
When Refactoring Acts like Modularity
Keeping Options Open with Persistent Condition Checking

Macneil Shonle William G. Griswold Sorin Lerner
Computer Science & Engineering, UC San Diego

La Jolla, CA 92093-0404
{mshonle, wgg, lerner}@cs.ucsd.edu

Abstract
Oftentimes the changes required to improve the design of
code are crosscutting in nature and thus easier to perform
with the assistance of automated refactoring tools. However,
the developers of such refactoring tools cannot anticipate
every practical transformation, particularly those that are
specific to the program’s domain. We demonstrate Arcum,
a declarative language for describing and performing both
general and domain-specific transformations.

Because Arcum works directly with declarative descrip-
tions of crosscutting code it can ensure that code written or
modified after the transformation also satisfies the design’s
requirements. As a result, preconditions and postconditions
are persistently checked, making the crosscutting code (such
as the use of a design idiom or programming style) behave
more like a module with respect to checkability and substi-
tutability. Bringing such capabilities into the IDE allows for
code to be decomposed closer to the programmer’s inten-
tions and less coupled to specific implementations.

Categories and Subject Descriptors D.2.11 [Software En-
gineering]: Software Architectures—Domain-specific archi-
tectures, languages, patterns

General Terms Languages, Design.

Keywords Refactoring, Design patterns, Arcum.

1. Introduction
When employed, agile programming changes the way pro-
grams are developed (Beck and Andres 2004). In agile
programming, programmers use advanced IDEs and write
code according to their current knowledge; keeping open
the chance to make modifications later, when requirements

Copyright is held by the author/owner(s).
WRT’08, October 19, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-339-6/08/10.

change or when more information is known. Modifications
that operate on crosscutting code can be less tedious and er-
ror prone with the assistance of automated tools. However,
the helpfulness of such automated tools is limited by the
kinds of changes the tool can perform.

Arcum is a framework for scripting user-defined program
checks and transformations, with the goal of increasing au-
tomated refactoring opportunities for the user (Shonle et al.
2007). In this paper, we show how the presence of a tool
like Arcum can change how design decisions are handled.
Following the spirit of agile programming, the programmer
can use Arcum to record design decisions and later revisit
them, even when the decision’s implementation is crosscut-
ting, such as when it implements a design pattern or pro-
gramming style.

Using Arcum, a programmer can envision a crosscutting
design idiom’s implementation as a form of a module. Ar-
cum uses a declarative language to describe the idiom’s im-
plementation, where descriptions are composed with Arcum
interface and Arcum option constructs. An option de-
scribes one possible implementation of a crosscutting design
idiom, and a set of options are related to each other when
they all implement the same Arcum interface.

Arcum’s declarative language uses a Java-like syntax for
first-order logic predicate statements, including a special
pattern notation for expressing Java code. Arcum infers from
the predicates the conditions necessary for a proper imple-
mentation of the idiom, allowing for programming errors to
be caught. Additionally, when the implementation of an al-
ternative implementation is described, Arcum can infer the
preconditions, transformation steps, and postconditions nec-
essary to refactor between the two implementations.

This paper introduces the notion that Arcum can change
the development process itself, and presents a new way to
postpone the decisions behind some programming trade offs.

2. Development Example
In this section, we present an example of a design decision
made in the process of development and how Arcum can



import java.util.Map;

import com.google.common.base.Function;

import com.google.common.base.Functions;

import edu.ucsd.arcum.util.ReadOnly;

interface LookupTable {

LookupTable(Type keyType, Type valueType);

abstract tableDeclaration(DeclarationElement decl);

abstract lookup(Expr e, Expr map, Expr key) { tableDeclaration(d?) && declaredBy(map, d) }

abstract conversion(Expr e, Expr baseMap) { tableDeclaration(d?) && copiedTo(e, d) }

}

option FunctionalWrapper implements LookupTable {

realize tableDeclaration(DeclarationElement decl) {

decl == [Function<`keyType, `valueType>]

}

realize lookup(Expr e, Expr map, Expr key) {

e == [`map.apply(`key)]

}

realize conversion(Expr e, Expr baseMap) {

e == [Functions.forMap(`baseMap)]

}

}

option ReadOnlyMap implements LookupTable {

realize tableDeclaration(DeclarationElement decl) {

decl == [@ReadOnly Map<`keyType, `valueType>]

}

realize lookup(Expr e, Expr map, Expr key) {

e == [`map.get(`key)]

}

realize conversion(Expr e, Expr baseMap) {

e == [`baseMap] && !tableExpr(baseMap)

}

define tableExpr(Expr e) {

tableDeclaration(d?) && declaredBy(e, d)

// prevent write operations

require "Can only call 'get' on a @ReadOnly map":

hasInvocationTarget(_, e) => lookup(_, e, _);

// prevent casting away of annotation

require "Can only copy to other @ReadOnly maps":

!exists (DeclarationElement notAnnotated) {

copiedTo(e, notAnnotated)

&& !tableDeclaration(notAnnotated)

};

}

}

void f(Map<String, Image> map) {

Function<String, Image> lookup;

lookup = Functions.forMap(map);

Image im = lookup.apply(v);

}

void f(Map<String, Image> map) {

@ReadOnly Map<String, Image> lookup;

lookup = map;

Image im = lookup.get(v);

}

refactor

b

a

d

c

Figure 1. The Arcum interface for a lookup table (box a) is implemented in two ways: As a Function object that associates
a range to a domain (box b), or as a Map annotated as read-only (box c). The sample code (d) shows these instantiations
of LookupTable (with keyType bound to String, and valueType bound to Image). The refactoring between the two different
implementations is bi-directional.

both keep track of this decision and allow for the refactoring
to alternative implementations.

Consider a system where an association is made between
members of a set of objects and a set of their definitions,
such as in the implementation of a symbol table. For exam-
ple, the HashMap class is sufficient for expressing such a rela-
tionship. Whether the HashMap class or Map interface is used
for parameter types is one design decision that the program-
mer has to make. In this case, it is recommended that the Map

interface be used, because it allows for more flexibility—
this recommendation appears as items 40 and 52 of Effective
Java (Bloch 2008).

However, even the Map interface itself might be broader
than necessary. For example, methods taking instances of
the symbol table as parameters might only need to perform
lookup operations, and not modify the table. Thus, at the
conceptual level, the programmer’s requirements are for a
lookup table, and the Map interface is just one possible im-

plementation of such a mechanism. By coding with a focus
on the direct requirements, programmers can code closer to
their original intentions and preserve the option of using a
different implementation later.

2.1 Example Arcum Interface
Figure 1, box a, shows an Arcum interface definition named
LookupTable, which explicitly documents the requirements
of a lookup table. The definition specifies how a LookupTable
is parameterized and describes three abstract concepts re-
lated to the proper implementation of a LookupTable:

• The LookupTable has two parameters, both types: the key
type and the value type.

• The first concept, tableDeclaration, defines when a
declaration element belongs to a LookupTable imple-



mentation.1 Arcum options that implement LookupTable
must provide a complete definition for tableDeclaration.

• The second concept, lookup, defines when an expression
is considered a lookup operation. A lookup operation
must have both a map expression and a key expression.
The concept is partially defined, restricting as valid map

expressions only those whose type has been specified by
a tableDeclaration. The rest of lookup’s definition must
be provided by the implementing option.

• The third concept, conversion, defines when a regular
Map is converted to an expression that yields a lookup
table. This concept is also partially defined, restricting
valid conversion operations to only those where the
new lookup table is stored into a location specified as
a tableDeclaration.

Any particular instance of these three concepts can be
present any number of times in the program.

Both the lookup and conversion concepts reference the
tableDeclaration concept, using it as a predicate. The
lookup concept uses the built-in declaredBy predicate,
which relates expressions to the declaration of its static
type. The conversion concept uses the built-in copiedTo

predicate, which relates copy expressions to the declara-
tion associated with the memory location copied to. (Copy
expressions includes expressions that appear as arguments,
assignment values, or return values.)

2.2 Example Arcum Options
The LookupTable interface shown in Figure 1 has two Ar-
cum options that implement it: FunctionalWrapper (b) and
ReadOnlyMap (c).

The FunctionalWrapper implementation of LookupTable
utilizes the Function interface, which defines a single method
named apply. A Function can be created from a Map via the
static forMap method. The advantage of using this Function
implementation is that it requires the implementation of only
the lookup operation (here, apply). This implementation in-
cludes three uses of the pattern notation, all enclosed in
square brackets ([...]), one pattern specifies a type, while
the two other patterns specify Java expressions.

The ReadOnlyMap implementation of LookupTable uses
the standard Map interface, but with a twist: All declarations
of lookup tables are labeled with the @ReadOnly annotation.
This annotation signals to clients that only the get operation
is required. Such annotations can be more than just docu-
mentation with the help of additional checks: The table-

Expr concept defined in Figure 1, box c, does so by using
two require statements. A require statement takes in an
error message string and a predicate. If the predicate’s con-
dition is violated by any member of the tableExpr relation,
Arcum reports the error to the IDE.

1 A declaration element specifies the type in the following kinds of declara-
tions: fields, local variables, parameters, casts, and method return types.

These two options, together with their common interface,
can be used to refactor code between the two different im-
plementations. When a programmer realizes that he or she
needs a LookupTable, and not specifically a Map, he or she
can record this design decision by making an instantiation
for each use of it in the IDE. Such instantiations are kept
in separate text files, also processed by Arcum, that serve to
both document design decisions made and to ensure that the
implementation doesn’t deviate from the programmer’s orig-
inal intentions. The area marked “d” in Figure 1 shows two
example code snippets that can be automatically transformed
to and from each other with Arcum. The user performs a
refactoring by opening up the instantiation file in the IDE,
locating the current option’s instantiation and supplying the
name of the option to replace it. The details of the algorithm
are discussed in our earlier paper (Shonle et al. 2007).

Although the example presented in Figure 1 is complete,
it can be extended to include further checking. For exam-
ple, checks can be made to ensure that any type used for the
keyType overrides the equals method whenever it also over-
rides the hashCode method. Such checks can prevent coding
errors and help ensure bi-directionality.

3. Applications of Arcum
In the previous section, we saw an example showing how a
programmer can code according to their original intentions
and not have to commit to certain implementation decisions.
The specification of such intentions can introduce new re-
strictions on the code, thus extending the type system in do-
main and program-specific ways.

Often, programmers must manage multiple design trade
offs: Should this be implemented with the fast method; or
the one that takes less memory?, Should this be implemented
in an expressive, but terse, manner; or in a way more fa-
miliar? For many cases, such design decisions can be mod-
ularized with the programming language: What will most
likely change is encapsulated in a module, and what will
most likely remain stable is exported as the module’s inter-
face (Parnas 1972). But sometimes the crosscutting of design
idioms are unavoidable—by their nature, they are based on
the interaction of multiple participants. Additionally, there
are also opportunities within the module where other imple-
mentation decisions and trade offs must be made (VanHilst
and Notkin 1996): Further modularization can increase flex-
ibility, but the indirection can also create code that is harder
to reason about and more tedious to write.2

With Arcum, there’s an opportunity for many kinds of
trade offs that, although not modularized, can be explicitly
documented in the form of options and their instantiations.
In the same supplemental Arcum files, possible alternative
implementations can also be expressed. When design re-

2 Imagine a program that used the Factory pattern for all object instantia-
tions; and only utilized interfaces, which cannot contain any method defi-
nitions, thus making control flow particularly hard to reason about.



quirements change, the documentation serves as a guide de-
scribing other options to explore. The Arcum code written
to describe decisions encountered routinely can be reused in
other projects.

One powerful example is the trade off between using
Java’s reflection libraries instead of coding connections di-
rectly. The reflection style lends itself well to rapid prototyp-
ing, while the direct style is safer due to its extra type check-
ing. For example, the traditional Visitor Pattern (Gamma
et al. 1995) can be implemented using reflection with the
DJ library (Orleans and Lieberherr 2001). DJ performs the
depth-first traversal over the object structure via reflection,
using a sparse description of the traversal strategy as a guide.
Thus, to get the functionality of the Visitor Pattern, a pro-
grammer simply needs to include the DJ library and specify
a brief description of the strategy; he or she can then invoke
the traversal wherever it is needed.

In addition to being quicker to write, the DJ solution is
also more expressive: Because the class structure does not
need to be repeated to implement any accept methods, the
program is less redundant. However, the traditional imple-
mentation of the Visitor Pattern executes faster. We found
that this trade off can be managed by Arcum with some
encouraging preliminary results: We were able to code an
interface and two options to describe these two different
implementations of the Visitor Pattern and refactor between
them. One benefit of using Arcum for this task is that the
traditional Visitor Pattern implementation benefits from ex-
tra checking. For example, Arcum can detect when a branch
of the traversal is missing, and generate an error. Due to
the non-local reachability effects of the object graph, such
checks can locate subtle bugs.3

Granting the IDEs such power can change the nature of
trade offs, because techniques previously viewed as costly
can become cheap. For example, a programmer can code in a
rapid prototyping style when changes need to be performed,
but then refactor back to more traditional implementation
styles whenever the program’s performance is critical. In this
way the view of the program presented to the programmer is
the one best suited to his or her needs.

4. Related Work
This section briefly covers some related works not discussed
in the body of this paper. A longer discussion of related
works can be found in our earlier paper (Shonle et al. 2007).
The iXj program transformation system allows for pattern
matching similar to Arcum’s concept construct (Boshernit-
san and Graham 2004). The iXj system could assist the writ-
ing of Arcum concept implementations through its interac-
tive features.

3 For example, in a compiler, the AST structures might support an expanded
syntax that forces the type checking operation to traverse over branches it
wouldn’t have needed to before.

The Feature-Oriented Refactoring (FOR) work recog-
nizes the crosscutting nature of the implementation of soft-
ware features (Liu et al. 2006). With FOR, modules with op-
tional features (such as bounds checking) can be refactored
into a base module with separate delegator sub-modules that
can be composed together. Using FOR, the best-suited vari-
ant of a module’s implementation can be used according to
the circumstances.

The example discussed in Section 2 is related to the
class library migration problem, which is encountered when
code needs to be ported to use a different library (Bal-
aban et al. 2005). Finally, Arcum is related to the role-
based refactoring project, which permits programmers to
build macro-refactorings from micro-refactorings (Hanne-
mann et al. 2005).

Acknowledgments
This work was supported in part by an Eclipse Innovation
Award from IBM and NSF Science of Design grant CCF-
0613845.

References
Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support

for class library migration. In OOPSLA ’05: Proceedings of
the 20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages 265–
279, New York, NY, USA, 2005.

Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change. Addison-Wesley, 2nd edition, 2004.

Joshua Bloch. Effective Java. Addison-Wesley, 2nd edition, 2008.

Marat Boshernitsan and Susan L. Graham. ixj: interactive source-
to-source transformations for java. In OOPSLA ’04: Compan-
ion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications,
pages 212–213, New York, NY, USA, 2004.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

Jan Hannemann, Gail C. Murphy, and Gregor Kiczales. Role-based
refactoring of crosscutting concerns. In AOSD ’05: Proceedings
of the 4th international conference on Aspect-oriented software
development, pages 135–146, New York, NY, USA, 2005.

Jia Liu, Don Batory, and Christian Lengauer. Feature oriented
refactoring of legacy applications. In ICSE ’06: Proceeding
of the 28th international conference on Software engineering,
pages 112–121, New York, NY, USA, 2006.

Doug Orleans and Karl J. Lieberherr. Dj: Dynamic adaptive pro-
gramming in java. In REFLECTION ’01: Proceedings of the
Third International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns, pages 73–80, London,
UK, 2001. Springer-Verlag.

D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Commun. ACM, 15(12):1053–1058, 1972.

Macneil Shonle, William G. Griswold, and Sorin Lerner. Beyond
refactoring: a framework for modular maintenance of crosscut-



ting design idioms. In ESEC-FSE ’07: Proceedings of the the 6th
joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of soft-
ware engineering, pages 175–184, New York, NY, USA, 2007.

Michael VanHilst and David Notkin. Decoupling change from
design. In SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT
symposium on Foundations of software engineering, pages 58–
69, New York, NY, USA, 1996. ISBN 0-89791-797-9.


