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ABSTRACT
This paper discusses the impact of migrating from 2-D to
3-D on floorplanning and placement. By looking at a basic
formulation of graph cuboidal dual problem, we show that
the 3-D case and the 3-layer 2.5-D case are fundamentally
more difficult than the 2-D case in terms of computational
complexity. By comparison among these cases, the intrin-
sic complexity in 3-D floorplan structures is revealed in the
hard-deciding relations between topological connections and
geometrical contacts. The results show future challenges for
physical design and CAD of 3-D integrated circuits.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-aided design

General terms – Algorithms, theory

Keywords – 3-D integrated circuits, cuboidal dual,
computational complexity

1. INTRODUCTION
New technologies such as three-dimensional integration

are becoming a new force keeping Moore’s law still holding
in the nano era. By adding a dimension in current 2-D VLSI
circuits, we can greatly enhance integration density and re-
duce interconnection wire length, which helps to improve
system performance and lower power consumption. Mean-
while, the extra dimension also brings higher complexity in
design, CAD tools and fabrications. To fully exploit the ad-
vantages of the third dimension in 3-D integrated circuits,
we first need to measure and understand the complexity it
brings, and face the challenge of handling this complexity.

Placement of circuit blocks is an important step of design,
which has a large complexity increment migrating from 2-D
to 3-D. Current developing 3-D circuits and system-on-chips
[8] are usually achieved by die stacking, which is a stack of 2-
D circuit layers with same thickness. This type of placement
is also called 2.5-D placement [3], [4] since it does not contain
full 3-D structures.

Full 3-D floorplan and placement representations are ex-
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plored in several works since [10]. Full 3-D means the circuit
blocks are cuboids placed in a space with no distinguishable
“layers”. Though we have as yet no 3-D cell library to sup-
port this class of 3-D IC design, there are full 3-D appli-
cations in reconfigurable FPGAs [9] where time is regarded
as another dimension. It is found that most of the floor-
plan representations effective in 2-D do not have a equally
effective extension in 3-D, such as Sequence-pair (2-D) to
Sequence-triple (3-D) in [10]. Since a representation is vir-
tually a data structure from which a floorplan can be recov-
ered, we try to explore this complexity through a general
type of data structure, graph.

In this work, we discuss the complexity of the two classes
of 3-D floorplans through a “cuboidal dual” problem in a
most basic formulation: Given a graph G = (V, E), can we
find a set of cuboids as V with contact relations as E?

The problem is similar to the “rectangular dual” problem
in [6], except that the solution in [6] must be a rectangu-
lar dissection without empty space. Optimization on this
problem can be applied on the initial floorplanning stage of
physical design. For example, if a pair of circuit blocks bi,
bj are heavily connected, we let (vi, vj) ∈ E to make them
closer; or if the two blocks both have high power density, we
make (vi, vj) /∈ E for better heat dissipation.

A 2-D rectangular dual can be decided by a set of condi-
tions in [6] or [5], and can be efficiently generated in linear
time. For cuboidal duals, while the 2-D case can be solved
with a similar approach, we find the 3-D cases are funda-
mentally more difficult in terms of computational complex-
ity. Like the 2-colorability problem is easy but 3-colorability
is NP-hard, one extra color or dimension brings a higher
level of complexity. In fact we prove the 3-D cuboidal dual
problem is NP-complete by reducing 3-colorability to it. For
the 2.5-D cuboidal dual, we find it NP-complete when the
number of layers reaches 3. The results imply that the com-
plexity of IC physical design can be greatly increased when
we extend the circuit on the third dimension, even for just
a few layers of 2.5-D circuits.

The rest of this paper is organized as follows. Section 2
introduces the basic problem formulation. Section 3 proves
the general 3-D cuboidal dual problem is hard and section 4
shows 2.5-D cuboidal dual with 3 layers is hard. Finally sec-
tion 5 makes comparisons and conclusions on these results.

2. PRELIMINARIES
Traditional 2-D floorplanning is to place a set of rectangles

in a designated area to meet certain requirements. The basic
constraint is that no common area can be shared by two or



more rectangles. For 3-D, the problem becomes placing a
set of cuboids in a space without common space shared by
multiple cuboids. A 2-D case can be regarded as a 3-D case
with each cuboid placed on the floor.

An adjacency graph can be constructed from a floorplan
by assigning a vertex to each cuboid and add edge (vi, vj)
when the two corresponding cuboids are contacting on sur-
faces. While this construction is easy, the reverse construc-
tion from graph to floorplan is not trivial. In [6] there is a
set of sufficient and necessary conditions for a graph to be
an adjacency graph of a rectangular dissection. The dissec-
tion is called a rectangular dual of the graph. For 3-D, we
define a problem based on graph cuboidal duals.

(a) A graph and its cuboidal dual (b) K5 has no cuboidal dual
Figure 1: Graph-floorplan relations

A general 3-D cuboidal dual of an n-vertex graph G =
(V, E) is defined as a set of cuboids, each cuboid Ci corre-
sponds to a vertex vi ∈ V . No two cuboids share a common
part of space. Ci and Cj are adjacent (contacting on sur-
faces by a non-zero area) if and only if (vi, vj) ∈ E. Figure
1 shows a 6-vertex graph and one of its cuboidal duals, and
a 5-vertex complete graph has no cuboidal duals.

A 2.5-D cuboidal dual is defined as a 3-D cuboidal dual
with an additional constraint that every cuboid has height
interval [l − 1, l], where l is the layer indicating integer.

A 2-D cuboidal dual is defined as a 2.5-D cuboidal dual
with one layer, i.e. every cuboid is placed in height interval
[0,1]. It is different from a rectangular dual [6] in that the
set of cuboids can be a subset of a space dissection.

Our basic problem is to find a cuboidal dual of a given
graph G. For any of the 2-D, 2.5-D or 3-D case, the problem
is trivially in NP, because it is easy to verify if a given set
of cuboids is a solution, i.e. to check whether for each pair
of i, j, (vi, vj) ∈ E ⇔ Ci and Cj are contacting on surfaces.

3. 3-D CUBOIDAL DUAL OF GENERAL
GRAPHS

To decide whether a graph has a 3-D cuboidal dual is
NP-hard. We prove this by reducing the well known NP-
complete problem, 3-colorability, to 3-D cuboidal dual. We
construct G from a 3-colorability instance G3C = (W, E′).

First we introduce a gadget of 7 vertices for each vertex in
W , shown in figure 2. The 7 vertices together with the edges
form an octahedron composed of 8 tetrahedrons. There is a
cuboidal dual of this graph, and the contact surfaces between
different pairs of cuboids are not independent.

Lemma 1. In the cuboidal dual of the 7-vertex gadget, the
cuboids of two opposite vertices on the octahedron (e.g. v1,
v4) are on opposite sides of the central cuboid (of v0).

Proof. (Brief) Since v0 and v1 are adjacent, the cuboids
are contacting on a common plane denoted as p01, and their
overlapping surface on p01 is a rectangle R (figure 2). Since
the four surrounding vertices in a loop are all adjacent to v0

v0v1 p01v4
v1v4v0 v2v3 v5 v6

Figure 2: 7-vertex gadget and its cuboidal dual

and v1, the 4 cuboids must be contacting the outline of R
and therefore be on the 4 sides of R. And since v4 is also
adjacent to the 4 surrounding vertices, the projection of v4’s
cuboid on p01 must be covering R. Therefore v1 and v4 have
cuboids on opposite sides of v0.

So for a 7-vertex gadget N , the contacting directions of
v1 → v0 and v0 → v4 are same, denoted as d1,4(N). In the
same way, the other two pairs of vertices (v2, v5) and (v3,
v6) are on opposite sides of v0. Also from figure 2, cuboids
of v1, v2, · · · , v6 cover all the 6 surfaces of cuboid v0.

Regarding the coordinate axis d1,4(N) is parallel to, it
has three possible directions: x, y and z. These directions
can be used as the 3 possible colors in the 3-colorability
problem, where a gadget N is colored as d1,4(N). For edge
(w, w′) ∈ E′ in G3C , the two vertices cannot share the same
color. This constraint can be realized as a biclique between
v1 and v4 of two gadgets N and N ′. As figure 3 shows, on
the axis parallel to d1,4(N), v1 occupies interval [a1, b1] and
v4 occupies interval [a4, b4]. If there is a biclique between
{v1, v4} and {v′1, v′4}, then both v′1 and v′4 must cover interval
[b4, a1] on the axis, so d1,4(N

′) cannot be parallel to d1,4(N).v1 v'1v'4� �’v4
d1,4(�)      =  d1,4(�’) v1v4 v'1 v'4a4b4a1b1 d1,4(�)

Figure 3: Enforcing 2 gadgets in different directions

To complete the reduction from 3-colorability we need to
construct G3C based on the gadget nodes. We add 6 more
vertices to the 7-vertex gadget to further restrict the con-
tacting directions among the cuboids of v1, · · · , v6.1 43 625v1v4 v2v3 v5 v6v2v5 v5 v2v3 v6

v6v3
Figure 4: 13-vertex gadget and its cuboidal dual

Lemma 2. (figure 4) Adding 3 pairs of vertices to the 7-
vertex gadget, pair 1 connected to {v1, v2, v4} and {v1, v5, v4},
pair 2 connected to {v2, v3, v5} and {v2, v6, v5}, pair 3 con-
nected to {v3, v1, v6} and {v3, v4, v6}, then
cuboid v1 and v4 have same width as cuboid v0 (along d3,6),



cuboid v2 and v5 have same height as cuboid v0 (along d1,4),
cuboid v3 and v6 have same length as cuboid v0 (along d2,5).

In the 13-vertex gadget here, the original 7-vertex gadget
have a definite shape, so we can easily align multiple gadgets
into the same direction with some additional vertices in G.v1v4 v2v3v5 v6 v'1vAvB v'5v'3 v'4 v'2v'6� �’
Figure 5: Two 13-vertex gadgets with d1,4(N) and
d1,4(N

′) aligned to the same direction (2-alignment)

As in figure 5 (using the simplified octahedron to repre-
sent a 13-vertex gadget), we add two vertices vA and vB .
Consider their connections with gadget N ′ on right. Since
vA is simultaneously contacting v′1, v′2 and v′3, by Lemma
2 and figure 4, it must be on the corner formed by the 3
cuboids, and cuboid vA is therefore above v′2. Similarly, vB

is contacting v′4, v′2 and v′3, so it must be on the corner and
cuboid vB is below v′2. As a result, the direction vA → vB

is same as d1,4(N
′).

The same conclusion can be found on gadget N , i.e. the
direction vA → vB is same as d1,4(N). Therefore with two
additional vertices we make d1,4(N) = d1,4(N

′).
Besides the alignment of d1,4, we also need to align two

gadgets so that the directions d1,4, d2,5 and d3,6 of these two
gadgets are all in parallel.v1v4 v'1v'4 v'3 v'6v'2v'5v5 v2 v6v3(a) (b)
Figure 6: 2-alignment and 3(complete)-alignment

Figure 6(a) is the simplified notation of the alignment il-
lustrated in figure 5, where only the directions of d1,4(N) and
d1,4(N

′) are parallelized. We call this a 2-alignment. In fig-
ure 6(b) there are 3 additional vertices (called 3-alignment),
the result is d2,5(N) = d2,5(N

′) and d3,6(N) = d3,6(N
′),

which also implies d1,4(N) = d1,4(N
′). So in a 3-alignment,

the two gadgets are completely aligned in every direction.
Also notice that the direction from one gadget to the other

in a 2-alignment is along d2,5(N) or d3,6(N), while this di-
rection in a 3-alignment must be along d1,4(N). These two
cases enables the alignment of a pair of 13-vertex gadgets
N and N ′ along any of the 3 axes, with d1,4(N) = d1,4(N

′).
Based on these two alignments we can construct connections
between the 13-vertex gadgets as edges in G3C = (W, E′) for
the reduction from the 3-colorability problem.

Theorem 1. 3-colorability reduces to 3-D cuboidal dual.

Proof. Given a graph from 3-colorability G3C = (W, E′)
with n vertices denoted as w1, w2, · · · , wn. For each vertex
wi, construct n 13-vertex gadget nodes in G, denoted as

si,1, · · · , si,n, sequentially connected by 2-alignments. Then
for each gadget node si,j , construct 4 auxiliary gadgets as
follows: si,j 2-aligns with t1,i,j , t1,i,j 3-aligns with t2,i,j , t2,i,j

2-aligns with t3,i,j , and finally t3,i,j 2-aligns with ui,j .
For each edge (wi, wj) ∈ E′, we pick gadget nodes ui,j

and uj,i, connect {v1(ui,j), v4(ui,j)} with {v1(uj,i), v4(uj,i)}
so that the 2 sets of vertices form a biclique. In this way
graph G has a cuboidal dual if and only if G3C is 3-colorable.

If G3C is not 3-colorable, then no matter how we place
the gadgets, there is at least one pair of vertices wi and
wj such that (wi, wj) ∈ E′, and d1,4(ui,j) = d1,4(uj,i). So
v1(ui,j) → v4(ui,j) and v1(uj,i) → v4(uj,i) are on the same
direction, and by figure 3 it is impossible to form a biclique
between the 2 sets.

w1
w2

w3
wk

wn
... ... ... ...

x

y

if d1,4(sk,1) = y:
if d1,4(sk,1) = z: ......sk,1    sk,2    sk,3  ...

t1,k,1
t1,k,2

t1,k,3
Figure 7: Construction of cuboidal dual from G
when G3C is 3-colorable

If G3C is 3-colorable, we can construct a cuboidal dual
according to figure 7. Vertices w1, · · · , wn are placed on the
xy-plane and figure 7 is a top view. Each vertex wk has a
color of {x, y, z}, which decides the direction of gadget nodes
d1,4(si,j). Every edge in E′ is assigned a unique height so
the connecting cuboids do not interfere.

(i) If d1,4(si,1) is parallel to z, the auxiliary gadgets
{t1,i,j} can be placed along a 45◦ line, and by 3-alignments
each t2,i,j is leveraged to the height of edge (wi, wj).

(ii) Otherwise d1,4(si,1) is parallel to x or y, then each
t1,i,j is leveraged to the height of edge (wi, wj), and by 3-
alignments the gadgets of {t2,i,j} are by top view placed
along a 45◦ line.

In conclusion, by the layout of figure 7, auxiliary gadgets
{t2,i,j} can be placed along a 45◦ line by top view. For
any i, j such that (wi, wj) ∈ E′ and d1,4(si,1) 6= d1,4(sj,1),
we can always construct t2,i,j → t3,i,j → ui,j along x,
t2,j,i → t3,j,i → uj,i along y, or vice versa. So ui,j and
uj,i can meet at the intersecting point and form the biclique
of {v1(ui,j), v4(ui,j)} and {v1(uj,i), v4(uj,i)}. Therefore the
cuboidal dual of G is successfully constructed.

Corollary 1. Finding a graph’s 3-D cuboidal dual is
NP-complete.

4. LAYERED 3-D (2.5-D) CUBOIDAL DUAL
OF LAYERED GRAPHS

In the last section we show that general 3-D cuboidal dual
is hard. Now we look at the 2.5-D version of the problem
which looks less difficult.

4.1 2-D Cuboidal Dual of Planar Graphs
The 2-D “rectangular dual” problem is first studied in [6]

and [1]. By using a 4-completion graph, a simple rule to



decide if a graph G has a rectangular dual is Theorem 1 of
[6]: A plane graph G with all interior faces triangular has a
rectangular dual if and only if there exists a 4-completion of
G. On our definition of cuboidal duals, the deciding rule can
be more general and simplified, without using 4-completions.

Theorem 2. A graph G has a 2-D cuboidal dual if and
only if G can be drawn as a plane graph with no 3-vertex
cycle containing interior vertex (vertices).

This can be proved by converting the given graph to a 4-
completion, which is guaranteed to have a rectangular dual
by [6], and the cuboidal dual can then be easily obtained.
The flow is shown in figure 8. Construction algorithms in
linear time of rectangular duals are introduced in [1] and [5].a b c de f g hi j k l a b c de f g hi j k lvnvsvw vevnvsvw vea b c de f g hi j k la b c de f g hi j k l

Figure 8: From a graph to its 2-D cuboidal dual

Corollary 2. Finding a graph’s 2-D cuboidal dual is in
P.

4.2 2.5-D Cuboidal Dual of Layered Graphs
In the problem here, we are given a layered graph G =

(V, E, n, L : V → {1, · · · , n}), with each vertex assigned a
layer and each edge either in a layer or between two consec-
utive layers, i.e. (vi, vj) ∈ E ⇒ |L(vi) − L(vj)| ≤ 1. The
2.5-D cuboidal dual is a 3-D cuboidal dual that each cuboid
vi must be on layer L(vi). Figure 9 shows an example.a bdc e f gLayer 1Layer 2 a bc e df g
Figure 9: A 2-layer graph and 2.5-D cuboidal dual

The restrictions on cuboids and contacts reduce the free-
dom of contacting directions. For edge (vi, vj), if vi and
vj are on the same layer, the contacting direction has only
2 choices. Yet we also have some gadgets which introduce
complexity.

As figure 10(a) shows, if two vertices on layer i and two
vertices on layer i + 1 are completely connected as a clique
K4, then in the cuboidal dual the contact surface between
the two cuboids in layer i must be orthogonal to the one in
layer i + 1. Because as in figure 3, if the two pairs have the
same direction, a complete connection is impossible. The
diamond gadget in figure 10(b) is similar to the 7-vertex
gadget in lemma 1 and figure 2, except it is in 2-D.

v1v3v2 v4(a) Orthogonal contacts (b) Diamond gadget012 3 4
Figure 10: Basic gadgets in 2.5-D cuboidal dual

We find that when graph G has 3 layers, deciding its 2.5-D
cuboidal dual is no less difficult than Planar 3-SAT, which
is proved to be NP-complete in [7].

3-SAT is a basic NP-complete problem introduced in [2].
A Planar 3-SAT instance has the same set of variables U =
{u1, . . . , un} and the same set of clauses C = {c1, . . . , cm}
as 3-SAT. Regarding each variable and clause as a vertex,
adding edge (ui, cj) if clause cj contains ui, the resulting
graph Gp3SAT is a planar graph.

012 3 4 5(a) Clause gadget 0 123 4 5(b) 6-vertex gadgetg1 g2 g3
p1

p2 v1v3v2 v4 v5 giv0
Figure 11: 2-layer subgraph of a clause gadget

A gadget for a clause ci can be constructed as in figure
11(a), where the white vertices are on layer 1 and the black
vertices are on layer 2. Two pairs of vertices p1 and p2 on
layer 2 are enforced to have orthogonal contact surfaces by
the diamond gadget on layer 1. Meanwhile the two pairs are
also connected through three 6-vertex gadgets which have
following properties. Assume the direction of v0 → v4 of
such a gadget is determined, (figure 11(b))

(i) if v0 → v3 is on the same direction, i.e. v3 and v4

are on the same side of v0, the 6-vertex gadget acts as a
diamond gadget, so v1 must be on the opposite side of v0;

(ii) if v3 is not on the same side of v4, since this gadget
has one more vertex than the diamond gadget, v1 has the
freedom of being on one of the two sides of v0.

Now we look at figure 11(a), starting from the vertical
pair p1. The first gadget g1 has vertical v0 → v4 due to
the orthogonality enforcements from p1. By the same en-
forcements, v0 → v1 of g1 is parallel to v0 → v4 of g2, and
v0 → v1 of g2 is parallel to v0 → v4 of g3. Finally v0 → v1

of g3 is horizontal as vertex pair p2.
With these connections, if all the 6-vertex gadgets here

have v0 → v3 vertical, then all the gadgets are like the di-
amond gadget, resulting in v0 → v1 of g1, g2 and g3 must
be all vertical, which leads to contradiction, i.e. the 2.5-D
cuboidal dual does not exist. Otherwise if we have at least
one 6-vertex gadget with v0 → v3 horizontal, then we can
place v0 → v1 horizontal on this gadget, and the following
gadget also has horizontal v0 → v4. Regardless of the direc-
tion of v0 → v3 on following gadgets, we can always make
v1 on the opposite side of v4, i.e. v0 → v1 horizontal. By



this propagation, v0 → v1 of g3 is horizontal and the 2.5-D
cuboidal dual of figure 11(a) can be constructed.

In summary, the 2-layer subgraph of figure 11(a) has a 2.5-
D cuboidal dual if and only if at least one 6-vertex gadget
has horizontal v0 → v3. This makes the reduction from
Planar 3-SAT straight forward, since in 3-SAT a clause is
true if and only if at least one of its variables is true.

Theorem 3. Planar 3-SAT reduces to 2.5-D cuboidal dual
with 3 layers.

Proof. We construct a 3-layer graph G = (V, E, 3, L :
V → {1, 2, 3}) from Gp3SAT = (U ∪ C, E′) as shown in
figure 12. Only two vertices are on layer 3, which are used
to align m pairs of vertices on layer 2, by which all the m
clause gadgets are aligned in the same direction. Assume
the “vertical” direction here is that of the pair on layer 3, as
it is drawn in figure 12. n diamond gadgets are placed on
layer 2 for the n variables u1, . . . , un.... .........c1 c2 cm... ...u1 u2 u3 un...
Figure 12: Reduction from Planar 3-SAT to 3-layer
2.5-D cuboidal dual

For each ui appearing in cj , we connect the ith diamond
gadget D(ui) to a 6-vertex gadget in the jth clause gadget
through 2(m + n) diamond gadgets on layer 2, which are
connected with vertex pairs on layer 1. The first pair p1

coming out of D(ui) is in direction d2,4(D(ui)) if ui appears
as ui in cj , otherwise in direction d1,3(D(ui)). In this way,
vertex pairs of ui and ui are always orthogonal. The red
curves in figure 12 represent the connections of vertex pairs
“p1 → ♦ → p2 → ♦ → · · · → ♦ → p2m+2n+1”. Each
diamond gadget (♦) both enables and enforces a 90◦ turn,
either left or right, and the final vertex pair p2m+2n+1 is
orthogonal to v0 → v3 of the 6-vertex gadget.

When there is a solution of the planar 3-SAT boolean for-
mula, we place D(ui) with d1,3(D(ui)) vertical if ui is true,
or d2,4(D(ui)) vertical if ui is false. Then for every clause
gadget at least one 6-vertex gadget can be constructed with
horizontal v0 → v1, so the 2.5-D cuboidal dual of the clause
is constructed. Each connection can be placed through the
area with 2(m + n) 90◦ turns around the m + n gadgets as
obstacles. And since the graph Gp3SAT is planar, the con-
nections have no intersections. Although by top view, the
connections may intersect with the cuboids on layer 3, we
can always pick the connection cuboids on layer 1 to cross
the intersection, and there is no contact between layer 1 and
layer 3. So the 2.5-D cuboidal dual of G is fully constructed.

When there is no solution of the planar 3-SAT formula,
no matter how we place D(u1), · · · , D(un), there is always a
clause gadget with all 6-vertex gadgets aligned in the same
direction and therefore inconstructible.

Corollary 3. Finding a layered graph’s 2.5-D cuboidal
dual is NP-complete if the number of layers ≥ 3.

5. CONCLUSIONS
We have looked at three cuboidal dual problems of dif-

ferent dimensions, and come to the results of one efficient
algorithm and two hardness proofs. Naturally, the difficulty
of the problem migrating from 2-D to 3-D is increasing.

Dimensions Number of layers Hardness
2-D 1 P

2.5-D 2 open
2.5-D ≥ 3 NP-complete

3-D NP-complete

A surprising finding is that just a few layers of the 2-
D cases, which can be decided by a simple rule (Theorem
2, or [6], [5]), being stacked together, can make the prob-
lem so much more complex that there is no effective algo-
rithm can decide the solution, unless P=NP. The relation
between topological connections and geometrical contacts in
2-D floorplans is not inherited when extended to 3-D struc-
tures. This may also explain why 3-D packing instances are
more difficult to encode or represent than 2-D instances.

With the much increased complexity in 3-D structures,
we expect a big challenge for both designers and CAD tool
developers in future 3-D IC design. Human intelligence will
play a more important role in the design flow and in devis-
ing heuristic algorithms in 3-D floorplanning, placement and
routing tools. Further research will be helpful to understand
the nature of 3-D physical design problems.
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