, the fundamental problem to be solved is still one of attribution. In a physical

network, we seek to determine which link or switch causes loss or delay. In a virtual network,

we want to know if a given issue is due to the physical network or not; if it is not, we seek to

determine exactly which portion of the virtual network overlay is at fault. Some differences do

apply, however. In a physical network, it is often the case that after a fault is pinpointed, it can be

routed around and thus mitigated; faulty components can be replaced with relatively low impact.

In the virtual network, however, pinpointing a fault is merely the beginning.

Rather, since partial fault behaviour may be due to server-level anomalies, and since

servers are both network-plane devices and hosts to customer services and traffic, we cannot

easily mitigate faults by rebooting servers or routing around virtualization infrastructure due

to the high business costs of disrupting third-party customer traffic. Diagnosing faults and

solving them in-place can be complicated affairs due to the presence of varied, black-box style
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applications competing for the same resources as networking infrastructure. Greater visibility

and the ability to rapidly pinpoint a fault is not enough.

While enhancing passive monitoring capabilities for customer traffic likely has value for

cloud networks, one possible future direction for cloud networks might be architectural—rather

than enhancing the ability for network operators to find performance anomalies, it may be worth

architecting virtualized networks in a way that disaggregates virtualization infrastructure from

customer software, perhaps in a manner similar to existing storage disaggregation. Examining

such possibilities is in keeping with an old maxim that ‘an ounce of prevention is worth a pound

of cure’. Whether this is necessary—that is, determining the impact that virtualized overlays has

on real world customer traffic patterns—also remains an open line of inquiry.
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