
A Framework for Application-Specific Customization of Network Services

Sriram Ramabhadran and Joseph Pasquale

Department of Computer Science and Engineering
University of California, San Diego

{sriram , pasquale}@cs.ucsd.edu

Abstract

We propose a network service framework where common
network functions such as routing and multicast can be
customized on a per-application basis. Network service
customization is achieved through service plug-in modules
that can be dynamically loaded by applications. In
addition to their customization, services can also be
composed to form complex aggregate services. Finally,
our framework is deployed using an overlay network
infrastructure.

1. Introduction

 The increasing heterogeneity of the Internet in terms
of networking technologies and client devices raises
significant engineering challenges for the development of
wide-area applications. The process of building robust
and adaptive Internet applications is highly non-trivial,
and requires careful design and implementation. In this
paper, we propose a middleware–based system that
facilitates this process. Specifically, we propose a
framework for application–specific customization of
network services.
 Two distinct aspects of the development of Internet
applications motivate the framework. First, many
network applications use certain common network-based
functions like data transport (unicast and multicast),
caching, lookup and others. Our framework tries to
abstract out these common functions in the form of
services that can be used by application developers as
basic building blocks to construct more sophisticated
services. Although such services are generic enough to be
of utility to several applications, there is still benefit in
modifying these services in application-dependant ways.
The increasing diversity of Internet applications with

vastly different requirements demands that such services
be customizable.
 The second factor is the necessity of applications to
adapt to changes in network properties such as latency,
bandwidth and loss rate, which may exhibit both spatial
and temporal variation. There has been considerable
research [1,3,4,5] in application adaptation. In this
context, embedding application-aware computation in the
network has been proposed as key mechanism to enable
adaptation. Our framework extends work in application
adaptation by providing the applications the ability to
customize network functionality. Effective adaptation
demands exposing the network to applications instead of
isolating it purely as a communication substrate.
 One approach to customizing network services for
applications is to make them parameterized, with the
application instantiating a specific version of the service
by supplying the relevant parameters. We believe this
approach, though feasible, is not expressive enough
because it limits the range of application customizations
possible. What is required is a sufficiently expressive, yet
simple, way to customize network services.
 In this paper, we propose a service model in which
services can be customized by dynamically loading policy
modules called service plug-ins. In contrast to the limited
nature of parameter-based customization, server plug-ins
can be used to specify richer forms of customizations. Our
model also permits applications to compose services to
form an aggregate service. We also propose an overlay
network infrastructure to deploy these services.
 The remainder of the paper is organized as follows.
Section 2 motivates the need for application-specific
customization of network functionality through illustrative
examples. Section 3 describes a framework that enables
the development and deployment of these services.
Section 4 describes multicast as an example of an
application-specific network service. Section 5 surveys
related work and Section 6 concludes.

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

2. Examples of Network Services

 Consider routing of application data as a basic service
provided by the network. Routing in the Internet is often
based on hop count within a routing domain, and on
administrative policy between routing domains. This can
result in end-to-end data paths being significantly sub-
optimal, as applications have little or no control over data
paths established between application endpoints. An
application-specific routing service would provide
applications the ability to establish paths based on metrics
important to the application. A real-time application such
as Internet telephony would conceivably choose paths
optimized for low network latency. A bulk data transfer
application such as a large FTP, on the other hand, would
conceivably choose paths optimized for high bandwidth.
Other applications may wish to implement a highly
specific routing policy. An example of such a policy is
onion routing [11], which makes anonymous the
communication between endpoints by routing through a
series of intermediaries.
 As another example, consider multicast as a network
service. For various reasons, IP multicast, the Internet’s
native multicast infrastructure, lacks widespread
deployment especially in the wide area. Application-level
multicasting using overlays has been proposed as an
alternative [10,13]. Although multicast as a service is
potentially useful to several applications, the exact service
requirements can differ sharply. For example, it is
possible to construct the multicast distribution tree based
on different metrics. Applications differ on the extent of
loss that can be tolerated, and hence make different
tradeoffs between the required level of reliability and the
cost of implementing it.
 Many applications could benefit from the ability to
customize network functions like routing and multicast.
The same is true of application layer services such as
caching, lookup, and network storage, that are not core
network functions, but are network–based functions useful
to many applications. A more flexible framework in
which applications can easily customize these services is
required. In the next section, we describe such a
framework.

3. Framework

 In this section, we describe an architectural framework
for application-specific customization of network
services. First we describe the service model for the
creation and customization of services, and then the
infrastructure for the deployment of these services.

3.1 Service Model

 In our framework, a network service is an abstraction
for some specific network-based function that applications
require. As previously mentioned, examples include
routing, caching, multicast, lookup, and network storage.
Services may also include transformational operations on
application data inside the network, such as image
filtering and compression, and other application
adaptations.
 Each service is associated with certain semantics,
which are closely tied to its function. However within the
semantics of the service, there may be certain operations
that applications would require to be implemented in a
customized manner. For example, a routing service
determines, given a destination node, the next hop node in
the network. But the procedure to determine the next hop
node could be different for different applications. As
another example, a caching service stores application
objects for future retrieval. However, applications could
implement different replacement policies and different
procedures to determine when a particular object
becomes stale in the cache. In each case, the semantics of
a service are well defined, but there are certain operations
in the service that may vary from application to
application. This is the basis of our customization
architecture for services.

 Each service is associated with a service definition,
which contains the code that implements the service. This
code is not fully specified, but uses abstract components
called service plug-ins. A service is instantiated by

Router service

Read destination and other
parameters from ADU .

Decrement TTL.
If TTL is zero, stop.

Use
NEXT_HOP (destination, parameters)
service plug-in to compute next hop.

Check next hop for validity.
If invalid, compute default next hop.

Write next hop into ADU.

Figure 1. Service definition

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

binding the service code with specific implementations of
each server plug-in used by the service. Applications
customize services by providing appropriate
implementations of the server plug-ins for a service, as
specified by its definition. Figure 1 shows pseudo–code
for a routing service, which uses a single plug-in to
determine the next hop in the network. These server plug-
ins are strongly-typed entities that are accessed through a
well–defined programmatic interface. This enables them
to be dynamically bound to the service code during
service instantiation. This interface is also specified in the
service definition. Service plug-ins can also be viewed as
policy modules that express arbitrary application-specific
policies. For example, in the case of the routing service,
the plug-in can not only implement routing based on
different metrics, but also a more sophisticated routing
strategy such as onion routing.
 This service model has several advantages. It
provides applications with the ability to use standard
services, and yet customize them with minimal effort. It
encourages modularity and reuse. Our service model also
has advantages in terms of protection from malicious
applications. Services are meant to be higher privileged
entities than service plug-ins. Therefore services may
have access to system resources such as permanent
storage and the underlying network, whereas service plug-
ins may not. This limits the amount of damage that can be
done by a malicious or buggy service plug-in. In addition,
the service code can enforce safety checks on the behavior
of a server plug-in using reasonable defaults if the output
is determined to be erroneous. For example, a malicious
service plug-in for a routing service can cause data to
circulate in the network forever, thereby consuming
network bandwidth. This can be prevented by the routing
service by using a TTL counter that is decremented at
each hop independent of the plug-in.
 One potential drawback of our service model is that
by fixing the semantics of a service a priori in terms of
service code, we limit the range of customizations
possible to those that can be expressed through service
plug-ins. However our focus is on specific network
services like routing and caching, which have relatively
well–defined semantics. Therefore we do not expect that
this is a serious limitation of our approach.
 In addition to customization of services, our
architecture also permits composition of multiple services.
The output of one service may be used as input for
another service, thereby forming a service pipeline.
Figure 2 shows a schematic diagram of a service pipeline.
This composition is made possible by a standard interface
for all services. Every service takes an application data
unit as input and returns as output possibly multiple
application data units. Service composition provides
applications the ability to construct sophisticated services

from relatively simple services. We provide an example
of this in Section 4.

3.2 Network Infrastructure

 The network infrastructure to deploy these services
consists of a system of servers placed at various points in
the network. These servers form an overlay network, a
virtual topology implemented by application-level routing
over the actual IP network of the Internet. Overlay
networks have been used to provide increased robustness
[6], to support wide–area multicast [10,13], and as a
testbed for active networks. We use an overlay-based
infrastructure for deploying application-specific network
services. Applications connect to one of the servers in the
infrastructure through a client library. All communication
between application endpoints is routed through the
overlay network.
 The overlay-based approach has a number of
advantages. The servers in the overlay network provide a
natural location for hosting application-specific services.
Unlike the active network architecture, the framework
operates at the application layer, and avoids any change to
the Internet routing infrastructure. This makes the
framework safe and practical, and thereby mitigates a
formidable barrier to deployment. Overlay networking
also provides a natural mechanism to establish
application-specific data paths in the network, in contrast
to routing in the Internet where data paths are often
beyond the control of applications.

3.3 Service Execution Environment

 The execution environment at each server in the
system consists of a Service Coordinator and a Network
Coordinator. The Service Coordinator implements the
service model described earlier, while the Network

S1 S2 S3

Figure 2. Service composition

Service Coordinator

Input ADU Output ADUs

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Coordinator provides the network interface to executing
services. Figure 3 show a schematic diagram of the
execution environment at a server.
 The Service Coordinator is responsible for
instantiating services, customizing them and composing
them into pipelines. Each application data unit contains a
service manifest, which is a list of services that are to be
composed together for processing that application data
unit. The service manifest also names service plug-ins and
parameters for each service listed. For each service listed,
the Service Coordinator instantiates the service and
dynamically binds it to any service plug-ins specified. The
service manifest may either contain code for a service
plug-in or may simply name its location. In the latter case,
the Service Coordinator must first obtain the code.
Service plug-ins are cached for further use. The Service
Coordinator then composes the services to form a
pipeline.

 The Network Coordinator provides network access
with standard interfaces to common transport protocols
such as TCP and UDP. All network communication by the
Service Coordinator and services takes place through the
Network Coordinator. In addition, it also implements a
Topology Manager, which is responsible for maintaining

the overlay network. Servers are organized into a mesh, in
which each server maintains virtual links to at least k
other servers. The parameter k is chosen to keep the
network connected and resilient to failures. The
Topology Manager maintains state about the latency,
bandwidth, and loss rates of virtual links in the network,
and monitors the other servers for failure. This
information is available to services through a well-defined
programmatic interface.
 Application Level Framing [2] is used to structure
application communication into application data units.
An Application Data Unit (ADU) is an abstract unit of
application communication. For Web applications, this
would be a HTTP requests/responses, while for a video
application, this would be an MPEG frame. By operating
at the application layer, the framework admits a richer set
of services such as caching and data type-specific
distillation [15].

4. Application Specific Multicast

 Recent research [10,13] has suggested overlay
networking as a mechanism for implementing multicast as
an application-level service. Nodes placed at strategic
locations in the network organize themselves into a
multicast distribution tree, in which data is forwarded
between nodes using unicast channels. In this section, we
describe application-specific multicast, a way in which
applications can construct a multicast service suited to
their requirements. In particular, we show how service
customization and service composition can be used for
this purpose.
 To illustrate how different applications can construct a
multicast service in different ways, consider the following
two applications. The first application is a real-time
multimedia multicasting application such as
videoconferencing. The second application is a bulk data
distribution application in which large volumes of data are
to be reliably transmitted to multiple destinations. The
first application is delay sensitive, but is willing to tolerate
loss of data to some degree. The second application is
bandwidth intensive and requires reliable transmission of
the data.
 An overlay multicast service has the following
semantics. On receiving an ADU, the service must
determine which of it neighbors to forward it to. For each
such neighbor, it generates a duplicate copy of the ADU.
Just like the router service used a plug-in to determine the
next hop, the multicast service uses a plug-in for this
purpose. The first application would specify a plug-in that
optimized the construction of the multicast tree using
delay as the primary metric. Since occasional loss can be
tolerated, the plug-in can constantly improve the multicast

TCP UDP
 Topology

Manager

Network Coordinator

Service Coordinator

Figure 3. Service execution environment

Network

Network API

Service Pipeline 1

Service Pipeline n

.

.

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

tree in response to variations in link delays. The unicast
transport protocol used for forwarding could be UDP as
reliable delivery is not required. The second application
would specify a plug-in that optimized the construction of
the multicast tree using available bandwidth as the
primary metric. Since loss is not tolerated, the plug-in
would not change the multicast tree unless the topology of
the overlay network changes. The unicast transport
protocol used for forwarding would be TCP as reliable
delivery is required. Thus plug-in-based customization of
services helps two very different applications implement
specialized versions of the same service.
 In addition, service composition can be used to further
enhance the operation of the multicast service. By
composing the multicast service with a multimedia
filtering service, the videoconferencing application can
construct a multicast service that filters the video based on
the bandwidth available on each output link. Since the
second application requires reliable delivery of data, the
multicast service can be composed with a caching service
that stores that data. If loss due to change in topology
occurs, data from the cache can be retransmitted. The
service pipelines for the two applications are shown in
Figure 4. The transport protocols are not part of the
service pipeline but are shown in the figure as an example
of how the same service can be used with different
transport protocols by different applications.

5. Related Work

 The Active Network initiative [1,14] has similar goals
of enabling the dynamic customization of network
protocols. It involves presenting the network as a fully
programmable computational environment in which
arbitrary application defined code can be run on the
routers within the network. The concept of slots proposed
in [14] is very similar to that of a service plug-in.
However, our work differs from that of Active Networks
in two significant respects. First, we an overlay approach
in which application-specific computation runs on end
systems as opposed to routers. Therefore it involves no
fundamental change in the architecture of the Internet.
Second, our infrastructure operates at the application layer
where the unit of processing is the application data unit
and not at the network layer where the unit of processing
is the IP packet.
 Active services [3] and application-level active
networking [4] are research initiatives that seek to limit
user computation in the network to the application layer.
These projects focus on application adaptation by
embedding application-specific computation in the
network. Conductor [5] is a network infrastructure for
distributed adaptation. Conductor has a proxy node
architecture, similar to that of our overlay network of
servers, over which adaptor modules are deployed. Our
work is more focused on customizing a predefined set of
services in application-specific ways. In that sense, our
work is complementary to these projects in that we focus
on a different kind of application adaptation.
 Several other projects like CANS [7], APC [8] and
Ninja [9], propose architectures for composable Internet
services. These projects are mainly concerned with a
composition model for constructing application-level
services.
 RON [6] deals with overlay routing and mentions
routing based on application-specific metrics as one of its
goals. Our work takes this one step further in using an
overlay infrastructure as a general framework for
application-specific customization of other network
services as well.

6. Conclusion

 We argued for the need for application-specific
customization of network functionality to better support
the increasing diversity of demands of Internet-based
applications. We described a framework for the
development and deployment of services that embody
common types of network functionality, and how they can
be customized using service plug-in modules. Beyond the
customization of basic services, more complex aggregated

MULTICAST
delay metric

VIDEO
FILTER

UDP

MULTICAST
bw metric

CACHE

TCP

Figure 4. Aggregate multicast services

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

services are easily defined by composing existing ones.
An overlay network approach is adopted for practical and
safe deployment of our framework.
 We are currently developing a Java-based prototype
of the framework, with routing and multicast as the initial
target services. We plan to subsequently report on our
experiences with the prototype, and to extend the
prototype to other network-based services such as
caching, lookup, content distribution, and network
storage.

 Acknowledgements

 This research was supported by research grants from
AFOSR, DARPA, and a NSF Research Infrastructure
grant as part of the UCSD Active Web project.

References

[1] David Tennenhouse and David Wetherall, “Towards an
Active Network Architecture,” Computer Communication
Review, Vol. 26, No. 2, April 1996.

[2] David Clark and David Tennenhouse, “Architectural
Considerations for a New Generation of Protocols,”
Proceedings of ACM SIGCOMM, Philadelphia, USA, 1990.

[3] Elan Amir, Steven McCanne and Randy Katz, “An Active
Service Framework and its Application to Real-time Multimedia
Transcoding,” Proceedings of ACM SIGCOMM, Vancouver,
British Columbia, 1998.

[4] Michael Fry and Atanu Ghosh, “Application Level Active
Networking,” Computer Networks, Vol. 31, No. 7, 1999.

[5] Mark Yarvis, Peter Reiher, Kevin Eustice and Gerald Popek,
“Conductor: Enabling Distributed Adaptation,” UCLA Tech.
Report CSD-T010025, June 2001.

[6] David Anderson, Hari Balakrishnan, Frans Kaashoek, and
Robert Morris, “Resilient Overlay Networks,” Proceedings of
18th ACM SOSP, Banff, Canada, October 2001.

[7] X. Fu, W. Shi, A. Akkerman and V.Karemcheti, “CANS:
Composable, Adaptive Network Services Infrastructure,”
Proceedings of USENIX Symposium on Internet Technologies
and Systems (USITS), March 2001.

[8] Zhuoqing Morley Mao, Eric Brewer and Randy Katz,
“Fault-tolerant, Scalable, Wide-area Internet Service
Composition,” UCB Tech. Report CSD-1-1129, January 2001.

[9] Steven Gribble, Matt Welsh, Rob von Behren, Eric Brewer,
David Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,
Randy Katz, Z. M. Mao, S. Ross, and B. Zhao, “The Ninja
Architecture for Robust Internet-Scale Systems and Service,” to

appear in a Special Issue of Computer Networks on Pervasive
Computing.

[10] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans
Kaashoek, and James W. O'Toole, Jr., “Overcast: Reliable
Multicasting with an Overlay Network,” Proceedings of OSDI,
San Diego, October 2000.

[11] Michael G. Reed, Paul F. Syverson, and David M.
Goldschlag, “Anonymous Connections and Onion Routing,”
IEEE Journal on Selected Areas in Communication: Special
Issue on Copyright and Privacy Protection, 1998.

[12] Bruce Zenel and Dan Duchamp, “A General Purpose Proxy
Filtering Mechanism Applied to the Mobile Environment,”
Proceedings of ACM Mobicom, New York, 1997.

[13] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan and Hui
Zhang, “Enabling Conferencing Applications on the Internet
using an Overlay Multicast Architecture,” Proceedings of ACM
SIGCOMM, San Diego, August 2001.

[14] S. Merugu, S. Bhattacharjee, Y. Chae, M. Sanders, K.

Calvert and E. Zegura, “Bowman and CANEs: Implementation
of an Active Network,” Proceedings of the 37th Annual Allerton
Conference, Monticello, IL, Sept.1999.

 [15] Armando Fox and Eric A. Brewer, “Reducing WWW
Latency and Bandwidth Requirements by Real-Time
Distillation,” Proceedings of the Fifth International World Wide
Web Conference, Paris, May 1996.

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

