UC San Diego

Computing the Heat Kernel of a Graph for a Local Clustering Algorithm

Olivia Simpson and Fan Chung

We present an efficient local clustering algorithm that finds cuts in large graphs by performing a sweep over a heat kernel vector. We show that for a subset S of Cheeger ratio ϕ , many vertices in S may serve as seeds for a heat kernel random walk which will find a cut of conductance $O(\sqrt{\phi})$. Further, the random walk process is performed in time sublinear in the size of the graph.

Local Clustering in Graphs

The goal of a local clustering algorithm is to compute a cluster in a graph near a specified vertex with size and volume constraints. For example, in **social networks** local clustering algorithms are used to identify a small and dense community around a particular member. In **protein networks** local clustering is used to isolate a group of interacting proteins to analyze a component of a biological system.

$$\partial(S) = \{ u \sim v : u \in S, v \notin S \}$$
$$\operatorname{vol}(S) = \sum_{v \in S} d_v$$

Single Sweep Algorithms

Consider a probabilistic function $f: V \rightarrow \mathbb{R}$ and order the vertices by decreasing probability-per-degree

$$\frac{f(v_1)}{d_{v_1}} \ge \frac{f(v_2)}{d_{v_2}} \ge \dots \ge \frac{f(v_n)}{d_{v_n}}$$

For i = 1 to n:

- Let S be the set of the first *i* nodes in the ordering
- If $\Phi(S)$, vol(S) are within desired constraints, output S

$$\Phi(S) = \frac{|\partial(S)|}{\min(\operatorname{vol}(S), \operatorname{vol}(V \setminus S))}$$

The Heat Kernel of a Graph

The heat kernel is a vector in \mathbb{R}^{V} . It is the solution to the heat equation $\frac{\partial}{\partial t}\rho_{t,f} = -\rho_{t,f}(I - P)$ $(P)_{uv} = \begin{cases} 1/d_{u} & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases}$ $\rho_{t,f} = e^{-t} \sum_{k=0}^{\infty} \frac{t^{k}}{k!} fP^{k}$

When viewed as a function, a single sweep of the heat kernel finds a cluster with Cheeger ratio $O(\sqrt{\phi})$ where ϕ is a constraint.

<u>Approximating the Heat Kernel in Sublinear Time</u>

- Let $f: V \to \mathbb{R}$ be a probabilistic function with all probability on a single vertex, u
- Let X be the random variable that takes on the distribution after k random walk steps starting from u with probability $p_k = e^{-t} \frac{t^k}{k!}$

Definition 1. Let G be a graph on n vertices, and let $f: V \to \mathbb{R}$ be a vector over the vertices of G. Let $\rho_{t,f}$ be the heat kernel pagerank vector according to f and t. Then we say that $\nu \in \mathbb{R}^n$ is an ϵ -approximate vector of $\rho_{t,f}$ if

1. for every vertex $v \in V$ in the support of ν ,

S

 $(1-\epsilon)\rho_{t,f}(v) - \epsilon \le \nu(v) \le (1+\epsilon)\rho_{t,f}(v),$

2. for every vertex with $\nu(v) = 0$, it must be that $\rho_{t,f}(v) \leq \epsilon$.

Local Clusters with Heat Kernel Sweeps

A ALL ALL AND A					
Network	Size	Constraints	PR	HKPR	ϵHKPR
dolphins	V = 62,	$\phi = 0.08$	φ = 0.226	<i>φ</i> = 0.164	<i>φ</i> = 0.083
	E = 159	s = 20	s = 23	s = 24	s = 20
		vol = 100	vol = 106	vol = 110	vol = 96
polbooks	V = 105,	<i>φ</i> = 0.05	ϕ = 0.08	φ = 0.246	<i>φ</i> = 0.052
	E = 441	s = 30	s = 48	s = 49	s = 50
		vol = 270	vol = 415	vol = 403	vol = 422
power	V = 4941,	<i>φ</i> = 0.05	φ = 0.375	<i>φ</i> = 0.003	φ = 0.347
	E = 6594	s = 200	s = 6	s = 1564	s = 85
		vol = 600	vol = 16	vol = 4342	vol = 300
facebook	V = 4039,	$\phi = 0.05$	ϕ = 0.419	ϕ = 0.001	<i>φ</i> = 0.057
	E = 88234	s = 200	s = 3063	s = 1094	s = 258
		vol = 2800	vol = 88140	vol = 67326	vol = 35266
enron	V = 36692,	$\phi = 0.05$	$\phi = 0.488$	-	$\phi = 0.037$

• Then the expected value of X is exactly $ho_{t,f}$

$\texttt{ApproxHKPRseed}(G, t, u, \epsilon)$

input: a graph $G, t \in \mathbb{R}^+$, seed vertex $u \in V$, error parameter $0 < \epsilon < 1$. output: ρ , an ϵ -approximation of $\rho_{t,u}$.

```
initialize a 0-vector \rho of dimension n, where n = |V|

r \leftarrow \frac{16}{\epsilon^3} \log n

K \leftarrow c \cdot \frac{\log(\epsilon^{-1})}{\log\log(\epsilon^{-1})} for some choice of contant c
```

for r iterations do

$\mathbf{S}\mathbf{t}\mathbf{a}\mathbf{r}\mathbf{t}$

simulate a P random walk from vertex u where k steps are taken with probability $e^{-t} \frac{t^k}{k!}$ and $k \leq K$ let v be the last vertex visited in the walk

$$\rho[v] \leftarrow \rho[v] + 1$$

 \mathbf{End}

end for

return $1/r \cdot \rho$

The algorithm returns an ϵ -approximate vector of $\rho_{t,f}$ in time

$$O(\frac{\log(\epsilon^{-1})\log n}{\epsilon^3 \log\log(\epsilon^{-1})})$$

 |E| = 183831
 s = 100
 vol =
 vol = 3579

 vol = 1000
 183612
 vol = 3579

The outputs of a single sweep algorithm using three different vectors: a Personalized PageRank vector (PR), an exact heat kernel vector (HKPR) and an ϵ -approximate heat kernel vector (ϵ HKPR).

Local clusters detected in the Facebook ego network (from the SNAP dataset). The image on the left is a local cluster detected with a sweep of an ϵ -approximate heat kernel vector, while the image on the right is a local cluster detected with a sweep of a Personalized PageRank vector. Both clusters are colored red.

Appeared in proceedings of IWOCA'14

osimpson@ucsd.edu