
Polymorphic Blocks:
Formalism-Inspired UI for Structured Connectors

Sorin Lerner Stephen R. Foster William G. Griswold
University of California, San Diego
{lerner, srfoster, wgg}@cs.ucsd.edu

ABSTRACT
We present a novel block-based UI called Polymorphic
Blocks, in which a connector’s shape visually represents the
structure of the data being passed through the connector.
We use Polymorphic Blocks to add visual type information
to block-based programming environments like Blockly or
Scratch. We also use Polymorphic Blocks to represent log-
ical proofs. In this context, if we erase all symbols, our UI
becomes a puzzle game, where solving the puzzle amounts
to building a proof. We show through a user study that our
Logical Puzzle Game is faster, more fun, and more engaging
than an equivalent pen-and-paper interface.

Author Keywords
Proofs; Games; Block-based Programming Environments.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI).

INTRODUCTION
Blocks that snap into place are commonly used in UIs for
novice visual programming environments such as Scratch [5],
Blockly [2], App Inventor [1], and TinkerBlocks [6]. A key
component of these block interfaces is the UI mechanism
for connectors, and the most common such mechanism con-
sists of shaped ports, making blocks akin to jigsaw puzzle
pieces. For example, Blockly uses a groove reminiscent of
jigsaw puzzles for ports where values can be transmitted, and
a semi-circular groove for ports where statements can be con-
nected. Scratch uses circular ports for integers, angled ports
for booleans, and a small flat trapezoid for statements.

Although these shaped ports provide some form of visual
feedback about the kind of information being passed through
the port, typically environments only use a handful of shapes,
and as a result, these shaped ports do not visually expose the
full structure of the data being passed through them. For
example, in most block-based visual programming environ-
ments, the shape for an integer, a boolean, a list of integers,
and a list of booleans would look exactly the same (in partic-
ular, it will be the “value” shaped port).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2015, April 18–23, 2015, Seoul, Republic of Korea.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3145-6/15/04 ...$15.00.
http://dx.doi.org/10.1145/2702123.2702302

In this paper, we present a new block-based UI called Poly-
morphic Blocks that is better suited for visualizing the struc-
ture of information passed through connectors. There are two
key insights behind Polymorphic Blocks that lead to its flexi-
bility and expressive power.

First, the shape of connectors in Polymorphic Blocks are
produced through a compositional translation process that
can map complex recursive structures into unique shapes.
This allows Polymorphic Blocks to visually represent com-
plex structures such as types of the form List[int] and
Pair[int, bool], as well as complex logical formulas.

Second, we allow the shape of connectors in Polymorphic
Blocks to include Colored Polymorphic Ports, which work as
follows: when a shape is connected to a Polymorphic Port of
a certain color, the port in question takes on the shape it is
connected to, and furthermore, all Polymorphic Ports of the
same color also change to that shape. As a simple example,
suppose we want a Polymorphic Block that takes two param-
eters which must be of the same type, for example (int, int) or
(bool, bool) but not (int, bool). The Polymorphic Block to en-
code this operation would have two input Polymorphic Ports
of the same color, and when one is connected to a shape, say
the shape of bool, the other will also change to that shape, in-
dicating that henceforth only the shape of bool can be passed
to the other parameter.

In the context of block-based visual programming interfaces,
Polymorphic Blocks can visually represent complex types
such as List[int], List[bool], Pair[int, bool], as well as para-
metric types such as List[T], Pair(T1, T2), and higher-order
types, such as function types. In this setting, Polymorphic
Blocks have a theoretical grounding, in that they correspond
precisely to the notion of parametric polymorphism (alterna-
tively called generics) from the programming languages com-
munity, a kind of type polymorphism found in languages like
Java, C#, Standard ML, OCaml, F#, Haskell and Scala.

Even more interestingly, it turns out that Polymorphic Blocks
are applicable beyond block-based visual interfaces. In par-
ticular, we will show how Polymorphic Blocks can be used
as a novel visual interface for building logical proofs, where
each block represents an inference rule, and connectors rep-
resent formulas. If the logical formulas are hidden, and only
the visual connectors are left, the resulting interface turns into
a visual Puzzle Game where solving the puzzle amounts to
completing the logical proof. This application, which we find
intriguing and exciting, has possible implications for the fu-
ture crowdsourcing of interactive proofs in theorem provers
like Coq.

Connector Connector

Connector

Connector Connector

(a) Connector(b)

Connector

(c) Connector

Figure 1. Examples of Polymorphic Blocks: (a) shows a block with some
simple connectors; (b) shows a block with more complex connectors.

Finally, the design of Polymorphic Blocks was heavily guided
by the formalism of type theory and logical proofs. We
discuss this notion of formalism-inspired UI design further
throughout the paper, showing both its benefits and pitfalls.

In summary, our contributions are as follows:

• We present the idea of Polymorphic Blocks, a novel UI
mechanism for visualizing the structure of data passed
through connectors.

• We implement Polymorphic Blocks in two settings: (1)
a typed version of Blockly and (2) a visual interface for
building logical proofs.

• By means of a user study, we evaluate Polymorphic Blocks
as a visual interface for building logical proofs in a Puz-
zle Game. Our results show that participants are able to
understand the mechanics of Polymorphic Blocks through
self-guided experimentation, and are able to quickly build
logical proofs. Furthermore, our results also show that,
while Polymorphic Blocks do not teach all aspects of logi-
cal proofs in a class-room setting, they lead to faster com-
pletion times, and are more fun and engaging than a tradi-
tional pen-and-paper interface.

• Finally, we discuss our results and techniques within the
context of several possible applications and in relation to
existing HCI theories, pointing out lessons learned from
our formalism-inspired design.

OVERVIEW
We start with an overview of how Polymorphic Blocks work
through a set of increasingly more complex examples.

Basics of Blocks and Connectors. Figure 1(a) shows a very
simple example of a Polymorphic Block. Each polymorphic
block has a set of connectors, with each connector represent-
ing one of the block’s inputs or outputs. For example, the
block in Figure 1(a) has three such connectors, two on the bot-
tom, and one at the top. Each connector has a shape, which
intuitively represents the structure of the data being passed
through that connector. For example, the block in Figure 1(a)
could be used to represent a computation that takes two in-
puts from below, and produces one output above. In this case,
the shape of the connectors would represent the types of the
values being passed through the connectors, for example the
triangle could be int and the “T” could be bool. The block in
Figure 1(a) would then represent a computation that takes an
int and a bool, and produces an int. To start, let us assume that
two blocks can be connected through a connector only if the

red

red

red

blue

red blue

red blue

red blue

Polymorphic
Block

Polymorphic Connector

Polymorphic
Connector

Polymorphic
Connector

p

p p

p

p : Polymorphic Port

(a)

(b) (c)

(d) (e)

red

red blue

(f) (g)

Figure 2. Examples of Polymorphic Ports: (a) shows an example con-
taining Polymorphic Ports with each constituent part labeled; (b) shows
two blocks before they are connected and (c) shows what happens after
these blocks are connected; similarly for (d)-(e) and (f)-(g).

shape of the connector matches exactly. For example, a block
producing a triangle on top could be connected to the bottom-
left connector of the block in Figure 1(a). In this way, shaped-
connectors provide a jigsaw-puzzle metaphor which enforces
that correctly typed values are passed along each connector.

More Complex Shapes for Connectors. One of the key in-
sights in Polymorphic Blocks is that the shape of connec-
tors are produced through a compositional translation pro-
cess which can map complex recursive structures into unique
shapes. Figure 1(b) shows a block with a connector on top
that is produced by this translation process. The shape of the
top connector is produced by the combination of two simpler
shapes (the triangle and the “T”) together with a semi-circle.
If we continue with the domain where blocks are computa-
tions and shapes are types, the semi-circle could represent
the notion of a “pair”. In this case, the block in Figure 1(b)
represents a computation which takes an int, represented as
a triangle, and a bool, represented as a “T”, and produces a
value of type Pair[int, bool], i.e. a pair of an int and a bool
(an example: the computation which takes an int and a bool
and creates a pair out of them). Figure 1(c) shows another
example, which could represent a computation that takes a

Basic exprs with types In Polymorphic Blockly
int 0

bool true

T cond(bool, T, T)

List[T] list(T, T, T)

Pair[T1, T2] pair(T1, T2)

T1 first(Pair[T1, T2])

T2 second(Pair[T1, T2])

Figure 3. Basic expressions and their corresponding Polymorphic Blocks

Pair[int, bool] and produces an int (e.g.: the computation
which returns the first element of an int, bool pair).

Note that the semi-circle here acts as what we call a shape
constructor: it takes two shapes on either side and glues two
together into a larger shape. We support arbitrarily many
shape constructors, and later in the paper we will see another
example, namely a “V” shaped dent. We can also easily sup-
port shape constructors with arities other than 2.

It’s important to note that when a shape constructor like the
semi-circle combines two shapes into a larger one, the two
constituent shapes themselves can be complex shapes built
out of shape constructors. As a result, the shapes of connec-
tors are produced from a recursive visual language capable of
expressing arbitrarily complex shapes. Through this lens, the
shapes of connectors represent an underlying structure cor-
responding to a language of recursive mathematical terms.
These mathematical terms are made up of: function sym-
bols (which correspond to shape constructors) and constants
(which correspond to basic shapes). In our instantiations of
Polymorphic Blocks, this language of terms will be: (1) the
language of type expressions for typed Blockly, and (2) the
language of formulas for our visual proof environment.

Polymorphic Ports. Another key insight of Polymorphic
Blocks is that the shape of connectors are allowed to include
Colored Polymorphic Ports. Figure 2(a) shows an example
containing Polymorphic Ports, with each constituent part la-
beled, and where the color of the port is also labeled (for
readability on black-and-white printouts). Polymorphic Ports
work as follows: when a shape is connected to a Polymor-
phic Port of a certain color, the port in question takes on the
shape it is connected to, and furthermore, all Polymorphic
Ports of the same color also change to that shape. For exam-
ple, Figure 2(b) shows two blocks before they are connected,
and Figure 2(c) shows what happens after these blocks are
connected – similarly for (d)-(e) and (f)-(g).

INSTANTIATION TO THE BLOCKLY DOMAIN
Now that we have presented an overview of the ideas behind
Polymorphic Blocks, we show how these ideas can be used in
practice. We start by showing how Polymorphic Blocks can

Expression In Polymorphic Blockly

cond(. . . , 0, . . .)

list(0, . . .)

list(true, . . .)

pair(0, . . .)

pair(0, true)

first(pair(0, true))

list(cond(. . .), . . .)

Figure 4. Complex expressions and corresponding Polymorphic Blocks

be used to enhance block-based programming environments
with a visualization of program types.

We use the Blockly visual programming editor [2] as the vehi-
cle for our demonstration, but the ideas can be applied to any
block-based editor. Blockly is a block-based editor similar in
many ways to Scratch, where blocks representing computa-
tions can be snapped together to create programs. Below are
sample blocks from the traditional Blockly UI:

The shape of all connectors is a groove reminiscent of jigsaw
puzzles. Note that values flow right-to-left.

We extend Blockly with Polymorphic Blocks to produce
Polymorphic Blockly, where the shape of connectors repre-
sent the types of values flowing through those connectors.
Figure 3 shows several basic expressions with their types,
along with the Polymorphic Block for the expression – “basic
expression” here means that the representation in Polymor-
phic Blockly is a single block. We use the Java and C style of
writing types for functions, where the return type is written
first, followed by the name of the function, followed by the
types of parameters. We use the naming convention T (with
possible subscripts) for type variables, akin to the generics
found in Java. Because values in Blockly flow right-to-left,
the connectors of Polymorphic Blocks are on vertical edges,
as opposed to horizontal edges. Note that all the Polymorphic
Blocks in Figure 3 use red and blue for port colors, and this
is because Figure 3 shows how each block appears when it is
created in isolation (i.e.: without other blocks on the screen).
More generally, our implementation keeps tracks of what port
colors are in use, and generates unique colors for ports when
a new Polymorphic Block is created, with red and blue just
being the first two colors. As a result, if one were to cre-
ate multiple blocks on the same screen, we would in fact see
many more port colors than in Figure 3. The importance of
generating port colors in this way will be explained shortly.

Integer values are represented using a semi-circle, boolean
values using a triangle. Note that semi-circle here is not used
as a shape-constructor, as is done elsewhere in the paper –
here semi-circle is just a basic shape. The cond function is
a conditional similar to the “?” operator in C, and its Poly-
morphic Block encodes the fact that the types of the two parts
of the conditional should be the same. The List[T] type is
represented by adding a single small side-ways “l” next to
the shape of the T type. The Pair[T1, T2] is represented by
putting a small triangular wedge between the shapes of T1
and T2, and then surrounding the entire shape using two slim
barriers. Note that the “create pair” block has a single output
connector which is visually large because it represents a pair,
and similarly, the “first” and “second” blocks have a single
large input connector each.

Figure 4 shows some more complex examples involving mul-
tiple Polymorphic Blocks. The occurrence of “. . .” in an ex-
pression indicates that the given part of the expression has not
been filled in yet (or in the Blockly perspective, has not yet
been connected to another block). In the first two examples,
once an integer is connected to the red Polymorphic Port, all
red ports take on the semi-circular shape representing inte-
gers. The same happens when a triangular boolean value is
connected to the red port, as shown in the third example. The
next few examples in Figure 4 show pairs.

The last example shows what happens when two colored
Polymorphic Ports are connected. In this example, we cre-
ated a cond block, which Polymorphic Blockly built with a
red port, and then a list block, which Polymorphic Blockly
built with blue port (since the red color was already in use in
the cond block). When the red output of cond is connected
to the blue input of list, the red shape connected to the blue
input of list is propagated to all blue ports of list, producing
the final result shown in Figure 4. Note how the red Polymor-
phic Port is now global, in that it spans multiple blocks. This
underscores the importance of generating unused colors when
creating blocks: the interpretation of colors is not block-local,
and we must therefore avoid coloring conflicts.

Parametric Polymorphism. From a programming language
perspective, Polymorphic Blockly implements a typing dis-
cipline called parametric polymorphism (alternatively called
generics). Parametric polymorphism manifests itself in the
type system as unconstrained type variables, for example in
the declaration List[T] reverse(List[T]), where T is an un-
constrained type variable that can be instantiated to any type.
Generics in Java and C# were initially introduced to enable
parametric polymorphism, although generics have since in-
creased in expressiveness to encode more complex kinds of
polymorphism. Parametric polymorphism is also at the core
of programming languages like Standard ML, OCaml, F#,
Haskell and Scala. Polymorphic Blocks encode exactly the
notion of parametric polymorphism, with Colored Polymor-
phic Ports acting as unconstrained type variables. Further-
more, the Hindley-Milner type inference algorithm, which
is at the core of type systems for Standard ML and OCaml,
falls out “for free” from the way that Polymorphic Ports get
matched against shapes when blocks are connected.

INSTANTIATION TO THE PROOF DOMAIN
It turns out that Polymorphic Blocks are applicable well be-
yond block-based programming environments. In this sec-
tion, we show how Polymorphic Blocks can be used to build
a novel visual environment for manipulating logical proofs.
The shape of connectors will represent formulas, and Poly-
morphic Blocks will represent inference rules, the proof steps
that manipulate formulas. This user interface to logical proofs
is entirely visual, completing eschewing symbols. As a result,
it lends itself very well to becoming a Puzzle Game, which we
call the Proof Puzzle Game

We focus on a particular kind of proof system called natu-
ral deduction, which was introduced by Gentzen in 1934 to
closely mimic the “natural way” in which humans think. For
simplicity, we consider here the subset of natural deduction
involving implication and conjunction. Nonetheless, since
what we show here is how to encode the syntactic manipu-
lations of inference rules using Polymorphic Blocks, the ides
can easily be extended to more complex forms of natural de-
duction, and more broadly to other inference systems.

Short Tutorial on Natural Deduction
We start with a quick overview of natural deduction. In the
subset we are considering, a formula φ is a boolean predicate
defined according to the following grammar:

φ ::= v boolean variables, e.g.: x, y, z
::= φ⇒ φ implication
::= φ ∧ φ conjuction

Note that the variables above are boolean variables, meaning
that their interpretation is either true or false.

Examples: (1) x (2) x∧ y (3) x⇒ y (4) x⇒ (y ∧ z)
A judgment J has the form Γ ` φ, where Γ is a comma-
separated list of formulas. It essentially states: “using logical
reasoning, it is provable that if all assumptions in Γ are true,
then φ is also true”.

Examples: (1) x, y ` x ∧ y (2) x ∧ y ` y ∧ x
To establish that a judgment holds, proof systems like natural
deduction make use of inference rules. Inference rules corre-
spond to logical steps in a proof, allowing certain judgments
to be concluded from other judgments. An inference rule has
the form:

J1 · · · Jn Name
J

The interpretation is that if judgments J1 through Jn (called
premises) hold then judgment J holds. The simplest example
of a judgment is the Assume rule, which has no premises:

Assume
. . . , A, . . . ` A

The A above is a so called meta-variable, which can stand in
for any formula (A is a meta-variable to distinguish it from
boolean variables like x, y, z). The “. . . ” is just an informal
way of saying that there can be other formulas in the list.
For example, the Assume rule can be used to establish the
judgment x, y, z ` y, where A is instantiated to y.

Inference Rule In Proof Game

A ` B ImpI
` A⇒ B

` A ` B AndI` A ∧B

` A ∧B AndE1` A

` A ∧B AndE2` B

` A ` A⇒ B ImpE
` B

Figure 5. Inference rules with corresponding Polymorphic Blocks

The left column of Figure 5 shows some additional natural
deduction inference rules – the right column shows the cor-
responding Polymorphic Block, and can be ignored for now.
Because we will apply inference rules bottom-up, it’s easiest
to read rules starting at the bottom. For example, the first rule
says: “to prove A⇒ B, assume A and prove B”. This rule is
traditionally called ImpI, or “Implication Introduction”, be-
cause when reading the rule top to bottom, we are “introduc-
ing” an implication. The second rule says: “to prove A ∧ B,
we need to prove A and we need to prove B”. The “E” in the
names of the other rules stands for “elimination”.

The inference rules shown here are not the most general ver-
sions – instead we show the simplest form of each rule, which
corresponds directly to the Polymorphic Blocks shown in the
right column of Figure 5. The most general version of each
rule has an additional Γ “context” at the left of the `, to allow
the rule to be applicable in settings where the set of assump-
tions is non-empty.

A formal proof is a tree of connected inference rules, which
is rooted at the bottom with the judgment to prove, and grows
upward as inference rules are connected. The proof is com-
plete when all branches are topped with an Assume rule. For
example, here are two complete proofs in natural deduction:

Assume
x ` x ImpI
` x⇒ x

Assume
y ` y Assume

y ` y
AndI

y ` y ∧ y
ImpI

` y ⇒ (y ∧ y)

Natural Deduction in Polymorphic Blocks
We now describe how to encode natural deduction using
Polymorphic Blocks. Each inference rule is represented as
a block; each formula is represented as a connector, where
the shape of the connector encodes the formula; each meta-
variable is represented as a Polymorphic Port.

Let’s first start with a single judgment. Figure 6 shows sev-
eral examples of judgments that we may want to prove, and
the corresponding encoding using Polymorphic Blocks. From
the first row of Figure 6, we can see how the different vari-
ables are encoded: x as a triangle, y as a “T” and z as a

Judgment In Proof Game

x, y, z ` x

` y ⇒ y

` x⇒ (y ⇒ x)

x ∧ y ` y ∧ x

Figure 6. Judgments with corresponding Polymorphic Blocks

hook-like shape. The list of formulas on the left of the ` is
shown in yellow, whereas the formula on the right of the ` is
shown in pink. Although this difference in color is not strictly
necessary, it helps to visualize how the blocks line-up. The re-
maining rows show how⇒ and ∧ are encoded. In particular,
φ1 ⇒ φ2 is represented by adding a semi-circle between the
shapes of φ1 and φ2, and φ1 ∧ φ2 is represented by adding a
“V” between the shapes of φ1 and φ2.

Finally, we can return to Figure 5, and look at the blocks in
right column. In these blocks, formulas are encoded as con-
nectors, and meta-variables are encoded as Polymorphic Ports
of different colors. The structure of each block mimics faith-
fully the structure of the corresponding inference rule. As was
mentioned previously, Figure 5 shows the most basic version
of the inference rules, without any Γ “context” to the left of
the `. We encode additional context to the left of the ` by
extending the block with additional connectors, each one be-
ing a Polymorphic Port. For example, here is a version of the
ImpI rule which has been extended once:

This rule now applies when there is a single formula to the
left of the ` on the bottom. We provide the player of the
game with explicit buttons to add and remove these kind of
additional “context” connectors.

Recall the complete proofs we showed previously in natural
deduction for ` x ⇒ x and ` y ⇒ (y ∧ y). Using Polymor-
phic Blocks, these two proofs would look as follows:

Additional UI for Game
The Proof Puzzle Game contains a few additional UI mech-
anism to make Polymorphic Blocks easier to work with, and
the game more playable, which we describe here.

Assume rule. Although the Assume rule can be encoded
purely using Polymorphic Blocks, this encoding requires the
user to create a block with the right number of connectors and

in the right order, using a variety of block manipulation prim-
itives for adding/removing “context” connectors. Preliminary
testing showed that while players were able to create the right
Assume blocks, it was more tedious than the intuition behind
the Assume rule. Intuitively, the Assume rule is applied by
finding the formula on the right of the ` somewhere in the list
on the left of the `. We designed a UI for Assume that mimics
this intuition: users simply double click on the two connec-
tors that the Assume rule is meant to discharge, and the system
automatically creates the Assume block in one step.

Port Animation. Having users understand the semantics of
Polymorphic Ports is crucial: when a port of a given color
is connected to a shape, all ports of that color take on that
shape. We found through preliminary trials that players had
trouble keeping track of the changes if they happened all
at once. Inspired by the animated transitions of Heer and
Robertson [14], we created an animation where the new shape
of a colored port “flies” from the place where the connection
was made to all the other occurrences of that colored port.
For example, below on the left we show two blocks before
they are connected, and on the right we show the animation
that occurs when the blocks are connected as a “trail”:

This animation makes it much easier to understand the se-
mantics of Polymorphic Ports through visual observation.

Curry Howard Isomorphism
Although our two applications of Polymorphic Blocks seem
disparate, they are in fact connected through a concept called
the Curry-Howard Isomorphism [20]. The Curry-Howard
isomorphism establishes a correspondence between types and
programs on the one hand and formulas and proofs on the
other. For example, the type Pair[T1, T2] corresponds to the
conjunction T1 ∧ T2, and the pair function in Figure 3 cor-
responds to the AndI rule from Figure 5. In our setting, the
Curry-Howard isomorphism is reified as follows: types and
blocks in Polymorphic Blockly have corresponding formulas
and blocks in the Proof Game, and vice-versa. For example,
the Polymorphic Block for the pair function in Figure 3 is
isomorphic to the Polymorphic Block for AndI in Figure 5
(where the left-side of a block in Figure 3 is the bottom-side
in Figure 5). Similarly, the block for first is isomorphic to
the block for AndE1, and the block for second is isomor-
phic to the block for AndE2. This correspondence through the
Curry-Howard isomorphism provides a better understanding
of how our two seemingly disparate applications of Polymor-
phic Blocks are in fact related.

EVALUATION
Our goal in evaluating Polymorphic Blocks is two fold. First,
we want to understand how easy Polymorphic Blocks are to
use. Second, we want to understand how Polymorphic Blocks
compare to a more traditional encoding. To evaluate these
research questions, we must pick a domain in which to study

Polymorphic Blocks. We pick the Proof Domain, embodied
in the Proof Puzzle Game, for the following reasons.

Focus. The Proof Puzzle Game allows us to more narrowly
focus on Polymorphic Connectors: since formulas are erased
in the game, the only mechanics still in play are those of
Polymorphic Connectors. For example, there is no notion of
code or code understanding that interferes with our study of
how subjects understand and interact with Polymorphic Con-
nectors. Furthermore, Polymorphic Connectors in the Puzzle
Game are essential – there is no way to remove them, since
they have become the primary mode of interaction.

Complexity. The Proof Puzzle Game is a more complex do-
main as far as the Polymorphic Connectors are concerned, so
it will push the limits of the UI further.

Novelty. The Proof Puzzle Game is a more novel domain.
As the section on Related Work will explain in further de-
tails, while there has been previous work attempting to en-
code type polymorphism in block-based UIs (although none
has achieved the expressiveness that we achieve), there has
far less work on designing and evaluating our kind of encod-
ing of logical formulas and logical proofs.

Now that we have focused on a domain, our evaluation goals
can be reified as two hypotheses:

1. Hypothesis 1: Ease of understanding. The mechanics of
Polymorphic Blocks in our Puzzle Game can quickly be
understood through self-guided experimentation.

2. Hypothesis 2: Comparison to traditional encoding. Our
encoding of natural deduction as a Puzzle Game using
Polymorphic Blocks leads to (a) smaller completion times
and (b) better engagement than a traditional encoding of
natural deduction using symbolic inference rules.

Experimental Methodology
More specifically, we gathered 30 high-school students who
agreed to be part of our study, and randomly split them into
two groups of 15 each. We invited the first group to a session
where participants solved a set of proof exercises encoded in
the Puzzle Game using Polymorphic Blocks. We call this the
Game group. We invited the second group to a session where
participants solved the exact same set of proof exercises us-
ing symbols and inference rules on paper. We call this the
Symbols group. Groups were not told a priori what was go-
ing to be covered in the session. Participants of each group
also completed a common survey at the end of their session.
Because of last minute cancellations from study participants,
14 participants attended the session for the Symbols group,
and 10 participants attended the session for Game group.

We use the Game group to evaluate Hypothesis 1, and a com-
parison of the Game vs Symbols group for Hypothesis 2.

Teaching Style. Study participants had no previous knowl-
edge of natural deduction proofs or the Puzzle Game. As a
result, we made use of tutorials exercises to teach participants
how to build proofs, both in the Game group and the Symbols
group. A tutorial exercise is an exercise in which participants
are guided to the solution step by step. Such exercises are

used to teach new concepts, for example a new puzzle piece or
inference rule. In the Game group, tutorial exercises are im-
plemented using an in-game tutorial that guides participants
through the solution. In the Symbols group, tutorial exercises
are implemented using a lecture-style approach where an in-
structor shows the solution step by step on a tablet computer
connected to a projector. We intersperse tutorial exercises and
non-tutorial exercises to create a pedagogical progression of
proof exercises.

Furthermore, the Symbols group also received a 30 minute
lecture at the beginning of the session to introduce the con-
cepts of formulas, inference rules, and proofs. This lec-
ture presentation, along with the lecture-style tutorials for the
Symbols group, were designed with the level of polish com-
parable to a well prepared lecture for an undergraduate class.

Interface Differences. Participants in the two groups used
very different interfaces, offering different tradeoffs. Game
participants, through the computer interface, get more imme-
diate feedback, whereas the Symbols participants get more
customized feedback (since it’s help from a human instruc-
tor). To help reduce these differences, we provided the Sym-
bols group with as much immediate feedback as we could,
both through peer instruction (participants worked in pairs)
and through checking the correctness of each exercise on the
spot (which is not the way traditional exercises are done, and
in some sense brings a gamification feel of “level comple-
tion” to the pen-and-paper interface). As a result, the Sym-
bols group ended up receiving a learning experience using
the best pedagogical practices, including interactive example-
based material, peer learning, and quick feedback.

Session Structure and Recorded Data. Each session, which
ran 3 hours, started with a main part consisting of required ex-
ercises, followed by an open-ended part, in which participants
were given a set of “optional” exercises (to test engagement).
We recorded completion times, number of exercises solved,
amount of help required, and an exit-survey at the end with
questions about their experience.

Hypothesis 1: Ease of Understanding
Based on both informal observations, and various measure-
ments that we describe in more detail below, we found that
Game participants were able to easily understand the dynam-
ics of the Game through the help of tutorials and experimen-
tation. In fact, all participants finished all puzzles, including
the ones in the open-ended session.

The in-game tutorial appropriately guided users through the
solution of puzzles involving new pieces. The average time
spent on a tutorial level was 22 seconds, far less than the 48
seconds spent on average on non-tutorial puzzles.

Connecting Puzzle pieces. To evaluate the extent to which
study participants understood the mechanics of connecting
puzzle pieces, we collected the total number of times users
tried to connect pieces and out of this total, the number of
times they tried to connect pieces that did not match. We only
consider the counts for non-tutorial levels, since tutorial lev-
els explicitly ask players to connect pieces that don’t match

for pedagogical purposes. We recorded a total of 541 con-
nection attempts, out of which 4 failed, for a success rate of
99%. Each of the 4 failed attempts occurred in a puzzle that
immediately followed a tutorial level, hinting at the fact that
the introduction of new pieces causes cognitive load which in
turn leads to failed connection attempts. At the same time,
we can also see that participants learn quickly from the failed
connection attempts, since beyond the one puzzle immedi-
ately following a tutorial, they stop making connection mis-
takes. This leads us to conclude that participants can quickly
understand the connection semantics of Polymorphic Blocks
from tutorial levels and from their own mistakes.

UI for Assume. Recall that double clicking on matching con-
nectors is a technique that we use for applying the puzzle
equivalent of the Assume rule. To evaluate the effectiveness
of the double-clicking interface, we collected the total num-
ber of double-clicking attempts, and of these, the number of
failed attempts (a failed attempt occurs because the two con-
nectors did not match). There were a total of 260 double-
clicking attempts in non-tutorial levels, of which 53 failed,
leading to 80% success rate. Here again, many of the failed
attempts occurred right after a tutorial, and the main source
of errors stems from confusion as to whether a sub-part of
the connector can match. Still, despite these confusions, par-
ticipants were able to play the game effectively, in essence
because the confusion was limited in scope (to puzzles right
after tutorial levels and to a handful of additional ones).

Help provided. Participants needed relatively little help to
solve the puzzles, and the help was at a higher level than un-
derstanding the mechanics of Polymorphic Blocks. Instead
it had to do with strategic decisions about what piece to use
(keep in mind that the search space is unbounded). We pro-
vided two kinds of feedback when participants asked for help.
First, if the proof became so big that it was obviously wrong,
we told participants to restart the puzzle from scratch. We did
this 5 times. Second, if only a small portion of the proof was
wrong, we either narrowed down the pieces that participants
should look at, or told them to undo the last step, and think
carefully about the next step. We did this a total of 7 times.
One key observation is that these two kinds of feedback are
extremely uniform, and can easily be automated.

Hypothesis 2: Comparison of Symbols vs Game Group
Solve time. When pairs in the Symbols group did exercises
on paper, they were placed in front of a laptop computer,
which not only displayed the exercises to perform but also
measured the amount of time taken on each exercise. To make
sure exercises were solved correctly, each pair would raise
their hand when they were done with an exercise, and we
would check their solution. If the solution was correct, we
would advance them to the next exercise using a secret key
combination on the keyboard; if the solution was not correct,
we would give them feedback (the nature of the feedback will
be described shortly). Figure 7 shows the average completion
time in seconds for each of 29 non-tutorial puzzles, for the
Game group and the Symbols group. The Game group has
significantly faster completion times overall.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Game Symbols

Figure 7. Exercise completion times in seconds for the Game and Sym-
bols group; x-axis: the sequential # of the exercise; y-axis: average time
in seconds. The Game group was faster than the Symbols group.

Help provided. We helped participants when they thought
they finished an exercise, in which case we helped them un-
derstand what they did wrong. We also helped participants
when they raised their hand, and stated that they were stuck.
The kind of feedback we provided varied, but mostly in-
cluded: clarifications about which inference rules to apply;
clarifications about how to apply a given inference rule; clar-
ification about how substitution works.

Recall that we helped Game participants a total of 12 times
(for 5 pairs). In the Logic group, we helped participants a to-
tal of 16 times (for 7 pairs). Although the number of times we
provided help per pair is similar, the help for the Game group
was much easier to administer and would be far easier to au-
tomate. This is because the Game group received stylized
uniform help, whereas the Symbols group received more cus-
tomized help. Furthermore, Symbols participants were given
a 30 minute lecture at the beginning, including what amounts
to instructions on “strategies” for doing proofs. As there is no
equivalent in the Game group, this lecture can be considered
as additional help that the Symbols group received.

Engagement. To measure engagement, we want to under-
stand the extent to which participants are willing to continue
doing exercises if left to their own devices. To this end, fol-
lowing the regular session we presented participants with a
new set of 15 exercises, and told them to work for at least 5
minutes, after which they could choose to continue working,
or do something else. Figure 8 plots the percentage of pairs
who completed each of the 15 exercises in this open-ended
session, for the Game group and for the Symbols group. In
the Symbols group, there is steady drop-off in the number of
solved exercises. In addition to this quantitative data, we also
noticed qualitatively that many groups started to browse the
web, look at their phones, and play games online. On the
other hand, in the Game group, all pairs went past the five
minutes, and all groups solved all the exercises. In fact, we
noticed that one pair started re-playing some puzzles after the
were done with the study, without any prompting from us.

Both the quantitative and qualitative data suggest that the
Puzzle Game is indeed more engaging. To better understand
why this is the case, we can turn to the survey results. In
particular, one of the questions on the survey asked partici-
pants to rate how fun the experience was on a 5-point Likert
scale. The average Symbols response was 3.6, whereas the
Game group was 4.3. This difference in the “fun-ness” rating

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Game Symbols

Figure 8. Percentage of pairs who completed each one of the 15 exercises
in the open-ended session, for the Game and Symbols group; x-axis: se-
quential # of the exercise; y-axis: percentage of pairs who completed the
exercise. The Game group was more engaged than the Symbols group.

is likely the root explanation for the better engagement. Fur-
thermore, the survey results can also help us understand what
led the Game group to have fun. In particular, the survey
included a question “What does this experience remind you
of?” In response to this question, Game participants consis-
tently used gaming metaphors like “jigsaw puzzle”, “Tetris”,
“oneline puzzle game”, whereas Symbols participants consis-
tently used school metaphors like “Math”, “Class”, “Proofs”,
and “lecture”. This shows that our gamification strategy was
successful, in that the Proof Puzzle Game puts participants in
a gaming frame of mind. In turn, this is likely an important
contributor to the Game participants having more fun.

In summary, our results point to the following conclusion: the
Game group had a more Game-like experience, which in turn
was more fun, and as a result led to more engagement.

DISCUSSION OF APPLICATIONS
We now discuss our techniques and results in the context of
several possible applications.

Learning Logic. Our visualization and gamification of proofs
has potential applications for math education. However, it is
important to understand some subtle nuances in our results.
Although the Puzzle Game is more fun and engaging, it does
not teach all aspects of symbolic proofs. For one, it does not
teach the symbols; but more importantly, it does not teach the
full extent of unification and substitution application because
the Game does these automatically (unification matches two
expressions to determine which meta-variables map to which
formulas; substitution application replaces a meta-variable
with a given formula). Instead, the Puzzle Game focuses on
teaching high-level strategies, for example how to pick the
right puzzle piece (proof rule), a non-trivial aspect of proof
building given the infinite search space.

As a result, we would not expect learning in the Puzzle Game
to transfer to the symbolic domain without some additional
teaching. The same also holds in the other direction: we
don’t know if learning in the symbolic domain with pen-and-
paper would help learn the Puzzle Game. These questions
of knowledge transfer, although interesting and worth inves-
tigating, are not the focus of this paper. Instead, our goal in
the study was to use a common set of metrics to compare and
understand two different encodings, a novel encoding, and a
traditional one. In this respect, our experiments support the

following characterization of the trade-offs: while Polymor-
phic Blocks do not teach all aspects of logical proofs, they
lead to faster completion times, and are more fun and engag-
ing than a traditional pen-and-paper interface.

Our results then point to a hybrid approach for further inves-
tigation: the Puzzle game can provide a fun and engaging
first look, whereas a pen-and-paper example-driven lecture
can complete the knowledge about unification and substitu-
tion application. Future work can further explore the viability
of this hybrid approach through educational studies.

Types in Visual Programming Environments. Our visualiza-
tion of types in Blockly can bring the traditional benefits of
static types to block-based languages: 1) it would steer pro-
grammers away from mal-formed programs 2) it would help
programmers quickly see which operations can (or cannot)
be connected together. More specifically, once students are
faced with many types, they really need to understand the
input/output types for each block. Our techniques would pro-
vide a constant visual reminder of these types, as opposed to
a textual description only visible on the side or in a pop-up.

Although our participants were only exposed to the proof do-
main, our study also focused narrowly on the mechanics of
Polymorphic Blocks, since that’s the only mechanics visible
to the player (who is not exposed to formulas or proofs). As
such, we have reason to believe that our results would gener-
alize to the typing domain, in that the mechanics of Polymor-
phic Blocks can also be understood in that domain. Future
work can investigate this further with additional user studies.

Crowdsourcing Proofs. Our gamification of proofs could lay
the foundation for crowdsourcing proofs via gamification, a
direction inspired by the Verification Games project [10] on
crowdsourcing software verification. Crowdsourcing formal
proofs is particularly interesting in light of Foundational Ver-
ification, a technique that has shown increasing promise in
the past decade. In this technique, the programmer writes
programs in a proof assistant like Coq, and then interactively
proves these programs correct, in full formal detail. Experi-
mental studies have shown that software built this way is far
more reliable than software written in a traditional way. The
main challenge is that building the proofs is still a painstak-
ingly manual and difficult-to-automate process. The hope is
that our work on gamification of proofs can pave the way for
crowdsourcing of Foundational Verification proofs.

DESIGN PRINCIPLES AND RECOMMENDATIONS
The Polymorphic Blocks Puzzle Game instantiates five visual
design principles: (a) colors and shapes, which are common
in the design of virtual manipulatives for math; (b) the Ani-
mated Transitions of Heer and Robertson [14]; (c) Direct Ma-
nipulation Interfaces [15], most notably giving the impression
of manipulating actual puzzle pieces; (d) exploiting cultural
conventions, in that we leverage the popular visual cues of jig-
saw puzzles and Tetris; (e) Interface Metaphor [8], in which
the UI is made similar to a domain already familiar to the
user, thus providing intuition on how to interact with the UI.

In our experience, colors and shapes (a) were central in help-
ing users see what shapes match. However, as the complexity

of formulas/proofs grow, colors and shapes suffer from scal-
ability issues, which could be addressed in a variety of ways.
To avoid overly long connectors, we could add a mechanism
to selectively collapse/expand nested shapes. To reduce color
conflicts, we note that colors need only be unique within a
set of connected blocks, allowing some color re-use. Fur-
thermore, we could continually re-color based on the current
viewport so that visible ports use highly contrasting colors.

As stated earlier, we also found that the Animated Transitions
of Heer and Robertson (b) were critical in helping users un-
derstand the semantics of Polymorphic Ports. Without these
animations, too many visual changes would occur at once,
and the user would not be able to follow what happened.

Finally, we found that our Interface Metaphor (puzzles for
logic) was effective in part because it caused a change in cog-
nitive mindset. In particular, Interface Metaphors vary in how
accurately they map elements of the UI to the target domain,
with our interface being very close to a precise one-to-one
mapping. Larkin and Simon [16] suggest that such a precise
mapping may lead to an ineffective diagram representation, as
effectiveness is attributed precisely to differences in the struc-
ture and efficiency of operations. Nonetheless, we found that
our puzzle metaphor was effective in part because it leads to
a different cognitive state, in two different ways: (1) through
the use of cultural conventions, our puzzle pieces put users in
a “gaming” (rather than “classroom”) state of mind, leading
to a predisposed state of enjoyment; (2) the game focuses the
user’s attention on higher-level strategic thinking.

In addition to leveraging existing principles, our work points
to the following more unique principles/recommendations.

Formalism-inspired Design. Our work illustrates how a math-
ematical formalism (proof theory) can guide an HCI design,
yielding several benefits. A well-chosen formalism can be
simple, concise, uniform and general, which has the potential
to confer similar properties to the UI. The UI’s semantics is
clean and unambiguous as it is grounded in a mathematical
formalism. Finally, one can potentially exploit the connec-
tion between the formalism and the cognitive mindset of the
user: familiarity with the formalism could help understand
the UI, or understanding the UI could help learn the formal-
ism. At the same time, our work also hints at the dangers of
following the formalism blindly. Recall that a direct encoding
of the Assume rule led to a tedious UI, which we addressed
by adapting the UI to match the logical intuition. Our strategy
can then be summarized as formalism-inspired design: we fo-
cus on bringing the structure/intuition of the formalism into
the UI, without exposing the symbolic formalism to the user.

Formulas as Shapes. Our work shows that shapes with col-
ored ports can represent formulas with variables. Shape shift-
ing of ports becomes variable substitution. This new visual
metaphor can be used for any kind of mathematical expres-
sion, and could be applicable beyond polymorphic blocks.

RELATED WORK
Block-based Visual Programming Environments. There are a
variety of block-based visual programming environments [5,
2, 1, 6], and our encoding of types using Polymorphic Blocks

could be applied to any of them. We note here two projects
that attempt to add types to block-based visual programming
environments, although we could not find peer-reviewed pa-
pers. First, there is undergraduate honors thesis on Type-
Blocks [18]. Although TypeBlocks uses shapes to represent
types, it does not use colors to represent type variables: all
type variables look the same and thus TypeBlocks doest not
implement full parametric polymorphism. Second, there is
a Blockly-based editor for the Bootstrap educational pro-
gram [3]. Instead of using shapes to represent types, their
system uses colors to represent types, while keeping connec-
tor shapes as in Blockly. Unfortunately, colors are not com-
positional through the use of constructors the way shapes are,
in the sense that it’s not clear what color could be used to rep-
resent the “list” of another color, or the “pair” of two other
colors. For this reason, it’s not clear how type constructors
are handled in a general way. With respect to these two lines
of work, Polymorphic Blocks distinguish themselves by us-
ing both shapes and colors: shapes to distinguish types, and
colors to distinguish type variables. Furthermore, we show
how Polymorphic Blocks are applicable beyond block-based
programming environments, namely for encoding proofs.

Interfaces for proofs. There have been a variety of tools built
for interactively building proofs, for example Pandora [7],
Panda [13], Theorema [21] and DeduceIt [12]. However, all
these tools expose symbolic formulas, something which our
gamification approach does not. There has been one attempt
at gamifying logic without exposing formulas: Benkmann
built a visualization of natural deduction as a dominos-style
game [4] (we could not find a peer reviewed paper). Each
formula is mapped to a colorful pattern on a domino tile, and
placing domino tiles next to each other is equivalent to ap-
plying inference rules. This approach, which is very different
from ours, is not evaluated through a user study, and does not
generalize to block-based programming environments.

Games with a purpose, for example ESP [19], FoldIt [9], and
Verification Games [10], use gamification to leverage human-
based computation through crowdsourcing. Educational
Games, for example Refraction [17] and Codespells [11], use
gamification to teach material like fractions or coding. The
techniques and domain of our Proof Game are different from
these previous games, and our interface is also applicable be-
yond the gaming interface (i.e.: Polymorphic Blockly).

Acknowledgments. We would like to thank Nadir Weibel
and Scott Klemmer for their feedback. This work was sup-
ported in part by NSF grant CCF 1423517.

REFERENCES
1. App inventor. http://appinventor.mit.edu/.

2. Blockly. https://code.google.com/p/blockly/.

3. Bootstrap block editor.
http://bootstrap-block-editor.appspot.com/.

4. Natural deduction visualized as a game of dominoes.
http://www.winterdrache.de/freeware/domino/.

5. Scratch. http://scratch.mit.edu/.

6. Tinkerblocks. http://www.tinkerblocks.org/.

7. Broda, K., Ma, J., Sinnadurai, G., and Summers, A.
Pandora: A reasoning toolbox using natural deduction
style. Logic Journal of the IGLP 15, 4 (2007), 293–304.

8. Carroll, J. M., Mack, R. L., and Kellogg, W. A. Interface
metaphors and user interface design. In Handbook of
Human-Computer Interaction, M. Helander, Ed.
Elsevier Science, 1988, 67–85.

9. Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J.,
Beenen, M., Leaver-Fay, A., Baker, D., and Popović, Z.
Predicting protein structures with a multiplayer online
game. Nature 466, 7307 (Aug. 2010), 756–760.

10. Dietl, W., Dietzel, S., Ernst, M. D., Mote, N., Walker,
B., Cooper, S., Pavlik, T., and Popović, Z. Verification
games: Making verification fun. In FTfJP 2012: 14th
Workshop on Formal Techniques for Java-like Programs
(Beijing, China, June 12, 2012), 42–49.

11. Esper, S., Foster, S. R., and Griswold, W. G. Codespells:
Embodying the metaphor of wizardry for programming.
In Proceedings of the 18th ACM Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’13 (2013).

12. Fast, E., Lee, C., Aiken, A., Bernstein, M. S., Koller, D.,
and Smith, E. Crowd-scale interactive formal reasoning
and analytics. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’13 (2013).

13. Gasquet, O., Schwarzentruber, F., and Strecker, M.
Panda: A proof assistant in natural deduction for all. A
gentzen style proof assistant for undergraduate students.
In Tools for Teaching Logic - Third International
Congress, TICTTL (2011).

14. Heer, J., and Robertson, G. Animated transitions in
statistical data graphics. In IEEE Information
Visualization (InfoVis) (2007).

15. Hutchins, E. L., Hollan, J. D., and Norman, D. A. Direct
manipulation interfaces. Hum.-Comput. Interact. 1, 4
(Dec. 1985), 311–338.

16. Larkin, J. H., and Simon, H. A. Why a diagram is
(sometimes) worth ten thousand words. Cognitive
science 11, 1 (1987), 65–100.

17. Martin, T., Smith, C. P., Andersen, E., Liu, Y.-E., and
Popović, Z. Refraction time: Making split decisions in
an online fraction game. In American Educational
Research Association Annual Meeting (AERA) (2012).

18. Vasek, M. Representing Expressive Types in Blocks
Programming Languages. Undergraduate honors thesis,
Wellesley College, 2012.

19. von Ahn, L., and Dabbish, L. Labeling images with a
computer game. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’04, ACM (New York, NY, USA, 2004), 319–326.

20. Wadler, P. Propositions as types. Communications of the
ACM 58, 12 (2015), 75–84.

21. Windsteiger, W. Theorema 2.0: A graphical user
interface for a mathematical assistant system. In CEUR
Workshop Proceedings (2012), 73–81.

http://appinventor.mit.edu/
https://code.google.com/p/blockly/
http://bootstrap-block-editor.appspot.com/
http://www.winterdrache.de/freeware/domino/
http://scratch.mit.edu/
http://www.tinkerblocks.org/

	Introduction
	Overview
	Instantiation to the Blockly Domain
	Instantiation to the Proof Domain
	Short Tutorial on Natural Deduction
	Natural Deduction in Polymorphic Blocks
	Additional UI for Game
	Curry Howard Isomorphism

	Evaluation
	Experimental Methodology
	Hypothesis 1: Ease of Understanding
	Hypothesis 2: Comparison of Symbols vs Game Group

	Discussion of Applications
	Design Principles and Recommendations
	Related Work
	REFERENCES

