WitchDoctor: IDE Support for Real-Time Auto-Completion of Refactorings

Stephen R. Foster
UC San Diego
La Jolla, CA

srfoster @cs.ucsd.edu

Abstract—Integrated Development Environments (IDEs)
have come to perform a wide variety of tasks on behalf of
the programmer, refactoring being a classic example. These
operations have undeniable benefits, yet their large (and
growing) number poses a cognitive scalability problem. Our
main contribution is WitchDoctor — a system that can detect, on
the fly, when a programmer is hand-coding a refactoring. The
system can then complete the refactoring in the background
and propose it to the user long before the user can complete it.
This implies a number of technical challenges. The algorithm
must be 1) highly efficient, 2) handle unparseable programs,
3) tolerate the variety of ways programmers may perform
a given refactoring, 4) use the IDE’s proven and familiar
refactoring engine to perform the refactoring, even though the
the refactoring has already begun, and 5) support the wide
range of refactorings present in modern IDEs. Our techniques
for overcoming these challenges are the technical contributions
of this paper.

We evaluate WitchDoctor’s design and implementation by
simulating over 5,000 refactoring operations across three open-
source projects. The simulated user is faster and more efficient
than an average human user, yet WitchDoctor can detect more
than 90% of refactoring operations as they are being performed
— and can complete over a third of refactorings before the
simulated user does. All the while, WitchDoctor remains robust
in the face of non-parseable programs and unpredictable refac-
toring scenarios. We also show that WitchDoctor is efficient
enough to perform computation on a keystroke-by-keystroke
basis, adding an average overhead of only 15 milliseconds per
keystroke.

Keywords-refactoring; IDE; change detection; repository
mining

I. INTRODUCTION

Refactoring is a common activity, yet the automated
refactoring support provided by IDEs remains significantly
under-used in the wild [1]. This is problematic, considering
the tedium of refactoring, the time it can consume, and the
considerable possibility of introducing errors. Reasons for
the disuse of refactoring have been investigated in depth
[2]. Assuming that a programmer has reached a point during
development in which a refactoring R is appropriate, there
exist several ‘“cognitive preconditions” that must be met
before R will be used: The programmer must realize that
she is performing a refactoring. She must know that support
for R exists. She must know the name of R. She must know
that R is applicable. She must believe that invoking IDE

William G. Griswold
UC San Diego
La Jolla, CA
wgg@cs.ucsd.edu

Sorin Lerner

UC San Diego

La Jolla, CA
lerner@cs.ucsd.edu

support for R is faster than performing R by hand. She
must trust that the support for R will not transform her
code in unexpected ways. She must be willing to perform a
mental and physical context switch from writing code at the
keyboard to navigating a menu and GUI wizard via mouse.
Moreover, these are merely the cognitive preconditions for
one refactoring — R — as it pertains to an isolated moment
during development. The problem can only become worse
with the addition of new IDE-supported refactorings.

We present WitchDoctor, a system that solves the cogni-
tive scalability problem by relieving the programmer of the
need to meet the aforementioned cognitive preconditions.
WitchDoctor observes the programmer’s programming activ-
ity, detects when a particular refactoring is in progress, and
completes it before the programmer does. In this scenario,
the programmer is relieved even of the burden of knowing
that a particular refactoring exists — let alone its name, menu
location, hotkey, etc.

WitchDoctor’s automated recognition can benefit novices
and experts alike. Novices are simultaneously struggling
with the concepts (e.g., the idea of refactoring), and the
environment (Eclipse’s refactoring operations). A novice
using WitchDoctor can be “taught” in context by having
WitchDoctor suggest completions for the novice’s stuttering
progress. Experts, on the other hand, seek efficiency, and
their work can be accelerated if they don’t have to interrupt
their typing to use the refactoring drop-down menus and
its pop-up dialogs. Although the “teaching” interface and
the “expert” interface would be quite different, the same
underlying technology of WitchDoctor would be required.

Automatically recognizing and completing a refactoring
in-progress at the speed of typing poses a number of
technical and human-computer interaction challenges. In this
paper, we present our solution to five technical challenges
that arise when performing “real-time” refactoring detection.
In order to be interactive, WitchDoctor must do change
detection very quickly; in order to be useful, WitchDoctor
must detect and complete the refactoring before the pro-
grammer has finished it. These requirements lead to novel
technical challenges, where the traditional techniques of
change detection cannot be applied straightforwardly:

1) Interactive Speed: We assume that every keystroke
that goes unchecked is a missed opportunity to save the

programmer time. Hence, WitchDoctor examines the pro-
grammer’s document after every keystroke and mouse-click.
This requires WitchDoctor to be very efficient in order
to avoid noticeable delays while the programmer types.
Specifically, it must be much faster than the speed at which
programmers can type individual keys while programming.
And it must maintain this runtime guarantee even with large
files and large projects.

2) Tolerance for Non-parseable Program States: Ana-
lyzing the document on every keystroke induces another
challenge. In most cases, the document will not be parseable
after every keystroke. The programmer will not have termi-
nated the line with a semicolon. The parentheses may not
match. There may be statements dangling outside of any
method bodies. Indeed, because WitchDoctor must analyze
the document after cut-and-paste commands, too, non-trivial
and sudden changes to the program’s structure may mangle
the abstract syntax tree. Thus, WitchDoctor is obliged to
treat unparseable programs as first-class citizens.

3) Tolerance for Programmer Variance: The goal of
WitchDoctor is to enable a programmer to interface with
the IDE’s refactoring support regardless of whether she
knows it’s there. Thus, WitchDoctor must detect refactor-
ings regardless of how they are being performed. Different
programmers may carry out the same refactoring in differ-
ent ways. Take the example of extracting a method. This
refactoring is comprised of a number of sub-operations:
remove a code block, create a new method declaration,
place the removed code block in the method, and introduce
a new call to the method. Any permutation of these sub-
operations would constitute a method extraction. Taking this
a step further, a programmer may even interleave edits not
related to the refactoring. WitchDoctor attempts to detect
refactorings irrespective of the ordering imposed on its sub-
operations by the programmer, as well as allow for unrelated
edits in the sequence of edits that includes the refactoring.

4) Reuse of Trusted IDE Components: Our fourth chal-
lenge is that we would like to reuse the automated refactor-
ing operations provided by the IDE. Refactoring operations
are highly non-trivial to implement. Moreover, experienced
programmers are familiar with the “native” operations, and
have well-justified expectations for the result of performing
a given refactoring. Achieving reuse is non-trivial because
— by the time WitchDoctor detects that a refactoring is in
progress — the programmer may have already performed
multiple sub-operations of the refactoring. The program may
or may not be parseable. And even if it is, the state of the
program has, by definition, advanced beyond the point where
the IDE’s built-in refactoring operation ought to have been
invoked. The naive solution is to roll the document back
to a previous state and then trigger the IDE’s refactoring
operation. However, this strategy would discard (undo) any
unrelated edits that the programmer made between the sub-

operations of the refactoring. A smarter roll-back strategy is
required.

5) Extensibility: The final challenge is to handle the wide
variety of the refactorings supported by an environment like
Eclipse — as well as new ones that may be added in the
future. WitchDoctor can detect and complete several IDE-
supported refactorings — Rename Variable (local and global),
Rename Class, Rename Method, Extract Local Variable, and
Extract Method. It can also detect and complete one IDE-
supported operation which is not a refactoring — Surround
with Try/Catch. Further refactorings and even real-time com-
pletion support can be added to WitchDoctor with relative
ease.

Our techniques for solving these five technical challenges
constitute our paper’s technical contributions:

e We employ a three-stage strategy of (1) detecting
changes, (2) recognizing subsets of changes as the pre-
fix of a refactoring, and (3) rolling back the document
to invoke the refactoring tool to create a text view that
suggests the refactoring to the programmer.

o To achieve both interactive speed and tolerate un-
parseable programs, WitchDoctor performs change de-
tection primarily at the text level using Myers’s differ-
encing algorithm [3], rather than the AST; a substep
maps detected changes to the Eclipse AST.

« To tolerate programmer variance, WitchDoctor matches
refactoring specifications against the change history
using the Rete pattern-matching algorithm [4].

o To enable reusing Eclipse’s refactoring operations,
WitchDoctor rolls back just the matched changes (not
all the changes since the inception of the refactoring).

« To achieve extensibility, WitchDoctor employs a declar-
ative specification language for describing refactoring
operations, akin to Kim’s language [5].

In section II, we examine related work as it informs our
solutions to the five challenges above. In section III, we
give a detailed overview of WitchDoctor. In section IV, we
evaluate our techniques for solving the above challenges.
In particular, we simulate a highly variant programmer per-
forming more than 5,000 randomized refactoring operations
on three Java code bases, finding that WitchDoctor is fast
and robust even under these pessimal conditions.

II. RELATED WORK
A. Improved Refactoring Tools

There exists a long history of research on tools for per-
forming refactoring while maintaining program semantics,
exemplified by the early work of Opdyke [6] and Griswold
[7]. Refactoring support has since been incorporated into
numerous modern IDEs — Eclipse, NetBeans, and Visual
Studios, for example.

After refactoring became a staple in the toolkit of the
modern IDE, the work of Murphy-Hill called into question

the efficacy of refactoring tool interfaces [1], [8], [9]. To
our knowledge, the earliest observations pertaining to the
cognitive preconditions required by refactorings tools were
first made by Murphy-Hill (although he did not use the term
“cognitive precondition” per se). Additionally, much of the
empirical research about refactoring practices in the wild
were performed by Murphy-Hill [1], [10], leading to the
conclusion that the IDE’s refactoring support is underused
and that programmers often prefer to refactor by hand.

The same body of work suggests numerous improved
interfaces for refactoring tools [2], [9], [11], all of which
reduce the cognitive load of the programmer in some way
— for example, by assisting in the selection of statements
to refactor, by providing more effective context menu sup-
port, or by annotating the relevant control-flow and data-
flow affected by refactorings. The goal is to make safe,
automated refactoring more appealing to programmers who,
for whatever reason, often elect to refactor by hand.

Our work draws its motivation from these aforementioned
improvements and seeks to further reduce the cognitive
preconditions for refactorings. WitchDoctor observes the
programmer and attempts to guess whether the user is
refactoring by hand. If so, it completes the refactoring. This
predictive, on-line refactoring support is a novel way of
eliminating the cognitive preconditions even after the user
has embarked on the path of refactoring by hand.

B. Predictive Tools

Observing the user and guessing her intent is an oft-
employed UI paradigm within IDEs, word processors, and
web browsers. It is commonly known as ‘completion’ — e.g.
tab completion, or code completion. Word processors such
as OpenOffice will complete a word that the user is typing,
drawing from a history of words the user has already typed.
Many web browsers, such as Chrome, do the same thing
with URLs typed in the search bar, drawing from the user’s
browsing history or from a list of popular web sites. IDEs
such as Eclipse are equipped to complete method names,
drawing from the method names in available APIs. In all
of these cases, the list of characters already typed by the
user becomes a prompt for the environment to provide a
completion or list of completions to the user.

WitchDoctor is similar at the metaphorical level. However,
instead of observing the sequence of characters typed by the
user, it observes the sequence of refactoring sub-operations.
And whereas the sequence of characters in, say, a web
URL cannot be permuted without altering the URL being
typed, the sequence of sub-operations in a refactoring may
be permuted without implying a change of intent on the
part of the user. Furthermore, whereas the completion of a
word in a word processor requires observing a sequence of
localized changes to the user’s document, the completion of
a refactoring in an IDE requires observing a sequence of
non-localized changes across the user’s code base.

C. Refactoring Opportunity Detection

The notion of ‘code smells’ goes hand-in-hand with
refactoring, many smells being placed in correspondence
with refactorings that mitigate them [12]. The Long Method
smell can be ameliorated by Extract Method. The Large
Class can be mitigated by Extract Class. Many tools have
been proposed to detect code smells, and hence — to detect
opportunities for refactoring [13], [14], [15], [16], [17].

Code smell detection is more analogous to spell-checking
than to auto-completion. Code smell detection does not
attempt to recognize and extend the user’s intent — but rather
attempts to direct and modify the user’s intent. In particular,
such tools draw attention to locations in code for which the
user had not formed an intent.

D. Mining Software Repositories

There exists another body of research that attempts to
detect refactorings after they have happened. This is mo-
tivated by the desire to determine how a software frame-
work has evolved, in hopes, for example, of being able to
make corresponding evolutions in clients of the framework.
Mining software repositories is a process that makes use of
high-level differencing techniques to augment the low-level
textual differencing techniques of traditional ‘diff” tools,
accumulating a list of transformations that have affected
a software repository [18], [19], [20], [21]. Because these
tools have the feature of computing the difference between
two consecutive checkins to a version control system, their
bar for efficiency is low compared to WitchDoctor. The
techniques can also depend on parseable code without much
loss of generality.

To summarize, prior work has observed and studied the
disuse of refactoring tools in IDEs due to a range of cog-
nitive factors. Whereas code smell detection and framework
change analysis attempt to detect refactorings before or after
they happen, WitchDoctor addresses the cognitive factors
of disuse by taking the middle ground of attempting to
detect (and finish) refactorings while they are happening,
and in real-time on unparseable programs. We believe this
‘in between’ space constitutes an untapped research domain
with novel benefits, challenges, and techniques in the field
of real-time tool support.

III. DESIGN AND IMPLEMENTATION
A. Design Overview

WitchDoctor is comprised of three components, each
designed to address one or more of the challenges laid
out in the introduction. Figure 1 is a graphical overview
of WitchDoctor’s components. There are three components:
Change Detection, Specification Matching, and Refactoring
Execution. The architecture can be viewed as a pipeline
that successively refines programmer edits into refactorings.
During Change Detection, programmer edits are analyzed

as changes to the program’s abstract syntax tree (AST).
During Specification Matching, the these AST changes are
analyzed to determine if a refactoring is in progress. If so,
during Refactoring Execution, the refactoring is completed
and proposed to the programmer.

Change Detection employs a technique that initially by-
passes the AST. This is important to achieve interactive
speed. But it is also necessary for the purpose of folerating
non-parseable program states. Changes are handled first
at the textual level, and only later at the syntactical level,
ensuring that we do not miss changes due to bad syntax.

Specification Matching involves pattern-matching the pro-
grammer’s change history against a suite of declarative refac-
toring specifications. We use an efficient pattern-matching
algorithm [4] to avoid re-matching each pattern specification
every time a new change is added to the history. The goal
of Specification Matching is to determine when enough
information exists to perform a refactoring on behalf of the
programmer. The refactoring specifications are written in a
declarative, rule-based syntax that decomposes a refactoring
operation into its required sub-operations. This helps meet
the challenge of having an extensible suite of supported
refactorings — making it simpler to define new refactor-
ing specifications. But it also provides a solution to the
programmer variance problem: the Specification Matching
process can match a single specification regardless of the
order of sub-operations in the programmer’s change history
and regardless of interleaved changes that do not apply to
the refactoring.

Refactoring Execution' happens when the Specification
Matching process has gathered enough information to com-
plete the refactoring. Here, WitchDoctor reuses trusted IDE
components for the appropriate refactoring. In order to do
so, however, the document must be transformed into a
state in which the IDE would expect to find it prior to
a refactoring. The rollback must also avoid obliterating
changes that the programmer interleaved between the sub-
operations of a refactoring. Refactoring Execution is the
slowest step, because WitchDoctor relinquishes control flow
to the IDE’s refactoring engine, which, although fast, is
not designed for inferactive speed. Thus it is all the more
important that Change Detection, Specification Matching,
and the rollback operation of Refactoring Execution be as
efficient as possible, offsetting the cost of the refactoring
engine’s invocation.

We now dive into a detailed exposition of these com-
ponents with the help of a motivating example. Suppose
a programmer wishes to extract a code block from one
method into a different method that does not yet exist —

'Our implementation executes the refactoring in the background. A
viable alternative would be to prompt the user to trigger the refactoring
execution. In this case, “Refactoring Proposal” might precede “Refactoring
Execution”.

Document AST Refactoring
Edited Differenced Identified
Change Specification| | Refactoring
User Detection Matching Handling

‘WitchDoctor

Presentation

Figure 1. Graphical representation of WitchDoctor’s workflow

public static int fullSize()
{

int size = @;

for(String string : list)

{
int string_size=string.length();
size+=string_size;

}

return size;

}

Figure 2. A typical delete operation in progress. The user highlights a
code block. Deleting the code block triggers the Change Detection phase

replacing the code block with a call to the new method.
This refactoring is known as Extract Method [12]. Let’s say
that the programmer’s first sub-operation is to highlight the
code block and delete it (or “cut” it to the clipboard; the
result is the same either way). This operation is visualized
in Figure 2.

B. Detailed Descripion

1) Change Detection: With the deletion of the statement
sequence as shown in Figure 2, the tool begins the Change
Detection phase.

A tempting strategy for detecting changes to the program-
mer’s program (and one we used in an early version of
WitchDoctor) is to parse the document before the change,
parse the document after the change, and to use a tool that
can compute the difference between the two parsed programs
(i.e. UMLDiIff [22] or ChangeDistiller [23]). However, this
fails to tolerate non-parseable programs, and complicates
achieving interactive speed due to the parsing overhead.
The earlier version of the document (call it A), or the later
version (call it B), or both versions could contain syntax
errors. A syntax error within a method body can cause the
entire method body to be missing from the abstract syntax
tree.

Our technique is to difference the document at the textual
level, and then map the delta to an AST subtree or forest. For
text differencing, we use Myers’s algorithm [3] — the same
algorithm used in the well-known Unix ‘diff” tool — because
its runtime in practice is very quick when the differences
between A and B are small. Because WitchDoctor examines
every keystroke and mouse click, A and B often differ

by a single character, making the average runtime of the
algorithm proportional to the file size. In section IV, we
show that this scales to the largest files seen in practice.

When running Myers’s algorithm, newline characters are
treated as a delimiter, allowing WitchDoctor to determine
line-by-line differences between A and B. WitchDoctor
considers contiguous changes to be a single delta: e.g. the
deletion of several consecutive lines is considered to be a
single deletion operation — one that may involve more than
one AST node. After running Myers’s algorithm, WitchDoc-
tor then attempts to produce the original and revised ASTs
— AST(A) and AST(B) — and map the textual differences to
relevant AST nodes. To do so, WitchDoctor attempts to find
the set of AST nodes that the textual change “covers”:

{n | offset(n) > offset(change) A
length(n) < length(change) A
n € ASTFor(change)}

ey

where offser(n) is the textual offset of entity n from the
beginning of the document, and length(n) is the textual
length. The function ASTFor(change) is shorthand for the
table below. For a given textual difference, we have various
editing possibilities: it could be an insertion, a deletion, or
an update (effectively an atomic delete/insert at the same
textual offset). The type of the change determines which
AST is used by WitchDoctor when mapping the change.
The following table summarizes which AST is used in each
case:

AST(A) | AST(B)
Insert Yes
Delete Yes
Update Yes Yes

The special case is Update, for which both the before (from
file A) and after (from file B) ASTs are mapped.

Returning to our example, we observe that the removal
of several lines from a method will register as a Delete
operation after running Myers’s algorithm. According to the
table, we select file A to look for the AST nodes that map
to the textual change. From file A’s AST, we find the set of
statement nodes that are covered by the textual changes —
using Equation 1.2

Our approach is tolerant of unparseable programs through
a multi-step strategy. First, In the case of insertions, any
syntax errors in file A are irrelevant. Likewise, in the case
of deletions, any syntax errors in file B are irrelevant. Thus,

2WitchDoctor does some optimization here in service of interactive
speed. Because the Change Detection phase occurs after any change to
the document, WitchDoctor keeps the computed AST(B) in memory, using
it as AST(A) in the next Change Detection phase.

the document may move from a parseable state to a non-
parseable state, or vice versa, and WitchDoctor can often
still find the AST nodes it is looking for.

Even when a file is not parseable, all hope is not lost.
Eclipse’s built-in AST parser is quite forgiving and will
parse as deeply along each AST branch as possible. A syntax
error in a method m may cause m’s branch to be non-
parseable. But if the relevant textual change pertains to a
different method, then WitchDoctor can still find a mapping
using the textual change’s character offset according to
Equation 1.

The remaining, difficult case is when the textual change
cannot be mapped to an AST node — due to syntax errors
(1) in the relevant file, and (2) in the same branch affected
by the textual change.

The first strategy is to attempt to construct an AST out
of the textual change itself. Often, programmers cut-and-
paste blocks of code that can be parsed as a sequence of
statements. Even when the AST of the document is mangled
beyond repair — sometimes the textual delta itself can be
used to construct a smaller AST. In the case of the deleted
statements in our example, even if the rest of the document
was not parseable, the removed statements themselves would
be parseable.

The second strategy is to find a relevant ancestor AST
node — an AST node whose associated character offset and
length indicate that the textual change is “covered by” the
AST node. Of the covering nodes

{n | offset(n) < offset(change) A
length(n) > length(change) A
n € ASTFor(change)}

2

we select the one whose length is the smallest. The upshot
is that, even if WitchDoctor cannot figure out an exact
mapping to an AST node, it can often find a parent AST
node that was affected by the change. This can be useful,
for example, if the programmer pastes a block of statements
into the space between methods of a class — a sub-operation
that can signal that the programmer is performing Extract
Method and plans to immediately wrap the statements inside
a method body. The covering node, in this case, is the class.
Although the pasted statements will cause the document to
become largely non-parseable, the affected class can still
be obtained — allowing WitchDoctor to determine the target
class for the Extract Method operation.

The goal of Change Detection is, after all, to detect as
many relevant changes as possible — giving the Specification
Matching phase enough information to detect refactorings in
progress. Performing the textual differencing algorithm first,
followed by a mapping to AST nodes allows information to
be gathered even when the program is highly non-parseable.

Continuing with our example, the deletion of statements
from a method has, during Change Detection, been detected
by Myers’s algorithm and mapped to an appropriate AST
node (and by indirection its subtree). We structure the result
as a tuple:

(delta_type, ast_nodes)

where ast_nodes is the set of AST nodes to which the
textual delta was mapped during Change Detection, and

delta_type € {Insert, Delete, Update} x

{Covers, CoveredBy}

The tuple is then passed to the Specification Matching
component. Because all but the most exceptional of our
AST-mapping techniques outlined above produces an AST
node that the textual change covers, most tuples encoun-
tered in WitchDoctor’s pipeline will have a delta_type €
{Insert, Delete, Update} x {Covers}. To simplify the
following exposition, then, we will assume that the textual
change covers the AST node unless stated otherwise, writing
it as delta_type € {Insert, Delete, Update}.

2) Specification Matching: In this phase, the sequence
tuples created by the Change Detection phase — one for every
edit — are pattern-matched to detect evidence of refactorings.
A naive, slow approach would be to keep the tuples in
an edit history and to search for patterns within the entire
history each time a new tuple is added. Instead, WitchDoctor
employs the Rete algorithm [4] — an algorithm for efficient
pattern-matching in production-rule systems. We keep a
list of refactoring “specifications” (patterns) that represent
refactorings that may be in progress. Each new tuple is
checked against the list of specifications. The specifications
can be thought of as state machines: If the new tuple is
evidence of a refactoring that the specification is designed
to recognize, the specification’s internal state advances. As a
result, each new tuple can be evaluated just once, obviating
the need to sift through an ever-growing history of changes
looking for matches.

The specifications are designed using a declarative rule-
based model, derived from Kim’s body of research on
detecting refactorings in software repositories [21], [5]. Each
refactoring is described by one or more “specifications”. For
example, here is a simplified specification to detect a subset
of the ways in which Extract Method may be performed:

(Delete, code_block)
A (Insert, method_call)
A (Insert, new_method)
Each constituent of the conjunction describes a change

tuple: giving the change type and a descriptor for the AST
node set. The descriptor can be arbitrarily complex — and is

implemented as an AST node visitor, which can traverse
ASTs both upward and downward, scouring the tree for
various properties. However, in practice, we have found
it sufficient to implement these AST node set descriptors
as simple checks against the types of the AST nodes. For
example, the code_block descriptor checks for a sequence
of statements, and the method_call descriptor checks for a
method call AST node.

This is too simple, however. One can imagine scenarios
in which a programmer deletes a code block and adds a
method — but is not performing a refactoring. The heavy-
lifting in WitchDoctor is done by the constraints attached
to each specification. For example, we could flesh out the
above specification with constraints as follows:

(Delete, code_block)
A (Insert, method_call)

A (Insert, new_method)

where

position(code_block) = position(method_call)

A name(method_call) = name(new_method)

Of course, this is an over-simplification because the
position function must take into account the deleted
position of code_block versus the added position of
method_call. Furthermore, the ASTs for code_block and
method_call may look very different — so a simple calcula-
tion of the offset is not usually an adequate way to determine
the position. Instead, properties of the ASTs must be used
to determine whether the positions are equal.

Although this high-level presentation obscures some of
the implementation details, it illustrates the distinction be-
tween the components of a specification, requirements and
constraints. The requirements can be thought of as patterns
that must be matched. The constraints relate the require-
ments to each other, preventing some requirements from
matching. Each requirement that is matched can be thought
of as the advancement of the specification’s state machine.

Continuing with our example, the deleted
code block will be matched by the requirement
(Delete, code_block). The first constraint is not applied
because position(method_call) is undefined (another
subtlety, but easily implemented); the second constraint
is ignored because it does not pertain to the code block.
When the matching occurs, the (Delete,code_block)
requirement establishes a binding with the tuple generated
during Change Detection. A specification begins with no
bindings and gradually acquires bindings until they carry
enough information to execute the refactoring (i.e., supply

all the required parameters to the Eclipse refactoring).’
Thus, in our example, the specification shown above has
now established one binding.

Whenever a specification is updated, the original is always
retained — unchanged. In our example, the specification for
Extract Method now has a binding for code_block. However,
the original Extract Method specification remains in the list
of specifications. The point is that, if the programmer deletes
another code bock, the specification whose code_block is
bound will ignore the change, but the specification whose
code_block is unbound will acquire a binding. This al-
lows WitchDoctor to detect the advent of a newly begun
refactoring regardless of which refactorings it believes to
be in progress. Indeed, many refactorings are permitted to
be in progress at once. For example, a programmer may
begin extracting one method, proceed to extract a com-
pletely different method, and return to complete the original
refactoring. This is one form of programmer variance that
WitchDoctor permits.

The challenge of supporting a broad and extensible suite
of refactorings is partially accomplished through the use of
these specifications, which cleanly model the requirements
for a refactoring. Requirements and constraints, once imple-
mented as Java classes, may be reused between specifica-
tions.

The challenge of rolerating programmer variance is ac-
complished in several ways using these specifications. For
one, the requirements for a specifications may be matched
in any order, permitting the programmer to permute the sub-
operations defined by the requirements. Furthermore, the
programmer may interleave edits between the sub-operations
of a specification. They will not affect the state of any
specifications unless they are relevant to a refactoring.

However, for the sake of efficiency, the list of in-progresss
specifications cannot be allowed to grow indefinitely. For
the sake of efficiency, WitchDoctor removes specifications
whose states have not progressed recently. Consequently, if
the programmer interleaves enough edits between relevant
sub-operations, the refactoring may be missed due to the
excessive noise.

Continuing our example, suppose the programmer now
places a method call into the method where the code
block was deleted. Figure 3 visualizes this insertion. The
Change Detection process will run, creating the relevant
change tuple. The inserted method call matches the second
requirement in our specification (Insert, method_call), and
the constraint is satisfied. So the binding takes place, ad-
vancing the state of the specification. With two requirements
bound, the specification has enough information to trigger
WitchDoctor’s next phase. WitchDoctor now knows the

3In some cases, a binding can be supplied automatically by WitchDoc-
tor, rather than supplied through programmer edits, such as providing a
default legal name for a method. This name can be changed later by the
programmer.

public static int fullSize()

{
int size = @;
for(String string : list)
{
ﬁ'ndSize();l
1
return size;
]
Figure 3. An insert operation, triggering the Change Detection and

Specification Matching phases for the second time — also providing enough
information to trigger the Refactoring Execution phase.

contents of the code block being extracted and the name
of the method into which the block will be extracted. This
is enough information to execute the refactoring.

3) Refactoring Execution: The goal of this phase is to
complete the refactoring that has been detected. Once com-
pleted, the refactoring can be proposed to the programmer.

The challenge is that, on the one hand, we would like
to reuse well-tested components in the IDE; yet on the
other hand, the refactoring has already been initiated by the
programmer. Thus, the document will not be in the state that
the well-tested components expect it to be in. Some of the
programmer’s changes need to be reverted in order to return
the document to a state in which the refactoring has not yet
begun.

Unfortunately, a general approach cannot work — such
as restoring the document to its state before the first sub-
operation of the refactoring. The edits interleaved between
sub-operations would be lost.

Instead, the edits matching the specification must be rolled
back while preserving the interleaved edits. In the case of
our example, the rollback strategy is to inline the code block,
replacing the method call. In essence, we run the refactoring
backward, independent of the interleaved edits. Then, we
call refactoring engine — in the background — to perform
Extract Method, feeding it the code block and the name in
the method call.

During this phase, WitchDoctor must relinquish control
flow to the IDE’s refactoring engine. The refactoring en-
gine’s operations are tuned for correctness, not speed. So this
is the one phase of WitchDoctor in which the programmer
might detect a noticeable delay in typing, although the
refactoring is happening in the background, minimizing
distractions to the programmer. In our evaluation, we assess
how long this delay is in practice.

Continuing with our example, the document has been
rolled back and the refactoring has been performed in
the background, yielding a version of the programmer’s
document in which the refactoring has been fully performed.
There are a variety of ways to present the results of the

public static int fullSize()
{

int size = @;

for(String string @ list)
{
findSize

1

return size;

Figure 4. The tool’s proposal, displaying proposed changes in gray.

refactoring, which is not a consideration for this paper. An
informal poll of our colleagues has turned up a myriad of
strategies for proposing the completed refactoring to the
programmer. These various user interface options and their
relative merits are beyond the scope of this paper and will
be compared and tested in future work. Regardless of the
presentation, efficiency is still a prime consideration. For
now, we describe the interface that we currently use for
testing WitchDoctor.

In our running example, the execution of the refactoring
engine yields a document in which the inserted method
call (which was inlined during the roll back) has now
been reinserted by the refactoring engine, and the code
block the programmer deleted is now wrapped in a method
declaration. Our interface proposes this change by displaying
the new method declaration in gray, to indicate that it is
a suggestion. The rest of the code (everything typed by
the programmer so far) is rendered in normal colors (see
Figure 4). At this point, the behavior mimics tab-completion.
If the programmer presses “Enter” or “Tab”, the changes
are finalized. If the user continues typing in such a way
that doesn’t contradict the suggested change, the suggestion
remains in effect. Otherwise, the suggested changes are
removed.

IV. EVALUATION
A. Experimental Methodology

Key experimental questions revolve around the speed of
our approach, its ability to handle unparseable programs,
and its ability to handle variance in the way programmers
can perform refactorings by hand. To gain insight on these,
performing a large number of complex refactorings in a
great variety of ways on a variety of software projects is
appropriate.

Refactoring Type: We chose to focus on Extract
Method, because it is amongst the most complex available
in Eclipse, and the most complex that we implemented. It
comprises multiple steps and has elements that are related
to other, simpler, refactorings such as rename and extract

binding. Also, there are numerous ways to perform Extract
Method, many of which create non-parseable states.
Simulated User: Ideally, we would assess WitchDoc-
tor’s design and implementation against thousands of by-
hand refactorings, based on the techniques (styles) of real
programmers, with a validated distribution of the application
of those techniques. To our knowledge, these don’t exist.

Instead, we chose to simulate the broad spectrum of
possible Extract Method refactorings in a randomized, un-
biased distribution. Although not externally valid, a random
distribution still allows examining selected subpopulations
of the refactoring pool and discussing their likely relation to
practice.

To this end, we built a simulated user that can make
scripted changes to a document. We programmed the user
to randomly select, construct a script for, and perform
5,000 correct Extract Method refactorings. Each editing
operation in each script is executed by the simulated user
by mimicking human behaviors such as keystrokes, mouse
clicks, selections, cut operations, and paste operations. The
simulated user ran at a rate of 50 milliseconds per keystroke
— much faster than the average human typist.

As part of the simulated user’s “random” behavior, it often
“forgets” to close curly braces or to add semi-colons. It also
inserts lines character-by-character, causing the line to be
non-parseable until the final semi-colon. When deleting a
sequence of lines, it deletes them in a random order, which
often results in non-parseability — e.g. when curly braces or
control constructs are deleted.

Additionally, to incorporate the notion of user variance
into our simulated programmer, it randomized the order of
the sub-operations used to perform each Extract Method
refactoring. Sometimes, the new method declaration would
be added first, followed by the deletion of the code block and
addition of the method call. At other times, the order was
permuted. The order was randomly chosen for each script,
yielding a uniform distribution across the various permuta-
tions. Pseudo code for simulating a single refactoring might
look like:

let ops = the refactoring sub operations
scramble_order_of (ops)

for each op in ops
switch (rand)

case 1:
do_keystrokes (op)

case 2:
do_cut_and_paste (op)

case 3:
do_keystrokes_but_no_curly (op)

case 4:

end

Files | Refactorings Performed
Eclipse Compare Plugin | 157 1421
Eclipse JFace Plugin 381 1330
Apache Struts 1932 2407

Figure 5. Projects tested, with the total number of files in the project and
the number of random refactorings run by our simulated programmer.

Projects: We chose three open-source Java projects:
Eclipse Compare Plugin, Eclipse JFace Plugin, and Apache
Struts. These projects are somewhat dissimilar: they perform
rather different tasks, and were implemented by different
teams. Figure 5 gives a profile of the three projects. Although
these projects are not especially large project size did not
turn out to influence performance.

Execution Environment: Finally, our experiments were
run on a MacBook Pro, with 4G RAM and 2.4 GHz Intel
Core 2 Duo processor. Such a machine, while contemporary,
is modest in its clock rate and number of cores. The
operating system is MacOS 10.6.7. All refactorings ran in
Eclipse 3.6.1 (Helios).

B. Results

1) Tolerance of Non-parseable Program States and User
Variance: WitchDoctor was able to detect the refactoring
performed by the simulated user 89% to 93% of the time.
WitchDoctor was also able to complete the simulated user’s
intended refactoring before the user could complete it 33%
to 46% of the time (See Figure 6).

Extreme user variability was the primary cause of Which-
Doctor’s failure to complete a refactoring, in particular order
of the suboperations. One such order involves first adding
the new method declaration (complete with the body) before
adding the method call or deleting the code block. In these
cases, WitchDoctor detects the new method declaration but
does not complete a refactoring because it cannot determine
the code bock to extract. If the programmer then adds a call
to the new method, WitchDoctor still does not know the
code block to extract. By the time the code block has been
removed, all of the work of the refactoring has already been
performed — leaving no time to complete the refactoring
on behalf of the user. A similar failure can occur when
the method call is added first, followed by the method
declaration (with body), and the removal of the code block.

Half of WitchDoctor’s failures to complete the refactoring
can be attributed to these late detections — after which
there is no work to perform. Yet, it seems unlikely for
programmers in the wild to construct a method declaration
complete with its final body as the first step of Extract
Method. This technique requires significantly more work
than utilizing cut-and-paste — e.g. cut the code block, paste
it into a new method, add a method call. Omitting just these

)

.g 50 B Compare
E M Jface

g 40 O Struts

o

Detected Completed

Figure 6. WitchDoctor’s percent of refactorings detected and percent of

refactorings completed on each of the three experiments.

60

[-
40 .

[
- .;

il

L o ¥
|

' .': ;
) &iﬂiﬁ jpl

0 2000 4000 6000 8000 10000 12000 14000
File Size (Characters)

Milliseconds per Keystroke
o
o

Figure 7. WitchDoctor’s average overhead in keystrokes, scaling linearly
with the size of the file. The chart summarizes the experment run on the
Eclipse Compare plugin.

twp obviously anomalous cases would raise the completion
rate to about 2/3.

2) Interactive Speed: The typical typist is
said to type at 300 characters per minute
(http://en.wikipedia.org/wiki/Words_per_minute). This

equates to 200 milliseconds between each keystroke. In
Figure 7, each data point represents the average computation
per keystroke within a particular refactoring performed
by the simulated user during the experiment run on the
Eclipse Compare plugin. WitchDoctor performed even
better on the JFace and Struts experiments. The chart show
that the computation performed by WitchDoctor after each
keystroke is, on average an order of magnitude less than
200. The time to process a keystroke was never more
than 62.2 milliseconds (this includes rollbacks). We do
note however, that processing time increases linearly with
respect to file with a slope of 1/3.

3) Reuse of Trusted IDE Components: In all cases, the
completion of the refactoring was performed by invoking
Eclipse’s refactoring tools — which requires the selective
rollback process described previously. Surrendering control
flow to the well-tested Eclipse refactoring engine constitutes
the most significant impact to WitchDoctor’s performance.

The following table summarizes the averages across the three
experiments.

WitchDoctor | Eclipse Refactoring
Compare 15 ms 974 ms
JFace 12 ms 856 ms
Struts 7 ms 848 ms

The WitchDoctor column is the average time WitchDoctor
spends computing per keystroke across the three experiments
(a short summary of the data presented in 7). The Eclipse
Refactoring column is the average time taken for Eclipse to
complete refactorings detected by WitchDoctor.

In all cases, the refactoring takes significantly more time
than the amount of time spent within WitchDoctor. Although
this delay is significant, we feel that using the trusted
components of the IDE are justified for three reasons not
just for robustness and familiarity, but also because: (1) the
noticeable delay cause by the refactoring engine is not the
normal case for WitchDoctor, which still performs its normal
computations in less than 15 milliseconds on average, and
(2) the delay caused by the refactoring engine is a prelude to
a completed refactoring, which saves the user significantly
more time in the long run.

We would like to add that Eclipse’s refactoring imple-
mentation cannot be “blamed” for being slow. It is only in
the context of real-time support tools like WitchDoctor that
the notion of interactive speed becomes an issue for the
IDE’s refactoring engine. If real-time interactive refactoring
becomes common, optimizations for refactoring engines will
follow.

4) Extensibility: We have specified (implemented) 6
refactorings in WitchDoctor: Rename Variable (local and
gobal), Rename Type, Rename Method, Extract Local Vari-
able, Extract Method, and Surround with Try/Catch (a non-
refactoring operation supported by Eclipse). In all cases, the
specification technique we used to define refactorings al-
lowed us to incorporate these new refactorings with relative
ease, giving us confidence that the suite of refactoring opera-
tions in Eclipse can be supported by WitchDoctor as well as
new refactoring operations that may be added to Eclipse in
the future. For example, it was fairly trivial to implement the
specification for Rename Variable after having implemented
Extract Method. In the following sample implementation,
the classes Delete, Insert, NotEqual, and SamePlace are all
reused from Extract Method:

Specification rename =

new Specification ("Rename Method");
rename.addRegquirement (

new Delete("old_name"));
rename .addRequirement (

new Insert ("old_name"));
rename.addConstraint (

new NotEQ ("old_name", "new_name"));

rename .addConstraint (
new PlaceEQ("old_name", "new_name"));

V. FUTURE WORK

Having models of how programmers refactor by hand can
inform the development of tools like WitchDoctor, and may
have other applications to informing software engineering
practice. We plan to deploy WitchDoctor in an “observation”
mode that will record all the ways that users refactor by
hand. This approach will permit gathering a very large and
detailed “in the wild” dataset.

A key question in this line of research is the efficacy
of real-time refactoring suggestions. Given that the perfor-
mance and robustness of WitchDoctor is high, the main
outstanding design question is interface design. An informal
poll of our colleagues suggests a potential need for a wide
variety of different interfaces for proposing refactoring com-
pletions to human programmers — from actually transforming
the document under the nose of the programmer, to various
kinds of pop-up context menus, to code annotations, to a
full-fledged video tutorial for novices on the best practices
and merits of the refactoring being performed. We plan
to prototype interfaces for novices and experts, ultimately
performing lab and field studies of the use of WitchDoctor
and the practices that arise around it.

VI. CONCLUSION

Refactoring tools are underutilized due to the numer-
ous cognitive preconditions that must be satisfied before
a refactoring operation is invoked. WitchDoctor represents
a first step toward eliminating these preconditions. A pro-
grammer can simply write code as she normally would,
and WitchDoctor makes refactoring suggestions. We have
shown that the techniques applied in WitchDoctor achieve
very complete, extremely fast recognition of refactorings.
Making assumptions about how real programmers refactor,
the suggestion rate is high as well. Key future work is to
investigate how programmers refactor by hand in the wild,
and to design and investigate user interface designs for real-
time refactoring suggestions.

Several techniques were required to achieve fast, robust,
and extensible refactoring suggestions. Textual differencing
can be combined with delayed AST node mapping to handle
non-parseable program states. A declarative specification
language and associated pattern-matching algorithm can be
used to recognize a broad and extensible array of refac-
torings as they unfold, regardless of user variance. Selective
rollback permits invoking the IDE’s refactoring engine while
tolerating interleaved edits.

ACKNOWLEDGEMENTS

This research supported in part by an NSF Graduate
Fellowship and a Google Research Award.

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(11]

REFERENCES

E. Murphy-Hill, C. Parnin, and A. P. Black, “How
we refactor, and how we know it,” in Proceedings
of the 3ist International Conference on Software
Engineering, ser. ICSE ’09. Washington, DC, USA:

IEEE Computer Society, 2009, pp. 287-297. [Online].
Available: http://dx.doi.org/10.1109/ICSE.2009.5070529

E. Murphy-Hill and A. P. Black, “High velocity refactorings
in eclipse,” in Proceedings of the 2007 OOPSLA workshop
on eclipse technology eXchange, ser. eclipse '07. New
York, NY, USA: ACM, 2007, pp. 1-5. [Online]. Available:
http://doi.acm.org/10.1145/1328279.1328280

E. W. Myers, “An o(nd) difference algorithm and its varia-
tions,” Algorithmica, vol. 1, pp. 251-266, 1986.

C. L. Forgy, “Expert systems,” P. G. Raeth, Ed. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1990,
ch. Rete: a fast algorithm for the many pattern/many object
pattern match problem, pp. 324-341. [Online]. Available:
http://dl.acm.org/citation.cfm?id=115710.115736

M. Kim, M. Gee, A. Loh, and N. Rachatasumrit,
“Ref-finder: a refactoring reconstruction tool based on
logic query templates,” in Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations
of software engineering, ser. FSE '10. New York, NY,
USA: ACM, 2010, pp. 371-372. [Online]. Available:
http://doi.acm.org/10.1145/1882291.1882353

W. E. Opdyke and R. E. Johnson, “Refactoring: An aid in de-
signing application frameworks and evolving object-oriented
systems,” in Symposium on Object-Oriented Programming
Emphasizing Practical Applications (SOOPPA), September
1990.

W. G. Griswold, “Program restructuring as an aid to software
maintenance,” Ph.D. dissertation, 1991.

E. Murphy-hill, “Improving refactoring with alternate pro-
gram views. research proficiency exam,” 2006.

E. Murphy-Hill and A. P. Black, “Breaking the barriers
to successful refactoring: observations and tools for extract
method,” in Proceedings of the 30th international conference
on Software engineering, ser. ICSE ’08. New York,
NY, USA: ACM, 2008, pp. 421-430. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368146

E. Murphy-Hill, A. P. Black, D. Dig, and C. Parnin,

“Gathering refactoring data: a comparison of four
methods,” in Proceedings of the 2nd Workshop on
Refactoring Tools, ser. WRT ’08. New York, NY,

USA: ACM, 2008, pp. 7:1-7:5. [Online]. Available:

http://doi.acm.org/10.1145/1636642.1636649

E. Murphy-Hill, “Improving usability of refactoring tools,”
in Companion to the 2Ist ACM SIGPLAN symposium

on Object-oriented programming systems, languages,
and applications, ser. OOPSLA °06. New York, NY,
USA: ACM, 2006, pp. 746-747. [Online]. Available:

http://doi.acm.org/10.1145/1176617.1176705

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

M. Fowler, Refactoring: Improving the Design of Existing
Code. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

E. van Emden and L. Moonen, “Java quality assurance
by detecting code smells,” in Reverse Engineering, 2002.
Proceedings. Ninth Working Conference on, 2002, pp. 97 —
106.

R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in In Proc. IEEE International Con-
ference on Software Maintenance, 2004.

M. J. Munro, “Product metrics for automatic identification
of ”bad smell” design problems in java source-code,” in
Proceedings of the 1lth IEEE International Software
Metrics Symposium. ~ Washington, DC, USA: IEEE
Computer Society, 2005, pp. 15-. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1090955.1092155

N. Moha, Y.-G. Guhneuc, L. Duchien, and A.-F. L. Meur,
“Decor: A method for the specification and detection of code
and design smells.” IEEE Trans. Software Eng., pp. 20-36,
2010.

I. M. Bertran, “Detecting architecturally-relevant code
smells in evolving software systems,” in Proceeding
of the 33rd international conference on Software
engineering, ser. ICSE ’11. New York, NY, USA:
ACM, 2011, pp. 1090-1093. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1986003

D. Dig, C. Comertoglu, D. Marinov, and R. E. Johnson, “Au-
tomated detection of refactorings in evolving components,” in
ECOOP, 2006, pp. 404—428.

Z. Xing and E. Stroulia, “Api-evolution support
with diff-catchup,” IEEE Trans. Softw. Eng., vol. 33,
pp- 818-836, December 2007. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1314032.1314041

W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura:
a hybrid approach to identify framework evolution,” in
Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE *10. New
York, NY, USA: ACM, 2010, pp. 325-334. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806848

K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim,
“Template-based reconstruction of complex refactorings,” in
Software Maintenance (ICSM), 2010 IEEE International Con-
ference on, sept. 2010, pp. 1 -10.

Z. Xing and E. Stroulia, “Umldiff: an algorithm for
object-oriented design differencing,” in Proceedings of the
20th IEEE/ACM international Conference on Automated
software engineering, ser. ASE ’05. New York, NY,
USA: ACM, 2005, pp. 54-65. [Online]. Available:
http://doi.acm.org/10.1145/1101908.1101919

B. Fluri, M. Wursch, M. Pinzger, and H. Gall, “Change dis-
tilling:tree differencing for fine-grained source code change
extraction,” Software Engineering, IEEE Transactions on,
vol. 33, no. 11, pp. 725 =743, nov. 2007.

