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ABSTRACT

In today’s modern world, bugs in software systems incur sig-
nificant costs. One promising approach to improve software
quality is automated software verification. In this approach,
an automated tool tries to prove the software correct once and
for all. Although significant progress has been made in this
direction, there are still many cases where automated tools
fail. We focus specifically on one aspect of software verifi-
cation that has been notoriously hard to automate: inferring
loop invariants that are strong enough to enable verification.
In this paper, we propose a solution to this problem through
gamification and crowdsourcing. In particular, we present a
puzzle game where players find loop invariants without being
aware of it, and without requiring any expertise on software
verification. We show through an experiment with Mechanical
Turk users that players enjoy the game, and are able to solve
verification tasks that automated state-of-the-art tools cannot.
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INTRODUCTION

Software is increasingly intertwined in our daily lives: it man-
ages sensitive information like medical records and banking
information; it controls physical devices like cars, planes and
power plants; and it is the gateway to the wealth of infor-
mation on the web. Unfortunately, sometimes software can
also be unreliable. Toyota’s unintended acceleration bug was
caused by software errors [24]. Furthermore, cars were found
vulnerable to attacks that can take over key parts of the con-
trol software, allowing attackers to even disable the brakes
remotely [25]. Pacemakers have also been found vulnerable to
attacks that can cause deadly consequences for the patient [31].
Finally, faulty software has caused massive credit card and
personal information leaks, for example the Equifax leak [18]
that affected 143 million people.

One approach for improving software reliability and reducing
bugs in software is called software verification. Software
verification tries to prove properties about a program once and
for all, accounting for any possible execution of the program.
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Typically, the programmer writes some form of specification,
for example “foo returns a positive number”, or “no buffer
overflows”. Automated and/or manual approaches are then
used to show that the program satisfies this specification.

Over the last two decades, software verification has shown
tremendous advances, such as techniques for: model check-
ing realistic code [7, 8]; analyzing large code bases to prove
properties about them [40, 43]; automating Hoare logic pre
and post-condition reasoning using SMT solvers [11, 6]; fully
verifying systems like compilers [27], database management
systems [30], microkernels [23], and web browsers [22].

However, despite these advances, even state-of-the-art tech-
niques are limited, and there are cases where fully automated
verification fails, thereby requiring some form of human inter-
vention for the verification to complete. For example, some
verification tools require annotations to help the prover [6, 17].
In more extreme cases, the verification itself is a very manual
process, for example when interactive theorem provers are
used [23, 27].

In this paper, we focus on the particular problem of inferring
loop invariants, an essential part of program verification that
is hard to fully automate. Loop invariants are properties that
hold at each iteration of a loop. They are needed to verify
properties of loops, and as such are required in any realistic
program verification effort. Despite decades of work, inferring
good loop invariants is still a challenging and active area
of research, and oftentimes invariants need to be provided
manually as annotations.

In this paper, we will show how to leverage gamification and
crowdsourcing to infer correct loop invariants that leading au-
tomated tools cannot. Our approach follows the high-level idea
explored in prior citizen science projects, including Foldit [10]
and, more closely related to our research, Verigames [13]: turn
the program verification task into a puzzle game that play-
ers can solve online through gameplay. The game must be
designed in such a way that the players can solve the tasks
without having domain expertise.

In particular, we have designed a puzzle game called IN-
VGAME. Our game displays rows of numbers, and players
must find patterns in these numbers. Without players knowing
it, the rows in the game correspond to values of variables at
each iteration of a loop in a program. Therefore, unbeknown
to the player, finding patterns in these numbers corresponds
to finding candidate loop invariants. As a result, by simply
playing the game, players provide us with candidate loop
invariants, without being aware of it, and without program
verification expertise. INVGAME then checks these candidates
with a solver to determine which are indeed loop invariants.



This division of labor between humans and computers is bene-
ficial because invariants are easier to for a tool to check than
to generate. We let humans do the creative work of coming up
with potential invariants, and we use automated tools to do the
tedious work of proving that the invariant really holds.

While there has been prior work on inferring loop invariants
through crowdsourcing and gamification [29], our work dis-
tinguishes itself in two ways (with more details in the Related
Work section at the end of the paper). First, we have chosen a
point in the design space that exposes numbers and math sym-
bols directly to players in a minimalist game, thus leveraging
human mathematical intuition. Second, we present a thorough
empirical evaluation against state-of-the-art automated tools,
and show how our gamification approach can solve problems
that automated tools alone cannot.

We envision our gamification approach being used on the
problems that automated tools cannot verify. To evaluate our
game in this setting, we collected a large set of verification
benchmarks from the literature and our own experiments, and
ran four state-of-the-art preeminent verification tools on these
benchmarks, without giving the tools any human-generated
annotations. Of these benchmarks, all but 14 were solved by
state-of-the-art tools. The remaining 14 benchmarks, which
could not be verified by state-of-the-art tools, are precisely the
benchmarks we tried to solve using our gamification approach.
In particular, our game, played by Mechanical Turk users, was
able to solve 10 of these 14.

In summary our contributions are:

e We present a game, INVGAME, in which players with no
background in program verification can come up with can-
didate loop invariants

e We present a thorough empirical evaluation, showing that
Mechanical Turk workers playing INVGAME can verify
benchmarks that automated tools cannot.

o We discuss the design insights that made the INVGAME
approach successful.

PROGRAM VERIFICATION AND LOOP INVARIANTS

As background, we present some standard material on program
verification and loop invariants. Consider the code in Figure 1,
which is a benchmark taken from the Software Verification
Competition [1]. The code uses C syntax, and sums up the first
n integers. The code is straightforward in its meaning, except
for the assume and assert statements, which we describe
shortly. In the context of the following discussion, we will
assume that a tool called a program verifier will try to verify
this benchmark.

Specifications. The first step in program verification is defin-
ing what we want to verify about the program. This is achieved
through a program specification. There are many mechanisms
for stating specifications, and here we use a standard and
widely used approach: pre- and post-conditions expressed as
assume and assert statements. This approach is taken by the
benchmarks in the Software Verification Competition, and also
by all preeminent general verification tools.

void foo(int n) {

int sum,i;

assume(l <= n);

sum = Q;

i=1;

while (i <= n)

// invariant: a condition that holds here

// at each iteration

{
sum = sum + i;
i=1i+1;

}

assert(2*sum == n*(n+1));

Figure 1. Code for our running example

The assume statement at the beginning of the code in Figure 1
states that the program verifier can assume that 1<=n holds
at the beginning of foo, without proving it. It will be the re-
sponsibility of the caller of foo to establish that the parameter
passed to foo satisfies 1<=n.

The assert statement at the end of the code states what we
want the verifier to prove. In this case, we want the verifier
to show that after the loop, the predicate 2*sum == n*(n+1)
holds.

Note that after the loop, the sum variable holds the sum of
the first n integers. This benchmark is therefore asking the
verifier to show Gauss’s theorem about summing sequences
of numbers, which states that the sum of the first n integers (n
included) is equal to n(n+1)/2.

Loop Invariants. Reasoning about loops is one of the hardest
part of program verification. The challenge is that the verifier
must reason about an unbounded number of loop iterations in
a bounded amount of time.

One prominent technique for verifying loops is to use loop
invariants. A loop invariant is a predicate that holds at the
beginning of each iteration of a loop. For example, i >= 1
and sum >= @ are loop invariants of the loop in Figure 1. Not
all loop invariants are useful for verification, and we’ll soon
see that the above two invariants are not useful in our exam-
ple. However, before we can figure out which loop invariants
are useful, we must first understand how to establish that a
predicate is a loop invariant.

It is not possible to determine that a predicate is loop invariant
by simply testing the program. Tests can tell us that a predicate
holds on some runs of the program, but it cannot tell us that the
predicate holds on all runs. To establish that a predicate is a
loop invariant, we must establish that the predicate holds at the
beginning of each loop iteration, for all runs of the program.

To show that a predicate is a loop invariant, the standard tech-
nique involves proving some simpler properties, which to-
gether imply that the predicate is loop invariant. For example,
in our code, given a predicate 7, the following two conditions
guarantee that 7 is a loop invariant:

1. [I-ENTRY] 7 holds on entry to the loop: If the code from
our example starts executing with the assumption that 1 <=
n, then 7 will hold at the beginning of the loop. This can be
encoded as the verification of the straight-line code shown
on row 1 of Figure 2.



assume(l <= n);sum = 0;

i = 1;assert(7);

assume(J && i <= n);sum = sum + ij;
i=1+ 1;assert(J);

assume(J && i > n);

assert(2*sum == n*(n+1));

Figure 2. Straight-line code to verify for each condition

1: [I-ENTRY]

2: [I-PRESERVE]

3: [I-IMPLIES]

2. [I-PRESERVE] 7 is preserved by the loop: If an iteration
of the loop starts executing in a state where 7 holds, then
I will also hold at the end of the iteration. This can be
encoded as the verification of the straight-line code shown
on row 2 of Figure 2. Note that in this code, the assume
statement also encodes the fact that, since an iteration of the
loop is about to run, we know that the while condition in
the original code, i <= n, must also hold.

Given a candidate loop invariant, there are known techniques
for automatically checking the above two conditions. Since
these conditions only require reasoning about straight-line
code, they are much easier to establish than properties of
programs with loops. Typically, one encodes the straight-
line code as some formula that gets sent to a certain kind
of theorem prover called an SMT solver [11]. As a result,
given a candidate predicate, there are known techniques to
automatically determine if the predicate is a loop invariant on
all runs of the program.

Verification Invariants. The main reason for having loop
invariants is to establish properties that hold after the loop.
However, in general a loop invariant is not guaranteed to be
useful for this purpose. For example, true is a loop invariant
for any loop, but it does not help in proving asserts after the
loop.

To be useful for verification, the loop invariant must satisfy an
additional condition:

3. [I-IMPLIES] J implies the post-loop assert: If 7 holds at
the end of the last iteration of the loop, then the assert after
the loop will hold. This can be encoded as the verification
of the straight-line code shown in row 3 of Figure 2. Note
that in this code, the assume statement encodes the fact
that, since we are done running the loop, we know that the
while condition in the original code must be false, which
givesus i > n.

We call a loop invariant that satisfies the above property a
verification invariant. In other words: whereas a loop invari-
ant holds at each iteration of a loop, a verification invariant
additionally implies the post-loop assert.

Verification. Say we have found a verification invariant for
a given loop. In this case, the post-loop assert immediately
follows from I-ENTRY, I-PRESERVE, and I-IMPLIES. Thus,
finding a verification invariant is the key to proving post-loop
asserts, and as such they are used by many verification tools.

Some tools require the user to explicitly provide the verifica-
tion invariant. However, this requires a significant amount of
effort for the programmer, and typically also requires some
kind of expertise in formal verification. As a result, tools
and techniques have been developed to automatically infer
invariants.
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Figure 3. INVGAME play screen

As we will soon explain, automatically coming up with verifi-
cation invariants is challenging. The tool must not only find a
property that holds at each iteration of the loop, but is strong
enough to show the post-loop assert.

Note that in our running example, the post-loop assert is not
a loop invariant. Some readers might want to try to figure
out the invariant by looking at the code before we give the
invariant away.

Verification Invariant for our Example. The verification
invariant for our example is:

2*sum == i*(i-1) && i <= n+l

The above invariant for our running example was not inferred
by any of the five preeminent verification systems we tried.
There are four main reasons why this invariant (and invariants
in general) are difficult to infer automatically.

First, the expression i-1 does not appear syntactically any-
where in the program (or in any assert or assume). In general,
program verifiers must come up with invariants that are often
quite removed from the actual statements, expressions, asserts
and assumes in the program.

Second, the expression 2*sum == i*(i-1) is not a common
pattern. Some tools use patterns, for example A = B xC, to
guess possible invariants. But the invariant in this case does
not fit any of the common patterns encoded in preeminent
verification tools. In general, program verifiers must come up
with invariants that don’t belong to pre-defined patterns.

Third, the verifier has to figure out the i <= n+1 conjunct,
which seems orthogonal to the original assert. In this case,
the additional conjunct is somewhat straightforward to infer,
because it comes from the loop termination condition and
the single increment of i in the loop. However, in general,
candidate loop invariants often need to be strengthened with
additional conjuncts so that verifiers can establish that they
are verification invariants.

Finally, the space of possible invariants is very large. In this
example, if we consider just +, *, equality and inequality, there
are over 10'* possible predicates whose number of symbols is
equal to or smaller than the final verification invariant.

GAME DESIGN
We now describe our game, INVGAME, by showing how it al-
lows us to verify the running example from Figure 1. Figure 3



shows a screenshot of INVGAME on a level that corresponds
to our running example.

The area labeled @ in the screenshot is a data table. This
table shows rows of numbers, with columns labeled at the top.
The player does not know this, but this table corresponds to
the values of variables from a particular run of our example.
In particular, the table displays the values of i, sum and n at
the beginning of each loop iteration when the foo function
from Figure 1 is called withn = 6.

The area labeled in the screenshot is a predicate input box.
The player enters boolean predicates in this box, with the goal
of finding a predicate that evaluates to true for all rows.

The area labeled @, which appears immediately below the
input box, is the result column, which displays the result of
evaluating the entered predicate on each row. The results
in this column are displayed as “true” or “false”, with “true”
displayed in green, and “false” displayed in red. For example,
in the screenshot of Figure 3, the player has entered i<=n. On
the first six rows, this predicate evaluates to true, whereas it
evaluates to false on the last row.

The result column updates automatically as soon as the player
stops entering characters in the input box. More precisely,
when the player hasn’t entering a character in more than
500ms, the game tries to parse the text in the input box, and
if it parses as a boolean expression, it evaluates the predicate
on each row of the table, and displays the results in the results
column.

In the screenshot of Figure 3, not all rows are green (true).
Let’s assume at this point the player enters the predicate
i<=n+1 (for example by simply adding “+1” at the end of
the text box). The result column immediately updates to all
green (true). At this point, the player is told that they can press
“enter” to submit the predicate. If the player presses “enter” at
this point (i.e., when all rows are green), four things happen.

First, the predicate in the textbox is added to area @ on the
screen, which contains a list of accepted expressions.

Second, the score in area @ is updated. Each predicate is
worth 1 point multiplied by a set of “power-up” multipliers.
Area @ displays the currently available multipliers. We dis-
cuss how the multipliers work in the next section.

Third, the multipliers in area @ are updated to new power-ups
that will be in effect for the next entered predicate.

Fourth (and finally), INVGAME records the entered predicate
in a back-end server as a candidate loop invariant. Note that all
rows being green does not necessarily mean that the entered
predicate is an invariant, let alone a verification invariant. We
will discuss later what INVGAME does with these candidates
invariants, but at the very least it checks if some subset of
the predicates entered by the player is a verification invariant
for the level. INVGAME does this by checking, on the fly,
conditions I-ENTRY, I-PRESERVE and I-IMPLIES.

If the player finds a verification invariant for the current level,
the player has solved the level, and can go to the next level

(which is generated from a different loop to verify). Also,
if the player has not solved the level after entering a certain
number of invariants, the player is advanced to the next level.

Note that INVGAME does not give the player any hint of the
post-loop assert, or the code in the loop. As such, players are
“blind” to the final goal of the invariant; they are just looking
for patterns in what they see. While there are possibilities
for adding such information to the game, our current design
provides a more adversarial setting for getting results. Even in
this more adversarial setting, we show that players can solve
levels that leading automated tools cannot.

Scoring

One of the biggest challenges in developing a scoring strategy
is that INVGAME does not know the final solution for a level.
Thus, it is hard to devise a scoring mechanism that directly
incentivizes getting closer a solution.

We address this problem by instead incentivizing diversity. We
achieve this through “power-ups” that provide bonus points
for entering certain kinds of predicates. The bonus points vary
over time, and are bigger for symbols that the player has not
entered in a while.

In particular, each accepted predicate earns one point, mul-
tiplied by the “power-ups” that apply to the predicate. The
power-ups are shown in area @ In order from top to bottom
these power-ups apply in the following situations: the first
applies if the predicate does not use any constants like 1, or
0; the second applies if the predicate uses inequality; the third
applies if the predicate uses equality; the fourth applies if the
predicate uses multiplication or division; the fifth applies if
the predicate uses addition or subtraction; the sixth applies if
the predicate uses the modulo operator.

Each power-up has an associated multiplier that varies over
time. The multiplier is shown next to each power-up in area (F).

For example, the top-most power-up in area ® has multiplier
6X. At the beginning of a level, all multipliers are set to 2X.
When a predicate is entered, the multipliers of all power-ups
that apply are reset to 2X and the multipliers of all power-ups
that do not apply are incremented by 2 (the sequence is: 2X,
4X, 6X, 8X, etc). As a result, the longer a power-up has not
been used, the more valuable it becomes.

Power-ups compose, so that for example if two power-ups
apply to a given predicate, with values 6X and 4X, then the
score for that predicate is the base score of 1, multiplied by 6
and then by 4, giving 24.

Power-ups serve two purposes. First, they make the game
more fun. In preliminary experiments with players, we of-
ten observed players show outward enjoyment from trying to
hit multiple power-ups at once. The gratification of hitting
a huge-scoring predicate was very apparent, something we
also noticed when we as authors played the game. Second,
power-ups incentivize players to enter a diversity of predicates.
For example, if a player has not entered an inequality in a
while, the inequality multiplier becomes large, incentivizing
the player to enter an inequality.



Column Ordering

We found through preliminary trials that one important con-
sideration is the order in which columns are displayed. In
particular, certain column orderings made it more likely for
players to discover certain invariants. For example, consider
the screenshot in Figure 3, and recall the invariant in this case:
2%sum == i*(i-1) && i <= n+1. The hardest part of this
invariant is 2*sum == i*(i-1), which relates sum and i.
This relationship is easier to see if the sum and i columns are
displayed right next to each other, as in Figure 3. If the sum
and i columns were further apart (for example by having the n
column in between), then the pattern between i and sum would
be harder to see, because the intervening columns would be
cognitively distracting. The situation would be even worse
if there were fwo intervening columns, containing unrelated
numbers.

To address this problem, INVGAME serves the same level with
different column orderings. In general, for n columns there
are n! possible orderings, which is quite large. To make this
number more manageable, we take advantage of the fact that
proximity between pairs of variables is the most important
consideration. To this end, we define a notion of adjacent-
completeness: we say that a set of orderings is adjacent-
complete if all pairs of variables are adjacent in at least one of
the orderings.

For 3 variables a,b,c, there are a total of 6 possible orderings,
but only two orderings are needed for adjacent-completeness:
abc and ach. For 4 variables a, b, ¢, d, there are a total of
24 possible orderings, but surprisingly only two orderings are
needed to be adjacent-completeness: abcd and cadb. In gen-
eral, adjacent-completeness provides a much smaller number
of orderings to consider, while still giving us the benefit of
proximity. INVGAME uses a pre-computed table of adjacent-
complete orderings, and when a level is served, the least seen
ordering for that level is served.

Generating data
To run an INVGAME level, we need to generate the data for

table @ in Figure 3. This is done automatically by guessing
values for the input variables of the loop to be verified until
we find input values that make the loop run for at least 7
iterations. The values of the variables from the first 7 iterations
are instantiated as the 7 rows of data for the level. Note that the
variable names that came with the benchmark are left intact,
displayed at the top of the table, as seen in Figure 3. This
means that in some cases some small hints of information
might be communicated to the player. For example, a variable
named sum might tell the player that there is some “summing”
happening.

Back-end solver

A predicate that makes all rows true (green) is not necessarily
an invariant, let alone a verification invariant. For example,
in Figure 3, n==6 would make all rows true, but it is not an
invariant of the program. In other words, predicates entered
by players are based on a particular run of the program, and
might not be true in general.

Thus, we need a back-end solver that checks if the entered
predicate is a verification invariant. This is straightforward

for a given predicate, but there is a significant challenge
in how to handle multiple predicates. For example, in Fig-
ure 3, the player might have entered 2*sum == i*(i-1) and
i <= n+1 individually, but also other predicates in between,
one of them being n==6, which is not a loop invariant. If we
simply take the conjunction of all these predicates, it will not
be a loop invariant (because of n==6), even though the player
has in fact found the key invariants. Therefore, the INVGAME
back-end needs to check if the conjunction of some subset of
the entered predicates is an invariant. Furthermore, to enable
collaborative solving, the back-end would need to consider
the predicates from all players, which can lead to hundreds
of predicates. Given 100 predicates there are 2!%° possible
subsets, which is for too many to test in practice.

To address this problem, we use an idea based on predicate
abstraction, a widely investigated technique for doing program
analysis [5]. In particular, given a set of predicates that are
candidate loop invariants, the back-end first uses a theorem
prover to prune out the ones that are not implied by the assume
statements at the beginning of the function. For the remaining
predicates, our back-end uses a kind of inductive reasoning.
In particular, it first assumes that the remaining predicates all
hold at the beginning of the loop. Then for each remaining
predicate p the back-end asks a theorem prover whether p
holds after the loop (under the assumption that all predicates
hold at the beginning of the loop). The predicates p that pass
the test are kept, and ones that don’t are pruned, thus giving us
a smaller set of remaining predicates. The process is repeated
until the set of predicates does not change anymore, reaching
what’s called a fixed point. Interestingly enough, the theory on
program analysis tells us that not only will this terminate, but
the remaining set will be the maximal set of predicates whose
conjunction is a loop invariant.

We run the solver in real-time, but with a short time-out, and
leave the rest to an offline process. Predicates for an individual
player are done quickly, in most cases at interactive speeds.
However, checking the predicates of all players collectively
(to check if a conjunction of predicates from different players
solves a level) must often be left to an offline process.

Gamification Features

Our approach uses gamification, the idea of adding gaming
elements to a task. InvGame has four gaming elements: (1) a
scoring mechanism, (2) power-ups that guide players to higher
scores, (3) a level structure, (4) and quick-paced rewards for
accomplishments (finding invariants/finishing levels). While
we didn’t perform a randomized control study to measure
the effects of these gamification elements, preliminary ex-
periments with players during the design phase showed that
scoring and power-ups significantly improved the enjoyment
and engagement of players.

EVALUATION

We want to evaluate INVGAME along five dimensions, each
leading to a research question: (/) Comparison against Lead-
ing Tools: Can INVGAME solve benchmarks that leading auto-
mated tools cannot? (2) Player Skill: What skills are needed
to play INVGAME effectively? (3) Solution Cost: How much
does it cost (time, money) to get a solution for a benchmark



using INVGAME? (4) Player Creativity: How creative are
players at coming up with new semantically interesting predi-
cates? (5) Player Enjoyment. How fun is INVGAME? Before
exploring each of these questions in a separate subsection, we
first start by describing our experimental setup.

Experimental Setup

We envision our gamification approach being used on prob-
lems that automated tools cannot verify on their own. To
evaluate INVGAME in this setting, we collected a set of 243
verification benchmarks, made up of benchmarks from the
literature and test cases for our system. Each benchmark is
a function with preconditions, some loops and an assert af-
ter the loops. Functions range in size from 7 to 64 lines of
code. Although these functions might seem small, it’s im-
portant to realize that we have included all benchmarks from
recent prominent papers on invariant generation [14, 20], and
also benchmarks from recent Software Verification Competi-
tions [1].

We removed from this set of benchmarks those that use lan-
guage features that INVGAME doesn’t handle, in particular
doubly nested loops, arrays, the heap and disjunctive invari-
ants (we discuss limitations of our approach later in the pa-
per). This left us with 66 benchmarks. We ran four automated
state-of-the-art verification tools on these benchmarks, namely:
Daikon [15], CPAChecker [9], InvGen [21] and ICE-DT [20].
Daikon is a dynamic statistical invariant inference engine that
generates invariants from a fixed set of templates. CPAChecker
is a configurable static analysis tool based on abstract inter-
pretation. InvGen is an automatic linear arithmetic invariant
generator. Finally ICE-DT is an state-of-the art invariant gen-
erator based on counter-example guided machine learning.

We consider a benchmark as solved by leading tools if any of
these four tools solved it. This left us with 14 benchmarks that
were unsolved by leading tools. These 14 benchmarks, shown
in Figure 4, are the ones we aimed to solve using INVGAME.
In general, these benchmarks are challenging for automated
tools because of the non-linear equalities and inequalities.

Here is the provenance of the 14 benchmarks that have re-
sisted automated checking: gauss-1 is from the Software
Verification Competition suite [1]; sqrt is from the ICE-
DT [20] benchmark suite; gauss-2 is an elaborated version
of gauss-1; cube-1 is based on a clever technique for com-
puting cubes [37]; cube-2 and prod-bin are from an online
repository of polynomial benchmarks [4]; the remaining 7 are
from our test suite.

We use Mechanical Turk to run our experiment, as a set of
human intelligence tasks (HITs). One HIT consists of playing
at least two levels (benchmarks) of the game, but we let the
players play more if they want. We paid participants because
Mechanical Turk is a paying platform. Per our IRB protocol,
we aimed to pay our players at a rate of about $10/hr. Par-
ticipants were paid even if they didn’t solve a level, and we
didn’t connect pay to score. Because we did not want users to
purposely slow down to get paid more, we paid players by the
level rather than by the hour. Preliminary trials showed that
$0.75/1evel would lead a pay rate of $10/hr. However, players

[ Name [ Invariant | Game |
gauss-1 2%sum==1*(i-1) && i<=n+1 v
gauss-2 | 2%s==i*j && j==i-1 && i<=n+1 v
sqrt su==(a+1)*(a+1l) && t==2%*a+l v
nl-eq-1 i == 2%k*j v
nl-eq-2 i == k*j*1 v
nl-eq-3 i == 10+k*j v
nl-eq-4 i == 1+k*j v
nl-ineq-1 | i*j <=k v
nl-ineq-2 | i*j <=k v
nl-ineq-3 | i*i <=k v
nl-ineq-4 | i <= j*k X
prod-bin | z+x*y == a*b X
cube-1 i*(i+1)==2%a && c==i*i*i X
cube-2 z==6*(n+1) && X

y==3*n*(n+1)+1 && X==n*n*n

Figure 4. Benchmarks not solved by other tools

in experiments were quicker than in trials (avg of 109s/level),
yielding an average pay rate of $24.77/hr.

INVGAME dynamically serves the level (benchmark) that the
current player has played the least. Although a production
system would run a level until it was solved, our goal was to
better understand how players interact with INVGAME. To
this end, we ran experiments until we had at least 15 unique
players for each level. In total, our data set includes 685 plays
and 67 unique players, with each level played between 36 and
72 times. Some levels were also solved many times.

Comparison against Leading Tools

Figure 4 shows the benchmark name, the verification invariant,
and whether our gamification approach was able to find the
invariant using Mechanical Turk users. In short, our gamifica-
tion approach worked on 10 out of the 14 benchmarks.

Individual vs. Collective Solving. One interesting question
is whether solutions came from single plays or collections
of plays. We define a play as a player playing a level once.
We define an individual solving play as a play of a level that
by itself finds the entire required invariant. In all cases but
two, the solutions in our experiments came from individual
solving plays. However, there can be cases where there is no
individual solving play (because each player only finds part
of the invariant), but putting the invariants together from all
plays solves the benchmark. We call such solutions collective
solutions; these solutions can only happen when the verifica-
tion invariant has a conjunct, so in 5 of our 14 benchmarks. In
our experiments, collective solutions happened only twice, for
sqrt and gauss-2 (for sqrt, an individual solution was also
found). For collective solutions, because of the way our solver
works, it is difficult to determined who contributed to solving
the level. As a result, in all of the following discussions where
we need to attribute the solution to a player, we only consider
individual solving plays (and call them solving plays).

Player Skill

To better understand the relationship between a player’s prior
math/programming skills and their ability to solve levels,
we asked players to rate themselves on a scale from 1 to
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Figure 5. Number of players by math and programming skill

5 on math expertise and programming expertise. We use
the term “math skill” and “programming skill” to refer to the
math/programming skill rating that the player gave themselves.
The skill ratings for math and programming were defined as
follows in the survey:

Math 1 | Middle school math | Prog 1 | No experience
Math 2 | High school math Prog 2 | Beginner
Math 3 | College level math | Prog 3 | Intermediate
Math 4 | Masters level math | Prog4 | Advanced
Math 5 | PhD level math Prog 5 | Professional

Bearing in mind that these are self-reported metrics, Fig-
ures 5(a) and (b) show the number of players at each math and
programming skill, respectively. The majority of our players
have not taken a math course beyond high-school or college
and have either no programming experience, or are at best
novice to intermediate. It’s also worth noting that we have
no players that only took math at the middle-school level and
that we see a wider spread of skill levels in programming ex-
perience than math. Finally, we had no expert programmers
(skill 5) in our study. Since verification is an advanced and
specialized topic, we assume this also means that none of our
players had verification expertise.

We define the math/programming skill of a play as the
math/programming skill of the player who played the play.
Figures 5(c) and (d) show the number of solving plays (recall,
these are individual solving plays) categorized by the skill of
the solving play — math in (c) and programming in (d). This
shows us that in absolute numbers, plays at programming skill
3 contribute the most.

To better understand the performance of each skill rating,
Figures 5(e) and (f) show the number of solving plays at a
given skill divided by the total number of plays at that skill —
math in (e) and programming in (f). For example, the bar at
math skill 3 tells us that about 4% of plays at math skill 3 are
solving plays. This gives us a sense of how productive plays
are at math skill 3.

Looking at Figures 5(e) and (f), if we ignore programming
skill 4 — which is difficult to judge because it has so few
plays, as seen in Figure 5(b) — there is in general a trend, both
in math and programming skill, that higher skill ratings lead
to higher productivity.

In addition to looking individually at math and programming
skill, we also looked at their combination, in particular: (1) the
average of math and programming skill (2) the maximum of
math and programming skill. Although we don’t show all the
charts here, one crucial observation emerged from examining
the maximum of math and programming skill. To be more
precise, we define the mp-max skill to be the maximum of
the math skill and the programming skill. We noticed that all
solving plays had an mp-max skill of 3 or above, in other words
a skill of 3 or above in math or in programming. Furthermore,
this was not because we lacked plays at lower mp-max skills:
35% of plays have an mp-max skill strictly less than 3, in other
words a skill below 3 in both math and programming. These
35% of plays did not find any solutions. In short, INVGAME
does not enable players with low math and low programming
skill to find loop invariants: instead the most effective players
are those with at least a score of 3 in math or programming.

Difficulty of Benchmarks. Having focused on the effective-
ness of players over all benchmarks, we now want to better
understand what makes a benchmark difficult and this diffi-
culty relates to what skill is required to solve it.

One clear indication of the difficulty is that some benchmarks
were not solved. Looking more closely at the four benchmarks
that were not solved by INVGAME, we found that for cube-1,
players found c==i*i*i many times, but not i* (i+1)=2%a;
and for cube-2 players found 6* (n+1) and x==n*n*n but not
y==3*n* (n+1)+1. From this we conclude that more complex
polynomial relationships are harder for humans to see.

Focusing on levels that were solved, let’s first consider
gauss-1, which was only solved once in a preliminary trial
with online Mechanical Turk workers. The player who solved
gauss-1 had a math skill of 2 and programming skill of 3,
which is average for our population. This occurrence resem-
bles cases observed in Foldit [10], where some of the biggest
contributions were made by a small number of players with no
formal training in the matter, but with a strong game intuition.

For the remaining benchmarks that were solved, a proxy mea-
sure for difficulty of a level might be the number of solving
plays for that level. The more frequently a level is solved, the
easier the level might be. Because there is variation in the
number of times each level was played, we normalize the num-
ber of solving plays for a level by the total number of plays
for that level. This gives us, for each level, the percentage of
plays that were solving plays. Figure 6(a) and (b) show this
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Figure 7. Cost of first solution in total player time and money

percentage for all solved levels — except for gauss-2, be-
cause it was solved by multiple plays, and gauss-1 because
as we mentioned earlier we don’t include the data for that
benchmark here. For example, we can see that for nl-eq-2
about 22% of plays were solving plays, and for n1-ineq-1
about 3% of plays were solving plays. The levels are ordered
from hardest at the left (least number of solutions) to easiest
at the right (most number of solutions).

Furthermore, we divided each bar into stacked bars based on
math and programming skill of the solving plays. Figure 6(a)
shows the chart divided by math skill, and Figure 6(b) shows
the chart divided by programming skill.

Plotting the data in this way gives us a sense of how much
each skill contributed to the solving plays for each level. We
can notice, for example, that programming skill 3 appears on
all benchmarks, meaning that if we only keep programming
skill 3 plays, we still solve the same number of benchmarks.

We also expect that the hardest levels might require more skill
to solve. Thus, moving from right to left in the bar chart, we
would expect the bars to contain larger proportions of high
skills. While not perfectly observed in Figure 6, we do see
signs of this pattern. For example, scanning from right to left
in the chart organized by math skill — 6(a) — we see that math
skill 2 (green) disappears: the hardest three benchmarks are
only solved by math skill 3 and 4. Scanning from right to left
in the chart organized by programming skill — 6(b) — we see
that programming skills 1 and 2 shrink and then disappear.

Solution Cost

In practice, if we were trying to solve verification problems
with INVGAME, we would have INVGAME serve a given level
until it was verified. Because all of our data has time-stamps,
we can simulate this scenario from our data. In particular,

(a) nl-ineg-1 (b) gauss-1
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Figure 8. Cumulative # of semantically new predicates by # of plays

given a level, we can measure the cost to get the first solution
for that level, both in minutes of game play for that level,
and in terms of money spent on that level. Figure 7(a) shows
the first solution cost in minutes of gameplay for each level,
and Figure 7(b) shows the first solution cost in dollars for
each level. The benchmarks are ordered in the same way as
in Figure 6. As expected, we notice a broad trend which is
that benchmarks that were measured as harder according to
Figure 6 tend to cost more to solve.

On average the first solution required 15 minutes of player
time and cost $6.5. Also, although we don’t show a chart with
the number of unique players to the first solution, on average,
the first solution required about 8 plays and 4 unique players.

Player Creativity

A key assumption of our game is that players are good at
coming up with new predicates, in the hope that they will
eventually hit upon a verification invariant. To get more detail
on player creativity, we plot, over time, the cumulative number
of predicates entered by players that were semantically new,
meaning that they were not implied by any of the previously
entered predicates. There are 14 such plots, two of which are
shown in Figure 8(a) and (b).

To gain insight on whether these trends had flattened by the end
of our experiments — signaling an exhaustion of what players
are able to invent for accepted predicates — we computed
the fits of two trend lines, one on the assumption that new
predicates were continuing to come (a linear regression), and
one that they were not (a logarithmic regression). Our intuition
is that, given enough runs, we would see a leveling off in the
discovery of semantically new predicates. This would mean
that the logarithmic regression would be a clearly better fit.
However, we are not yet seeing this for our benchmarks: the
linear regression is a better fit (i.e., had a better R? value) in
12 of the 14 benchmarks. Furthermore, the R? values of all
regressions, linear or logarithmic, were uniformly high, in
the range 0.86 to 0.98 — with R> = 1 indicating a perfect
fit. The most logarithmic plot is shown in Figure 8(a). This
tells us that, despite having between 36 and 72 plays for each
benchmark, we have not yet seen enough runs to detect a clear
leveling off of semantically new predicates. This suggests
that we have not yet exhausted the creativity of our players in
terms of coming up with semantically new predicates. Besides
being indicative of the creative potential of our players, it
provides hope that further gameplay could solve more of our
four remaining unsolved benchmarks.

Player Enjoyment
We asked players to rate the game from 1 to 5 on how much
fun they had. The average rating for fun was 4.36 out of 5.



Also, we received several emails from users asking us when
more HITs would be available. One user even referred to us as
their favorite HIT. Note that our experiments do not show that
participants are willing to play the game just for fun, without
being paid. Still, even with players being paid, the rest of our
data analysis is valid with regards to (1) how humans play
INVGAME, (2) the solving power of humans vs. automated
tools (3) the relation of player skill to solving potential.

The balance of intrinsic vs. extrinsic motivation in game de-
sign is an interesting topic of study [34]. Certainly, extrinsic
motivation is not inconsistent with the idea of gamification,
in that some citizen science projects use both [10, 39]. Re-
cent research also suggests that hybrid schemes of motivation
(mixing intrinsic and extrinsic) are worth studying in terms of
player engagement, retainment, and effectiveness [34, 39, 44].

In addition to the “fun” rating, we also asked players to rate
the game from 1 to 5 on how challenging they found it. The
average rating was 4.006, suggesting users found this task fairly
difficult. The fact that players found the game challenging
and yet fun might suggest that INVGAME is a “Sudoku” style
puzzle game, where players enjoy being engrossed in a mathe-
matically challenging environment.

DESIGN INSIGHTS
We believe these were several important design insights that
led to our approach being successful.

Less abstraction has benefits. In INVGAME we chose a point
in the design space that exposes the math in a minimalist style,
without providing a gamification story around it. As we will
discuss more in related work, this is in contrast to other games
like Xylem [29], which provide a much more polished and
abstracted veneer on the game. Our minimalist user interface
scales better with content size: our unencumbered table can
convey a lot of information at once. Furthermore, we believe
INVGAME was successful at solving problems in large part
because of the lack of abstraction: we are directly leveraging
the raw mathematical ability of players.

The diversity of human cognition is powerful. Players in
INVGAME don’t see code or asserts. Yet they are still able to
come up with useful invariants. In fact, if players played per-
fectly, always finding the strongest invariants given the traces
they saw, they would often miss the invariants we needed.
In this sense, the diversity of human cognition is extremely
powerful. Crowdsourcing, along with our scoring incentive of
power-ups, together harness this diversity of cognition.

While looking at predicates entered by players, two cases
stood out as exemplifying the diversity of human cognition.

First, a player found su == (a+1)*(a+1) && su==t+a*a
for sqrt, and this solved the level. At first we were surprised,
because this looks very different than the solution we expected
from Figure 4, namely su==(a+1)*(a+1) && t==2%a+1l.
However, upon closer examination, the player’s predicate is
semantically equivalent to ours, even though syntactically dif-
ferent. The fact that a player found such a different expression
of the same invariant, which required us to think twice about
how it could actually solve the level, is a testament to the

diversity in cognitive approaches and pattern recognition that
different players bring to the table.

Second, in n1-ineq-1, many players found a compelling can-
didate invariant that we did not expect: (i+1)*j==k. This
candidate invariant is stronger than (i.e., implies) the needed
verification invariant, namely i* j<=k. The candidate invariant
(i+1)*j==k, despite its compelling nature (upon first inspec-
tion we mistook it for another correct solution), is actually
not a valid invariant, even though it held on the data shown in
the game. What is interesting is that if all humans had played
the game perfectly, finding the best possible invariant for the
data shown, they would have only found the incorrect stronger
(i+1)*j==k, which would have prevented them from enter-
ing the correct one, i*j<=k. In this sense, the diversity of
human ability to see different patterns is crucial, as often the
strongest conclusion given the limited data shown is not the
one that generalizes well.

Law of Proximity. We found that column proximity affected
the ability of players to see certain patterns: it was easier
to discover patterns in closer columns. This insight is cap-
tured by the Law of Proximity, one of the Gestalt Laws of
Grouping, from the Gestalt Psychology [41, 42]. The law of
proximity states that objects that are close together appear to
form groups. This law has a long history of being used in
HCI design, including for web page design, menu design, and
form design [41, 42]. In our setting, columns are perceived as
grouped based on their proximity, which then affects the kinds
of relations that players see.

Reducing the Two Gulfs by Changing the Task. One way
of assessing the cognitive burden of a task is to consider the
two well-known "gulfs": (1) gulf of execution [32]: the diffi-
culty in understanding what actions should be taken to achieve
a given goal; (2) gulf of evaluation [32]: the difficulty in un-
derstanding the state of a system, and how the system state
evolves. When a human does program verification the tra-
ditional way, using loop invariants and a back-end theorem
prover, both gulfs are large: it’s hard to determine what in-
variant to use by looking at the program (gulf of execution);
and it’s also hard to predict how the back-end theorem prover
will respond to a given invariant (gulf of evaluation). By trans-
forming the task into one where humans look at run-time data,
instead of programs, and try to come up with predicates that
hold on this data, we significantly reduce both gulfs: it’s easy
to understand how to enter predicates that make all rows green
to win points (gulf of execution); and it’s easy to understand
that the system just evaluates the predicates entered to either
true (green) or false (red) on the given data (gulf of evaluation).

This reduction in cognitive burden, through a reduction in the
two gulfs, explains in theoretical terms why players with no
verification expertise can play INVGAME. However, these
choices have also robbed the player of fidelity with respect to
the original verification task: the player does not see the pro-
gram, or the asserts, or any feedback from the theorem prover.
This seems to indicate an increase in the gulf between our
game and the original verification task. How is the game still
successful at verification? This fidelity is in fact not always
needed; and when not needed, it can be cognitively burden-



some, especially for non-experts. The ultimate insight is that
a low fidelity proxy which reduces cognitive burden and also
maintains enough connections to the original task can allow
non-experts to achieve expert tasks. Also, from the perspective
of game design, our choice of proxy provides another bene-
fit: INVGAME’s frequent positive feedback for entering novel
predicates is likely more rewarding and motivating than the
frequent feedback on incorrect verification invariants.

Some of the above design insights, individually, can certainly
be connected to prior work (e.g.: some Verigames projects
change the task [29], Foldit removes a lot of abstraction [10]).
However, our work also provides empirical evidence that the
above design insights can be incorporated together into a sys-
tem that makes players effective at loop invariant inference
compared to state-of-the-art automated tools.

LIMITATIONS AND FUTURE WORK

Arrays and the Heap. Our current version of INVGAME
handles only arithmetic invariants. In the future we plan to
investigate ways of incorporating arrays and the heap, for
example simple numerical arrays, multi-dimensional arrays,
linked-lists, and object-oriented structures. Doing so entails
two challenges: (1) how to display these structures (2) how to
enable players to express predicates over these structures.

Implication Invariants. Some benchmarks require verifica-
tion invariants involving implications of the form A => B. One
promising approach for adding such invariants to INVGAME
involves splitter predicates [36]: if we can guess A, then the
level along with its data can be split into two sub-levels, one
for A and one for —A. Although guessing a correct A is chal-
lenging, we found in 38 out of 39 cases that A appears in the
program text (usually in a branch), suggesting that there are
promising syntactic heuristics for finding A.

RELATED WORK

Inspired by the success of projects such as Foldit [10] several
lines of work have tried to apply gamification to the problem
of Software Verification. One of the main differences between
our work and these verification games is the extent of the
empirical evaluation: we evaluate our system on a well-known
set of benchmarks, showing that our system can outperform
state-of-the-art automated tools. We can split existing work on
gamification for Software Verification into games that expose
math as part of the game play and those that conceal it.

Games that expose math. The closest approach to ours is
Xylem [29, 28], a game where players are botanists trying
to identify patterns in the numbers of growing plants. Like
INVGAME, Xylem relies on players finding candidate invari-
ants from run-time data. However, due to its focus on casual
gaming, Xylem explores a different point in the design space
than ours. Xylem is a touch-based game that uses a graphics-
rich UI with many on-screen abstractions, including plants,
flowers, and petals. Since these abstractions use space, Xylem
is limited in the amount of data it can show onscreen, which
in turn might hinder the ability of players to see patterns. For
example, Xylem players can only see 2 data rows at a time,
having to scroll to see other rows. In contrast, INVGAME tries
to increase the ability of humans to spot patterns by: (1) show-
ing the data matrix all at once (2) re-ordering columns. Xylem

also restricts some aspects of predicate building, such as not
allowing arbitrary numeric constants. In contrast, INVGAME
has an unrestricted way for players to enter predicates, and
provides immediate feedback on which rows are true/false,
for quick refinement. Finally, although Xylem was played
by many users, there is no systematic evaluation on a known
benchmark set, or comparison to state-of-the-art tools.

Monster Proof [12] is another verification game that exposes
math symbols to the player. However, Monster Proof is much
closer in concept to a proof assistant [38, 2, 3], where the
user is constructing a detailed proof using rules to manipulate
expressions. In contrast, INVGAME uses humans to recog-
nize candidate invariants, and automated solvers to perform
much of the manipulations done by players in Monster Proof.
Also, the published results on Monster Proof do not provide a
systematic evaluation against state-of-the-art tools.

Games that conceal math. In Binary Fission [16], players
build preconditions by composing primitive predicates gener-
ated by Daikon. The user is never exposed to the predicates
and instead builds a decision tree out of black-box filters. Our
benchmarks involve predicates that Daikon cannot infer, which
makes them difficult to solve by Binary Fission. Binary Fis-
sion was also evaluated only on loop-free programs, whereas
the goal of our work is to verify loops, which are one of the
biggest challenges in program verification.

In Circuit Bot [12], Dynamaker [12] and Pipe-Jam/Flow-
Jam/Paradox [13, 12] players resolves conflicts in con-
straints graphs derived from type/information flows. In Ghost
Space [12] and Hyper Space [12] players manipulate an ab-
stracted control-flow graph to perform counterexample-guided
abstraction refinement under the hood. In StormBound [12]
players build program predicates without seeing mathematical
symbols or numbers. These games rely more on the player’s
visual and spatial recognition skills, rather than mathematical
pattern recognition skills.

Machine Learning Invariant Generation. Another closely
related line of work uses machine learning for invariant genera-
tion. Most approaches learn a boolean formula over a fixed set
of predicate templates [19, 20, 26, 35]. Recent work by Padhi
et. al. [33] extends this work by attempting to also learn the
predicate features through counterexample guided synthesis.
We believe crowdsourced gamification and machine learning
based approaches are complimentary lines of research, as data
gathered from the best players in a crowdsourced setting would
be a useful training set for machine learning approaches.

CONCLUSION

We presented INVGAME, a game in which players guess loop
invariants. We have shown that INVGAME allows players with
no verification knowledge to verify benchmarks that leading
automated tools cannot. We believe our minimalist design was
one of the key factors contributing to its success: INVGAME
directly leverages raw human mathematical skills. Our promis-
ing results lay the path for a larger exploration into program
verification through gamification and crowdsourcing.
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