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Abstract. People rapidly learn the capabilities of a new location, with-
out observing every service and product. Instead they map a few obser-
vations to familiar clusters of capabilities. This paper proposes a similar
approach to computer discovery of routine location capabilities, applying
machine learning to predict unobserved capabilities based on a combi-
nation of a small body of local observations and a larger body of data
that is not specific to the location. We propose using the time and place
of deleting items from a to-do list application to provide the local data.
For reminder purposes, an area within easy walking distance is a single
location, but may contain many different shops and services, collectively
offering its own combination of capabilities. Truncated singular value de-
composition maps the observations to combinations of features, rather
than to a single cluster. Simulations, using distributions derived from
real world data, demonstrate the feasibility of this approach.

1 Introduction

Everyday life includes many tasks that cannot be performed at arbitrary times
and places. Some tasks require a specific place, such as the conference hotel for
a given conference. Others require places with a specific relationship to the user,
such as “my home” or “my office”. Some tasks depend only on the context having
a specific capability, such as offering a given service or selling a given product.
Any location with similar capabilities is a possible location for the task. Shopping
is a typical example of this kind of task.

The following scenario illustrates how a future reminder system might sup-
port context-capability dependent tasks. Joe is a college professor and a user of
a reminder system, a few years in the future.

While doing his laundry, Joe notices there will not be enough detergent for
next week. He runs his phone’s barcode scanner over the detergent box’s product
code. The phone adds detergent to its shopping list. Postage stamps are already
on the list. Joe has also made a note that he needs access to a copy of the Oxford
English Dictionary (OED), to check the history of a word.

The next day, Joe happens to walk past his college’s reference library. His
phone reminds him of the word he wanted to look up in the OED.

A couple of days later, Joe’s wife, Alice, phones him to say that she is running
late at work, and asks him to buy some food items. Because of where he is, and
the time of day, he drives to a different supermarket than he normally shops at.
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Nevertheless, his phone vibrates as he nears the supermarket. He looks at it, and
sees text reminding him to buy detergent and postage stamps.

Without the reminders, Joe could have easily forgotten some of these tasks.
The literature on prospective memory — on remembering to do things that
cannot be done here and now — assumes that people do sometimes forget such
tasks. For example, Farrimond et. al. mention the task of buying bread on the
way home from work: “It is, however, a common experience to arrive home
without the bread.” [1].

This matches our personal experience. Indeed, one of us, wishing to consult
a paper-only reference on prospective memory, printed out the bibliographic
information and library call number, got distracted on the way to the printer by
the arrival of an elevator, and did not remember to pick up the printout until
outside the computer science building on the way to the library.

Most quantitative research on prospective memory uses artificial laboratory
tasks, but a few do attempt to model real-world tasks. Farramond et. al. use
a laboratory model of shopping tasks. Their younger control group fail to re-
member about 4% of the time [1]. However, comparison of similar tasks in a
laboratory model and in the real-world can get different results [2].

The library reminder is relatively easy. Joe has previously carried out similar
tasks at the same place. A smart reminder application that notes time and
location of to-do list deletions would know where he can do that task.

Joe faces a harder problem than remembering to buy the detergent and
stamps at times and places he had planned. To take advantage of the unplanned
trip, he not only has to know that his location offers the items, he has to remem-
ber that fact, and his intention of buying them, while thinking about another
errand.

Joe may never have bought either detergent or stamps at that location, so his
phone cannot depend only on the information it can collect. It has to function
as part of a larger system, as shown in Figure 1. A server can be dedicated to a
single user or small group of users, or be public and widely shared. Each client
device is associated with one user. Joe’s deletion of “detergent” from his shopping
list itself supplies data; confirmation that the location has detergent-supplying
capability.

The scenario is set in the near future, not today, because it requires several
advances in technology:

– Joe’s phone generally knows where it is, with sufficient accuracy for Joe to be
able and willing to take actions based on his phone’s estimate of its location.

– The phone can decide whether Joe should be interrupted now, given an
opportunity to complete a task.

– Joe’s phone can interpret bar codes with high accuracy.
– The phone has access to a server that maps from a required capability to a

list of nearby locations with the capability.

The last would allow Joe’s phone access to a wider body of information. Given
informed consent, that might include pooled to-do list deletions from many users.
However, even a small shopping center may offer thousands of products and
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Fig. 1. A server receives reports of detergent having been bought at locations loc1 and
loc2. loc3 is a third location that has been found to be similar to the other two. When
Joe’s phone asks where detergent can be bought the server responds with all three
locations.

services. A system that depended exclusively on to-do list data, even if pooled
from multiple users, would require an impractically long time to accumulate a
useful body of data.

This problem is the focus of this paper. Fortunately, businesses do not make
completely arbitrary choices of which products to stock and services to offer.
There are clusters of products that are commonly sold together. People often
use those patterns to predict which shop sells what without memorizing a list for
each shop, albeit imperfectly. If experience indicates that a location is a source
for dishwasher detergent and fabric softener, it is probably a valid location for
Joe’s laundry detergent purchase, even if there is no direct evidence.

This paper proposes applying machine learning methods to extract a mathe-
matical representation of those patterns from a body of capability data. Ideally,
if the data includes even a relatively small amount of information about a specific
location, the method will use those patterns to infer its other capabilities. Af-
ter experimenting with a number of approaches, we selected truncated singular
value decomposition (T-SVD).

The capability prediction problem is complicated by the fact that a single
location, such as a shopping center, may offer a wide range of products and
services because it contains multiple businesses. Even if location detection were
accurate enough to distinguish them, a reminder should be issued if a required
capability is available within easy walking distance. Similarly, a shop like a su-
permarket combines the capabilities of a butcher, a bakery, a pharmacy, etc.
T-SVD can theoretically cope with this complexity because it maps purchases
at locations to combinations of capability clusters, rather than assigning the lo-
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cation to a unique cluster. This factoring also enables bootstrapping the training
by conveniently supporting the infusion of summary capability clustering data.

Since different capabilities have different frequencies of use, and those fre-
quencies may affect the accuracy of the algorithm, we assessed our approach
using actual shopping basket data obtained from a major supermarket chain.
The algorithm was effective if either the locations had simple behavior or we
supplied summary capability clustering data to supplement data about the loca-
tions. In particular, with summary capability data and given 1000 observations
of 135 simulated locations, equivalent to an average of 7.4 observations per lo-
cation, the algorithm achieved 100% precision and 90% recall.

The next section surveys data sources for generating capability-based re-
minders. Section 3 develops our proposed approach. Section 4 describes our
experiments, and the final section concludes.

2 Limitations of Location Capability Data Sources

There are several data sources that can be used for location capability-based
reminders. Although each data source on its own has limitations for providing
reminders for everyday activities, they can be used to train a machine learning
algorithm for inferring place capabilities.

2.1 Direct Input of Individual Information

The simplest method of selecting a location for a reminder is to have the user
name a location or point to it on a map. In effect, this method requires the
user to do the mapping from capability requirements to locations having those
capabilities.

Joe could have used a direct location-based reminder system, such as Place-
Its, to remind himself about the detergent next time he is at his usual super-
market [3]. However, Place-Its would only remind him at the planned location,
not at other locations with similar capabilities.

CybreMinder has a situation description language with power similar to a
database query language [4]. Locations can be referred to by symbolic names
such as “Bob’s front door”. This is likely to be most effective if each user has a
limited number of known reminder locations or groups of locations.

Although CybreMinder’s situation language may be more complicated than
is appropriate for non-expert use, it would be useful to apply time restrictions
to a reminder. For example, a user whose shopping list includes perishable foods
would probably not wish to be reminded of it while driving past a supermarket
on the way to work. The reminder would be useful, at the same location, when
the user is returning home.

The main limitation of direct input is the sheer number of places that have
some capabilities. A reminder system is not useful if the work of entering the
data exceeds the benefit of the reminders. Yet it may be the only solution for a
user in a new area, if the system does not have any local information.
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2.2 Automated Entry of Individual Information

The use of a to-do list for tracking activity, as proposed in this paper, is an
example of automated entry of individual information. Every task completion
is a potentially observable event. With the user’s consent and suitable privacy
protections, the application on the phone could collect the time and location
of a task check-off, and supply the data to its server. The privacy protections
could include lower bounds on elapsed time and change in location between the
event and its transmission to the server, so that the server would never be told
the user’s current or very recent location. This data collection method presents
minimal cost to the user, and is applicable to non-commercial tasks.

Mankoff et. al. use cash register receipt scanning as a convenient way to
help people keep track of the nutritional characteristics of the mix of foods they
buy, and presumably eat [5]. Their technique could be adapted to capture the
shopping data from the receipt.

Such approaches have the major advantage of capturing the information that
most affects the individual user, with minimal user effort. The user’s favorite
shops and services will definitely be covered. However, as the sole data source,
information accumulates slowly, and cannot supply any data the user did not
already know or discover by other means.

2.3 Localized Web Searches

Location-limited web searching has considerable promise for finding locations by
capability, but does not yet work well for many common tasks.

In practice, the user will often know the types of facilities, such as shops,
that are appropriate for completing a task. A “Find businesses” search on Google
Maps (maps.google.com) for “supermarket” near zip code 92126, on March 14th.
2007 got the following top results:

– A sponsored link to the home page for a supermarket chain
– A link for “Seafood City”, which is a supermarket with an emphasis on

seafood.
– A link to a supermarket chain pharmacy that does not exist at the indicated

location.
– A link for a specialized Vietnamese market
– A link for “Slimmer Body Mall”

The nearby stores of three major supermarket chains were not shown.
The problem is harder if the user does not already know the appropriate

types of facilities for completing a task, or if there are so many that entering
them takes too long. Querying “Find businesses” on Google Maps for “instant
coffee” near zip code 92126 was converted to “Categories: Motels & Hotels,
Health & Diet Food Products”, and again failed to find the local supermarkets
and convenience stores at which most people would buy instant coffee.

Other web searches for common items have produced similar results. Exotic,
rare, and expensive items are well represented. Large facilities such as major
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chain stores are well represented. Trivial items that everybody knows about such
as instant coffee are not. Small facilities, such as mini-marts may be represented,
depending on owner initiative and whether they are part of a chain.

2.4 Web-Accessible Database Searches

Many organizations provide web pages that in essence can query a database. For
example, the US Postal Service web site (www.usps.gov) supports a search for
places that sell postage stamps near a given address or zip code. The problem
for a reminder system is navigating the web pages to get to the stamp-buying
search. A program can be written to navigate any specific set of web pages to
obtain specific data, but it would have to be done for each web site, and could
stop working at any time if the web site were modified.

This problem could be ameliorated by having standard interfaces for machine-
based search of location-based information. For example, the Impulse Location-
based Agent Assistance project currently uses location-limited URL searches and
the Wherehoo server (wherehoo.org), to identify nearby locations that might sat-
isfy the user’s “wants” [6, 7]. The main difficulty is the bootstrapping problem of
accumulating enough initial data to attract enough users to motivate database
providers to supply data for low value tasks.

Nonetheless, databases are an attractive source for bootstrapping a machine
learning algorithm. As our experiments presented later show, even a small set of
accessible databases can provide useful clustering information.

3 Proposed Inference System

We propose applying the machine learning process of truncated singular value
decomposition (T-SVD) to raw location-based capability data, including some
general background data, to establish patterns of association between capabilities
and at least a little data about each location of interest.

This proposed process is analogous to one way that many people reason about
a location: Suppose Alice needs some laser printer paper. She sees a new store,
with a name she does not recognize, but with posters in the windows advertising
special offers on ball point pens, highlighters, ink jet printer cartridges, pho-
tocopying, and file folders. Alice uses her general experience of places offering
those products and services to deduce the probable presence of an office supply
store and expects to be able to buy her paper there.

Now instead suppose Alice has laser printer paper on her digital to-do list.
Betty, another user of the system, previously visited the new store. While there,
she checked off ball point pens, a highlighter, an ink jet printer cartridge, a
photocopying task, and file folders. If Alice’s phone depends only on directly
collected data from previous shoppers like Betty, there is insufficient information
for the phone to issue a reminder.

How much data would be enough, if Alice’s phone had access to inferences
from both the local data and a larger body of data from many other locations?
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To answer that question, we built a model of location capabilities and used it to
test a number of inference algorithms, eventually settling on truncated singular
value decomposition.

The next two subsections describes our data model and algorithm. The fi-
nal subsection outlines a possible architecture for a scalable system using this
approach.

3.1 Data Model

The data model initially assigns a weight, representing the number of observa-
tions, to each combination of location and capability. The weights form a matrix,
with one row for each capability and one column for each location. For example:

Table 1. Training Data

Pete’s Pets Happy Paws Hal’s Hardware Mike’s Stuff

Dog Food 40 153 0 0 4

Cat Food 26 95 0 0 0

Bolt 0 0 203 3 0

Nail 0 0 100 4 0

Screwdriver 0 0 23 2 0

Hammer 0 0 45 0 0

Here, each value represents a numbers of observations. For example, the data
contains 153 observations of dog food selling at Happy Paws.

The frequencies of use of different capabilities at a location are useful data for
predicting other capabilities. Generally, heavily used capabilities represent core
characteristics, and the location is likely to continue to have those capabilities,
as well other capabilities normally associated with them. On the other hand, a
single observation of a capability may be an anomaly or a data entry error.

The location and product names are for reader convenience. The locations
will typically only be known by GPS or similar coordinate. The product names
may be product codes. Of course, a real set of training data would be much
larger, with possibly tens of thousands of products and, even in small test cases,
dozens to hundreds of locations. Normally, there are many more products and
services than locations.

The data in this example suggests that cat food and dog food are normally
sold at the same location, so it is reasonable to expect Stuff to sell cat food,
despite the lack of any direct observations. A system that only uses actual history,
without any generalization, would not trigger a reminder for cat food at Stuff.

This data structure can also represent seed data deduced from other data
sources. A row represents a relationship among locations. A column represents a
relationship among capabilities. Suppose a data source associated the label “pet
store” with Pete’s Pets, Happy Paws, and Stuff, and that we assigned that data
source a weight of 3, given its general reliability. We would add a row containing
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3 for each of those locations, and 0 in all other entries. Similarly, if we assigned
weight 5 to an externally supplied list of hardware items, we would add a column
with 5 for those items, and 0 for the remaining rows:

Table 2. Extended Training Data

hardware Pete’s Pets Happy Paws Hal’s Hardware Mike’s Stuff

pet store 0 3 3 0 0 3

Dog Food 0 40 153 0 0 4

Cat Food 0 26 95 0 0 0

Bolt 5 0 0 203 3 0

Nail 5 0 0 100 4 0

Screwdriver 5 0 0 23 2 0

Hammer 5 0 0 45 0 0

3.2 T-SVD Algorithm

The objective of the algorithm is to infer a list of capabilities for each location
that could have caused the observations, under the assumption that most of
the variation between locations can be explained by a relatively small number
of factors, such as the presence or absence of a bakery, as either a shop or a
department in a larger shop. We map from our specialized ubiquitous computing
problem into a common problem in linear algebra, find a low-rank approximation
to the matrix, and then use truncated singular value decomposition, T-SVD, to
solve it.

T-SVD has been applied successfully to similar linear algebra problems from
other domains. For example, Deerwester et. al. applied it to text analysis [8].
Cernekova et. al. use it for detecting video shot transitions [9]. Chu notes that,
if each column of X represents an unpredictable sample of a certain unknown
distribution, the truncated singular value decomposition “not only is the best
approximation to X in the sense of norm, but also is the closest approximation
to X in the sense of statistics.” [10].

T-SVD, as well as compressing data, may reduce various forms of noise that
a full SVD would preserve. Our input data may have a zero for an available
product because nobody has happened to report a purchase of that product at
that location. It may also include false positives, because someone deleted an
item from their to-do list for a reason other than completion of that task at the
current location. T-SVD, by producing a lower rank approximation, removes
detail that is more likely to be due to sampling or errors.

The first step in the algorithm is to build a matrix representing the data.
Each location is represented by a column of the matrix containing the observed
capability weights. For instance, using our original example data without the
added “hardware” and “pet store” data, the column vector for “Pete’s Pets” is
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(40, 26, 0, 0, 0, 0). Similarly, each capability is represented by a row. The matrix
for the example data is:

X =




40 153 0 0 4
26 95 0 0 0
0 0 203 3 0
0 0 100 4 0
0 0 23 2 0
0 0 45 0 0




. (1)

Despite having six rows and five columns, X only has rank four. Each of the
last four rows can be generated by a linear sum of any two of them. However,
if the basic hypothesis of product clustering is correct, X is a noisy, sampled
approximation to a rank 2 matrix, where each column is a linear sum of a
column representing an idealized pet food store and a column representing an
idealized hardware store.

The general strategy is to use T-SVD to calculate a lower rank matrix Y ,
rank k, that is the least squares closest rank k matrix to X, and then use Yi,j

as a score for predicting whether location j has capability i. Full singular value
decomposition factorizes a matrix into USV T such that each of U, S, and V
has some useful properties, conveying information about the underlying struc-
ture of the original matrix. Nicholas and Dahlberg’s work on finding topics in
documents is particularly relevant [11]. Their problem is similar to ours, if we
map “capability” to “term”, “location” to “document”, and treat a cluster of
capabilities that tend to appear together, such as pet food in the example, as a
“topic”.

S is a diagonal matrix containing the “singular values”, a list of weights
related to the importance of different factors in forming the original matrix.
After performing full singular value decomposition using Matlab “[U S V] =
svd(X)”, S is a diagonal matrix with values (231.9131, 186.3347, 2.8800, 2.3201,
0). There are only four non-zero singular values because X is rank 4, despite
having 5 columns.

The full SVD result retains all noise and sampling effects in the data. The
next step is to truncate, keeping only the largest k singular values. In our current
algorithm, k is supplied externally. For this example, we will use k = 2. Note
that the first two singular values, 231.9131 and 186.3347, are relatively close,
but the third singular value, 2.88, is much smaller. Future work will examine
selecting the truncation rank based on the singular values.

The truncation to k singular values results in a rank k approximation. The
truncation could be done by running the full SVD and extracting the data re-
lating to the first two singular values, but for large matrices it is more efficient
to only obtain the required values, for example by running Matlab “[U S V]
= svds(X,2)”. The actual results contain several values of absolute magnitude
less than 10−14, due to floating point rounding error. Those numbers have been
replaced by zero for clarity:
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U S V


0 −0.84895
0 −0.52848

0.87541 0
0.43145 0
0.099325 0

0.194 0




(
231.91 0

0 186.33

)



0 −0.25598
0 −0.96651

0.99981 0
0.019622 0

0 −0.018224




(2)

We next calculate Y, the rank 2 matrix approximation to X, by multiplying
the factors:

Y = USV T =




40.493 152.89 0 0 2.8828
25.208 95.176 0 0 1.7946

0 0 202.98 3.9837 0
0 0 100.04 1.9634 0
0 0 23.03 0.452 0
0 0 44.983 0.88284 0




. (3)

Finally, we map the results back to our original problem domain, and use
them as scores for estimating location capabilities:

Table 3. Scores

Pete’s Pets Happy Paws Hal’s Hardware Mike’s Stuff

Dog Food 40.493 152.89 0 0 2.8828

Cat Food 25.208 95.176 0 0 1.7946

Bolt 0 0 202.98 3.9837 0

Nail 0 0 100.04 1.9634 0

Screwdriver 0 0 23.03 0.452 0

Hammer 0 0 44.983 0.88284 0

All elements that were non-zero in Table 1 are non-zero in Table 3. Two ad-
ditional elements are non-zero, representing cat food at Stuff and hammers at
Mike’s. The decision to issue a reminder will be made by comparing a cutoff
value to the value in Table 3 for the combination of location and capability.
The cutoff has to be somewhat greater than zero to avoid false positives due to
rounding errors. For any cutoff below 0.452, the system would predict cat food
at Stuff and hammers at Mike’s, despite the lack of direct observations.

The approach can be extended to make predictions about a location that was
not in the original training data, given some data about it, without relearning
the result matrix. First we observe that any column of Y can be reproduced by
multiplying together U , UT , and the corresponding column of X:
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UUT




40
26
0
0
0
0




=




40.4933
25.2076

0
0
0
0




. (4)

This operation, applied to a new or updated location column, produces an esti-
mate of the location’s capabilities. Suppose we have seen one cat food purchase
and one hammer purchase at Totally Square, which could happen if Totally
Square is a shopping center containing both a pet store and a hardware store.
The corresponding location vector is (0, 1, 0, 0, 0, 1). Then:

UUT




0
1
0
0
0
1




=




0.4487
0.2793
0.1698
0.0837
0.0193
0.0376




. (5)

Equation 5 predicts both hardware and pet food at Totally Square, but less
strongly than for the locations with more data.

If the Totally Square data had been in the original training set, the algorithm
would also have replaced some zero elements in the original result with slightly
positive scores, reflecting the possibility that each location has both hardware
and pet food, or that hammers are a form of pet food. This behavior creates some
anomalies for the example data — Pete’s Pets is unequivocally a pet food store
and does not sell hammers — but may be a good reflection of the uncertainties
and overlaps of the real world.

The algorithm has two parameters that are currently specified externally,
the cutoff score and the truncation rank. It may be useful to adjust the cutoff
according to a user selected trade-off between being notified of all possibilities,
at the risk of false alarms, or being notified only when there is near certainty
of a required capability. The correct choice may depend, for example, on how
urgently the user wants to complete a particular task, and on the cost of an
alert, given the user’s context and activities.

The truncation rank is an estimate of the number of distinct factors, such as
presence or absence of a facility such as a bakery, that are required to explain
the data. Too low a truncation rank destroys data about real differences between
locations. Too high a truncation rank preserves too much detail. At the extreme,
keeping all non-zero singular values results in Y being identical, within rounding
error, to X. Further work will aim to automate the truncation rank determina-
tion, and to normalize the scoring so that a given cutoff value has similar effects
regardless of the volume of training data.



12 Patricia Shanahan, William G. Griswold

3.3 Scalability and Architecture

We have described the proposed system in terms of how it would be used, and
have described the key algorithm. This subsection discusses how the architecture
can be adjusted to scale to large problem sizes.

The configuration in Figure 1, with a single server, is sufficient for small-
to medium- scale operations. Part of the workload, responding to queries and
collecting data, is embarrassingly parallel. The volume of data required by each
server could be limited by splitting transactions geographically.

However, the T-SVD calculation should be done with as much data as pos-
sible, so it must be centralized. Figure 2 illustrates this architecture.

 
 

 
 

Detergent 
bought at 
loc1 
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bought at 
loc2 

Where buy 
detergent? 

loc1, loc2, loc3 
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Fig. 2. The front-end server that communicates with Joe’s phone also communicates
with a back end inference engine server. The inference engine collects data from front-
end servers and other sources. Periodically, it distributes updates to the front-end
servers.

Suppose there are c capabilities and l locations. There may be thousands of
each. The input matrix X is has cl elements, but is sparse, having a non-zero
entry only for observed combinations of location and capability.

The output matrix is the same size, and may be less sparse, but does not
need to be stored. As noted in the description of the algorithm, elements of it
can be calculated from X and U .

Each front-end server needs a copy of the U matrix. It has ck entries, where
k is the truncation rank. For 25,000 capabilities and k = 40, the U matrix would
have one million entries and could be stored in 8 MB. A front-end server also
needs the observed capability vector for each location it serves. The number of
observed capability vectors could be limited by dividing work geographically,
and the vectors are sparse.
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Although runtime cost has not been a significant factor in our initial test-
ing, the cost of the T-SVD calculation will tend to increase with data volume.
However, the wide use of SVD has resulted in extensive work on efficient so-
lution techniques. For example, Lin has developed an out-of-core method. [12].
In a large version of the system, the inference engine server could be effectively
scaled by giving it additional memory and compute power.

The combination of geographic division of the front-end work, the gains in
SVD performance from compute and memory size gains, and the potential for
more sophisticated SVD methods if needed ensure that the system can scale.

4 Evaluation

We conducted simulation experiments to test the hypothesis that machine learn-
ing could fill in gaps in the observations, as well as merge different types of data.

We considered two types of input data, small numbers of random observa-
tions, such as might result from to-do list deletions, and seed data derived from
bulk lists of products that are commonly stocked together, such as might be ex-
tracted from on-line databases. We tested two simulated environments, “Simple”
and “Compound”. In the Simple environment, each location has the capabilities
of a single cluster. The Compound environment, some locations have multiple
clusters of capabilities, including some that exhibit all eight clusters. In each
case, we compared results to a “Null” learner that reports availability of a capa-
bility at a location if, and only if, the training data contained that combination.
The traditional measures of precision and recall were used to evaluate the results.

Two important questions remain for future studies:

Group structure These experiments are all based on eight disjoint product
groups. Future experiments will use more groups, and include groups that
overlap, with some products in more than one group.

False data The training data does not include any false reports of purchases
at locations that do not stock the product.

A US national supermarket chain (who asked to remain anonymous) supplied
shopping basket data. The data includes classification of products into major
groups. These groups provide a model of related products, and were used to
model different types of shops, with unique capabilities. For our experiment, we
selected the eight groups with the highest total purchase counts. We generated
a table of group number and number of purchases for each product in those
groups. The table contains over 40,000,000 purchases. Each group represents a
set of related products, so we used each group as a model of a specialized shop
type.

The training data for each location was sampled from the groups for its shop
types, with the probability of each product proportionate to its frequency in the
real data. We used the set of products in each group, with no frequencies, as seed
data, because lists of groups of related products and services are often publicly
available, but frequencies of sales are normally trade secrets.
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The “Simple” environment used 8 locations per shop type, 64 locations total,
where each location corresponded to a single shop. The “Compound” experiment
used a mix of different types of locations. Each location has one or more shop
types, as shown in Table 4. There are a total of 135 locations, 64 similar to the
“Simple” experiment, the remainder modeling different types of locations, where
each type has capabilities from multiple clusters.

Table 4. Compound Location Types

Instances Shop Types

8 1

8 2

8 3

8 4

8 5

8 6

8 7

8 8

10 1,2

8 1,2,3

15 1,2,4

10 4,5

10 4,5,6

6 1,2,3,4,5,6,7,8

12 1,8

We ran each experiment in two training data modes:

– Randomly generated samples. Each random sample is produced picking a
location with equal probability, and then picking one of its capabilities with
probability proportionate to the frequency of that capability in the shopping
basket data.

– Randomly generated samples, as above, plus seed data derived from bulk
lists of the products in each group.

For T-SVD’s two external parameters, we chose 8 for the rank and 10−6 for
the cutoff. The rank was based on the expectation that at least eight singular
values would be needed and an observed lack of improvement for using more.
The cutoff was selected to suppress rounding error on values that should be zero.

We also ran a “Null” learner to establish a baseline. The Null learner reports
a capability at a location if, and only if, that combination of capability and
location appeared in the training data. It does no extrapolation. A learning
method must do better than the Null learner to be worth using.

There are two ways a result can be wrong – with different consequences
for a reminder system – leading to two quality measures. “Precision” is the
proportion of reminder triggers that would be correct, issued at a location that
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affords the required capability. “Recall” is the proportion of locations affording
the capability that would trigger the reminder. As an example, the simple Null
learner always achieves perfect precision, at the expense of recall.

In reporting our results, we use unweighted precision and recall, a conserva-
tive approach. Some capabilities have frequencies so low that they have prac-
tically no chance of appearing in a few thousand field samples, but an error
related to one of those rarities (not unlikely with our approach) carries the same
error penalty as an error related to a high probability product (unlikely with our
approach).

In each of the charts, the “SVD-N” line is the performance of our algorithm
without the use of seed data. The “SVD-Y” line is with seed data. “Null” rep-
resents the Null learner.

Figures 3 and 4 show precision and recall for the “Simple” data, measured
as a function of the number of training data samples. “Seen” in Figure 4 is
the proportion of capabilities that have appeared in at least one training data
sample. It is an upper bound on the recall that can be achieved without seed
data. As can be seen from the chart, SVD-N achieves that bound given at least
2,000 samples, an average of 31.25 samples per location. The main benefit of the
seed data in the “Simple” experiment is allowing the system to make projections
about capabilities that have never been observed in the training data, based on
knowledge that the unseen capability is related to ones that have appeared.
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Fig. 3. Precision for simple locations

Figures 5 and 6 show precision and recall for the “Compound” data. For this
workload, the seed data is needed to achieve acceptable precision. Without it,
the precision is about 40%. With seed data, T-SVD has 100% precision, and
exceeds 90% recall given at least 1000 training data samples.
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Fig. 4. Recall for simple locations

The low precision without seed data may be explained by an effect discussed
in the description of the algorithm. A location with multiple shop types may
cause a low but positive score at any location with just one of its constituent
shop types. In our training data, sampled from a realistic distribution, some
observed capabilities have extremely low frequencies, leading to an overlap in
the scores for capabilities that do not exist and for capabilities that do exist, but
observed at very low frequencies. The seed data cures this by raising the scores
for existing but rarely observed capabilities.

The current T-SVD algorithm is very effective if either the locations are
simple or there is seed data to merge with the local data. As hypothesized, seed
data is needed in some cases.

5 Conclusions and Future Work

A location-based reminder system could be much more useful if the user only
needed to provide the content of the reminder, without having to provide all the
locations at which the reminder should be delivered. One way to achieve this is for
the reminder system to learn where similar previous reminders have resulted in
success in the past. Unfortunately, impractically large numbers of observations
would be needed to learn anything about infrequently used capabilities from
observations alone. Truncated singular value decomposition can generalize from
a small number of direct observations to build high-fidelity models of locations.
T-SVD’s structure supports the addition of summary capability-clustering data,
enabling rapid generalization in real-world situations such as the existence of
hybrid store types. In our experiments based on real shopping basket data, 1000
samples randomly distributed across 135 locations gave 100% precision and 90%
recall.
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Fig. 5. Precision for compound locations
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Future work will explore enhancements to the algorithm, such as automatic
selection of the truncation rank, normalization of the cutoff score, and improved
cluster detection for compound locations without seed data. Likewise, the work-
load will be made more realistic, for example by increasing the number of product
groups. Finally, we plan to field test a small-scale reminder system based on this
approach.
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