Gordon:

Using Flash Memory to Build Fast, Power-
efficient Clusters for Data-intensive Applications

Adrian M. Caulfield, Laura M. Grupp, Steven Swanson

Department of Computer Science and Engineering
University of California, San Diego

g UCSDCSE ~
Computer Science and Engineering \

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3

Data Centric Computing

* Becoming ubiquitous
— Retail sales data
e 2.5PB at Wal-Mart

— Indexing billions of web pages

— Social Networking
* Facebook has 175M users, 25M joined last month

— Desktop search
* Terabyte scale, parallel
* |/O bound

* Power

Google

X

Walmart

g money, Live bette

Data Centric Frameworks

e Several frameworks exist
— Map Reduce (Hadoop) —

— Sawzall

* Typically run on commodity systems
— Slow disks + 1/0 bound
— Optimizing rest of system makes little sense

X

Server Power Breakdown

CPU Bound Disk Bound

m Disk (Idle)

m CPU (Busy) m Disk (Busy)

m CPU (Idle)

® RAM ® RAM (Idle)

(Busy) ® Overhead
M Overhead

Al

NAND Flash Memory:
A Power Efficient Storage Technology

* New on the architecture scene

— Density competitive with disk o100
* 256GB Next Gen. NAND Flash 3 10 &

— Low Latency Z 1 b |
e 250x better than disk = .
. . = 0.1

— High Bandwidth 5 4
* 900MB/s possible 0.01 | |

1990 2000 2010

— Low power
* Active: 12x better than disk (1.28W)
* Idle: 1% of disk idle power (0.096W)

— Density scaling at 85%/year

X

Gordon Design Process

e System architecture designed
around a flash array per node

— Start with flash array
— Optimize the flash controller

— Select a processor based on a
design space exploration

e Cluster based
— Each node runs full OS

X

Gordon Overview

* |Introduction
* Flash storage systems

— Flash basics
— Optimizing flash for data centric computing

* Design space exploration

e Gordon discussion

Al

NAND Flash Overview

e Data arranged in blocks

— Blocks contain pages (64 typical)
— Each page has metadata section

* Flash Idiosyncrasies

— Pages must be programmed in order

— Read/Write and Erase size disparity

* Pages are smallest read/write unit

* Erases only at block level

— Blocks wear out

* Wear leveling required

Extra metadata space at end of each page

- ’

Flash Translation Layer (FTL)

* Based on design from Microsoft Research [Birrel, 2007]
 Maps a Logical Block Address (LBA) to a Physical Address

 Map stored in SDRAM
— Reconstructed from Metadata section of pages on power-up

Flash Array

LBA Map (SDRAM)

LBAO
LBA1
Read LBA 3 LBA 2
LBA 3
LBA 4
LBA 5
LBA 6
LBA 7

Al

The Write Point

LBAO
LBA1
LBA 2
LBA 3
LBA4
LBAS
LBA6
LBA 7

Al

Blk 3, Pg 1
Blk 3, Pg 9
Blk 3, Pg 3
Blk 3, Pg 2

Block 3
Sequence Number: 101

Block 4

Sequence Number: 102

S —

10

Gordon Overview

* Introduction
* Flash storage systems

— Flash basics
— Optimizing flash for data centric computing

* Design space exploration

e Gordon discussion

11

Al

Gordon FTL Enhancements

* Exploit parallelism in flash array
— Tuning architecturally visible block size
— Multiple write points

* Access pattern optimizations
— Write combining
— Bypassing

12

Al

Super Pages

» Stripe data across several chips and/or busses
 Handle larger units of data
* Reduces metadata overhead

I Horizontal
[1 \Vertical
1 20

Bus O Bus 1 Bus 2

= -

Multiple Write Points

LBA O
LBA 1
LBA 2
LBA 3
LBA 4
YNR Blk4, Pg 1
LBA 6
VWA Blk4, PgO

Al

Block 3

LBAS
LBAS

Sequence Number 101

S —
S —
S —

Block 4

LBA 7
LBA 5

Sequence Number 102

S —
S —
S —

Workload Details

Random Output random data 10GB 0.4 GB 26.9 GB

Writer

Identity Copy all inputs to outputs 15GB 45.1 GB 103.7 GB

Sort Sort random numbers 1GB 1.4 GB 5.7 GB

SimpleGrep Search for “the” in multi-lingual 8GB 8.4 GB 0.5GB
text

ComplexGrep Complex Regex search in multi- 8GB 9.2 GB 1.0 GB
lingual text

N-Gram Find frequently occurring N-word 4GB 40.1 GB 90.7 GB
phrases in multi-lingual text

Weblndex Indexing of web pages 13GB 18.9 GB 62.8 GB

= .

Super Page Performance

7
(V]
o1}
L6
§_ c =$=-average
‘g -@-randomWriter
% 4 “de=s0rt
o
- =>=index
< 3
oc =x=identity
=
;g 2 ~®-ngram
'g 1 ==simplegrep
o0 —==complexgrep
O I I I I]
8 16 32 64 128 256

Page Size (kB)

16

Al

Write Combining and Bypassing

* Write Combining

— Merge multiple writes to the same address when
possible

* Bypassing
— Merge incoming read requests
— Cache last page read

17

Al

Super Page Results
With Write Combining and Bypassing

7
o
B
o £ 6
g a
o §5 =+=3verage
;.’_ o -m-randomWriter
A o
[a1] oo4 =d=S0rt
2 C
o ‘c 3 =>=index
— ©
e £ =K=identity
£S2 -
5 o ngram
% é 1 simplegrep
5 |
= —complexgrep
O [[[[1
8 16 32 64 128 256

Page Size (kB)

18

Al

Gordon Overview

* Introduction
* Flash Storage Systems

* Design Space Exploration
— Design Space
— Methodology

— Results

e Gordon Discussion

19

X

Design Space

Parameter Values

Processor Types Atom, Core 2
Processors 1,2,4

Atom Frequency (GHz) 0.8,1.5,1.9
Core 2 Frequency (GHz) 0.6,1.2,1.8,2.4

Flash dies 0, 64
Hard drives 0,1,2,4
Power Budget 300W

e 84 designs
e 32 node cluster

= 0

Methodology

* Trace Based Simulator
— Instruction count
— L2 miss count
— Network read/write usage
— Disk read/write usage, |/O count

* Traces processed using our cluster simulator

= n

Gordon Cluster Simulator

e Calculates both Power and Performance
— Performance reported as total runtime

— Storage times simulated using our flash simulator
and DiskSim

e Power model

— Estimate average power for a given trace slice
using activity ratios

Al

22

Calculating Performance

* Per component simulated times for each
1-second trace slice

* Maximum individual component time
represents total simulated slice time

Slice 1 | Slice 2 |
| |

CPU | s

Disk E i
Network [I i

Simulated Time

23

Al

Power Model

e Calculate per second component activity factors
— DRAM: L2 cache misses
— CPU: Instruction count

— Flash/Disk: Number of |10 requests
Prow = O (%Active - P, +%ldle-P,)

Active
* Active and Idle power measured on actual servers
— Datasheet numbers when not possible

* CPU power scaled based on datasheet voltage
range for different CPU frequencies P = fv°

v* 24

Gordon Overview

* |Introduction
* Flash Storage Systems

* Design Space Exploration
— Design Space
— Methodology
— Results

e Gordon Discussion

= =

Design Space Survey Results

1.6
1.4
A A
A 2
- 1.2
o0 A
@ 1 —i_x.‘ ¢4 ¢
L
Ll
g 0.8 2 i‘. 7y X‘
'4% 0.6 @ %
S 04 & & X
02 ®
0
0 2 4 6 8 10 12 14 16
Relative Run Time
& Atom-Disk Atom-Flash A Core 2-Disk X Core 2-Flash
% O Pareto Optimal Design 26

Pareto Optimal Designs

Processor Average
Power

Atom 1.9 GHz 4.81W
1x Core 2 2.4 GHz 19.89 W
2% Core 2 2.4 GHz 45.66 W
4x Core 2 1.8 GHz 92.74 W
4x Core 2 2.4 GHz 106.18 W

* All pareto optimal configurations use flash memory

= ”

Efficiency vs Most Efficient Disk

2.5

1.5

O
U

Efficiency vs. Max Efficiency Disk
B

28

Speed Up vs Fastest Disk

Relative Energy Consumption
Most Efficient Flash vs Most Efficient Disk

Relative Energy

Flash Disk |[Flash Disk [Flash Disk Flash Disk |[Flash Disk [Flash Disk |[Flash Disk

compgrep simpgrep | identity average

M overhead M cpu m disk/flash B mem

= 0

Gordon Overview

* |Introduction
* Flash Storage Systems

* Design Space Exploration
— Design Space
— Methodology
— Results

e Gordon Discussion

= .

Most Efficient Gordon Node

e 256GB of Flash
2GB of DRAM
e 1.9GHz Atom Processor

 Flash Controller
— 512MB of DRAM

* Power usage: 5W

32

Al

System Architecture

e 16 Gordon nodes _ | f
per backplane e
— 1Gbit network | Treessanesr | TRasas s
ConneCtiVity llllllllllll L]

* 16 backplanes per standard server rack
— 256 Nodes
— 64 TB of Storage
— 230GB/s of aggregate |/O bandwidth
— 1300 Watts power usage

* A data centric super computer

= »

Gordon Cost

* Disk is cheaper per GB of storage

* Flash clear winner in Cost/MB/s

— For 900MB/s bandwidth
e Flash: S350, Disk: S4500

* Real value: Gordon enables new applications
— Fast random I/0

34

Al

Virtualizing Gordon

* Keep Gordon as busy as possible

 Gordon becomes a data intensive coprocessor
— Large datasets stored on disk

— Transferred to flash for processing

* Pipeline loading and computation

Al

35

Conclusion

* Data centric applications increasingly common

* Flash memory provides low power, low
atency, high bandwidth storage

* Optimized Flash Translation Layer

* Gordon enables fast, power efficient data
centric processing

 Gordon is up to 2.2X more efficient and 1.5X
faster than disk based designs

= e

Thank You

37

Al

http://images.google.com/images?q=flash+gordon&sourceid=mozilla2&ie=UTF-8&oe=UTF-8&um=1&sa=N&tab=wi&oi=property_suggestions&resnum=0&ct=property-revision&cd=3

