
Finding Root Causes of Floating Point Error

Alex Sanchez-Stern
University of California San Diego

United States of America
alexss@eng.ucsd.edu

Pavel Panchekha
University of Washington
United States of America

pavpan@cs.washington.edu

Sorin Lerner
University of California San Diego

United States of America
lerner@cs.ucsd.edu

Zachary Tatlock
University of Washington
United States of America

ztatlock@cs.washington.edu

Abstract

Floating-point arithmetic plays a central role in science, en-
gineering, and finance by enabling developers to approxi-
mate real arithmetic. To address numerical issues in large
floating-point applications, developers must identify root
causes, which is difficult because floating-point errors are
generally non-local, non-compositional, and non-uniform.
This paper presents Herbgrind, a tool to help developers

identify and address root causes in numerical code written
in low-level languages like C/C++ and Fortran. Herbgrind
dynamically tracks dependencies between operations and
program outputs to avoid false positives and abstracts erro-
neous computations to simplified program fragments whose
improvement can reduce output error. We perform several
case studies applying Herbgrind to large, expert-crafted nu-
merical programs and show that it scales to applications
spanning hundreds of thousands of lines, correctly handling
the low-level details of modern floating point hardware and
mathematical libraries and tracking error across function
boundaries and through the heap.

CCS Concepts · Software and its engineering → Soft-

ware maintenance tools;

Keywords floating point, debugging, dynamic analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192411

ACM Reference Format:

Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary
Tatlock. 2018. Finding Root Causes of Floating Point Error. In Pro-

ceedings of 39th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI’18). ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3192366.3192411

1 Introduction

Large floating-point applications play a central role in sci-
ence, engineering, and finance by enabling engineers to ap-
proximate real number computations. Ensuring that these
applications provide accurate results (close to the ideal real
number answer) has been a challenge for decades [17ś21].
Inaccuracy due to rounding errors has led to market distor-
tions [25, 31], retracted scientific articles [1, 2], and incorrect
election results [38].
Floating-point errors are typically silent: even when a

grievous error has invalidated a computation, it will still
produce a result without any indication things have gone
awry. Recent work [3, 4] has developed dynamic analyses
that detect assembly-level operations with large intermediate
rounding errors, and recent static error analysis tools have
been developed to verify the accuracy of small numerical
kernels [11, 34].
However, after floating-point error has been detected,

there are no tools to help a developer diagnose and debug its
root cause. The root cause is the part of a computation whose
improvement would reduce error in the program’s outputs.
Previous work in the area [4] has called out root cause analy-
sis as a significant open problem that needs to be addressed.
This paper addresses this problem with a tool that works on
large, real, expert-crafted floating-point applications written
in C/C++, and Fortran.
In practical settings, root causes are difficult to identify

precisely. Root causes often involves computations that cross
function boundaries, use the heap, or depend on particular
inputs. As such, even though root causes are part of the com-
putation, they rarely appear as delineable syntactic entities
in the original program text. The key challenge, then, is iden-
tifying root causes and suitably abstracting them to a form

256

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.1145/3192366.3192411

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock

that enables numerical analysis and facilitates improving the
accuracy of the program.

From a developer’s perspective, identifying and debugging
numerical issues is difficult for several reasons. First, floating-
point error is non-compositional: large intermediate errors
may not impact program outputs and small intermediate
errors may blow up in a single operation (due to, e.g., cancel-
lation or overflow). Second, floating-point errors are often
non-local: the source of an error can be far from where it is
observed and may involve values that cross function bound-
aries and flow through heap-allocated data structures. Third,
floating-point errors are non-uniform: a program may have
high error for certain inputs despite low or non-existent
error on other inputs.

This paper presents Herbgrind, a dynamic binary analysis
that identifies candidate root causes for numerical error in
large floating-point applications. First, to address the non-
compositionality of error, Herbgrind records operations with
intermediate error and tracks the influence of these opera-
tions on program outputs and control flow. Second, to ad-
dress the non-locality of error, Herbgrind provides symbolic
expressions to describe erroneous computation, abstracting
the sequence of operations that cause error to program frag-
ments which facilitate numerical analysis. Finally, to address
the non-uniformity of error, Herbgrind characterizes the in-
puts to erroneous computations observed during analysis,
including the full range as well as the subset that caused
significant error.
We demonstrate Herbgrind’s effectiveness by identify-

ing the root causes of error in three expert-written numer-
ical applications and benchmarks. We find that Herbgrind
handles the tricky floating-point manipulations found in
expert-written numerical code, and can identify real sources
of floating-point error missed by experts when writing im-
portant software. To further characterize the impact of Her-
bgrind’s key components, we carried out a set of smaller
experiments with the FPBench floating-point benchmark
suite [10], and find that each of Herbgrind’s components is
crucial to its accuracy and performance.
To the best of our knowledge, Herbgrind provides the

first approach to identifying and summarizing root causes
of error in large numerical programs. Herbgrind is imple-
mented in the Valgrind binary instrumentation framework,
and achieves acceptable performance using several key op-
timizations.1 Building Herbgrind required developing the
following contributions:

• An analysis that identifies candidate root causes by
tracking dependencies between sources of error and
program outputs, abstracting the responsible computa-
tions to an improvable program fragment, and charac-
terizing the inputs to these computations (Section 4).

1The implementation of Herbgrind is publicly available at
https://github.com/uwplse/herbgrind

• An implementation of this analysis that supports nu-
merical code written in low-level languages like C/C++
and Fortran and handles the complexities of modern
floating point hardware and libraries (Section 5).
• Key design decisions and optimizations required for
this implementation to achieve acceptable performance
when scaling up to applications spanning hundreds of
thousands of lines (Section 6).
• An evaluation of Herbgrind including bugs found łin
the wildž and measurements of the impact of its vari-
ous subsystems (Section 7 and Section 8).

2 Background

A floating-point number represents a real number of the
form ±(1 +m)2e , where m is a fixed-point value between
0 and 1 and e is a signed integer; several other values, in-
cluding two zeros, two infinities, not-a-number error values,
and subnormal values, can also be represented. In double-
precision floating point,m is a 52-bit value, and e is an 11-bit
value, which together with a sign bit makes 64 bits. Simple
operations on floating-point numbers, such as addition and
multiplication, are supported in hardware on most comput-
ers.

2.1 Floating-Point Challenges

Non-compositional error Individual floating-point instruc-
tions are always evaluated as accurately as possible, but since
not all real numbers are represented by a floating-point value,
some error is necessarily produced. Thus, the floating-point
sum of x andy corresponds to the real number x+y+(x+y)ϵ ,
where ϵ is some small value induced by rounding error.2

Floating-point operations implemented in libraries also tend
to bound error to a few units in the last place (ulps) for
each operation, but are generally not guaranteed to be the
closest result. However error grows when multiple opera-
tions are performed. For example, consider the expression
(x+1)−x = 1. The addition introduces error ϵ1 and produces
x + 1 + (x + 1)ϵ1. The subtraction then introduces ϵ2 and
produces

1 + (x + 1)ϵ1 + ϵ2 + (x + 1)ϵ1ϵ2.

Since x can be arbitrarily large, the (x+1)ϵ1 term can be large;
in fact, for values of x on the order of 1016, the expression
(x+1)−x evaluates to 0, not 1. The influence of intermediate
errors on program output can be subtle; not only can accurate
intermediate operations compute an inaccurate result, but
intermediate error can cancel to produce an accurate result.
Experts often orchestrate such cancellation, which poses a
challenge to dynamic analysis tools trying to minimize false
positives.

2For cases involving subnormal numbers, the actual error formula is
more complex; these details are elided here.

257

https://github.com/uwplse/herbgrind

Finding Root Causes of Floating Point Error PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

Non-local error Floating-point error can also be non-local;
the cause of a floating point error can span functions and
thread through data structures. Consider the snippet:

double foo(struct Point a, struct Point b) {

return ((a.x + a.y) - (b.x + b.y)) * a.x;

}

double bar(double x, double y, double z) {

return foo(mkPoint(x, y), mkPoint(x, z));

}

The foo and bar functions individually appear accurate. How-
ever, bar’s use of foo causes inaccuracy. For example for in-
puts x=1e16, y=1, z=0, the correct output of bar is 1e16, yet
bar instead computes 0. However, this combination of foo
and bar can be computed more accurately, with the expres-
sion (y − z) · x . Note that in this example, understanding the
error requires both reasoning across function boundaries
and through data structures.

Non-uniform error For a given computation, different in-
puts can cause vastly different amounts of floating-point
error. Effectively debugging a numerical issue requires char-
acterizing the inputs which lead to the root cause impacting
output accuracy. For example, consider the snippet:

double baz(double x){

double z = 1 / (x - 113);

return (z + M_PI) - z;

}

When debugging baz, it’s important to know what inputs
baz is called on in the context of the larger program. For most
inputs, baz is accurate; if baz is only called on inputs far from
113, then a programmer need not consider it problematic.
However, for values of x near 113, baz suffers significant
rounding error, because z becomes very large, and then most
of the bits of π are lost to catastrophic cancellation. To di-
agnose the root cause of error in a program containing baz,
programmers need to know whether baz is called on inputs
near 113; if not, they may waste time investigating baz’s
behavior on inputs near 113 when those inputs are never
seen in practice. In this example, understanding the error
requires reasoning about the inputs on which the fragment
of code will be executed.

2.2 Existing Debugging Tools

Table 1 compares the tools most closely related to Herbgrind.

Error detection All of the tools compared are dynamic
analyses which attempt to detect error. Like Herbgrind,
FpDebug[4] uses high-precision shadow values to track the
error of floating-point computations; Verrou[12] and BZ[3]
use heuristic methods to detect possible instances of error.
While individual hardware floating-point operations are

accurate, more complex operations, like trigonometric func-
tions, are generally implemented in low-level math libraries
which make use of hundreds of floating-point instructions

Figure 1. Complex plotter output before (left) and after
(right) diagnosing and fixing a floating-point error.

and bit manipulations for each operation, and are painstak-
ingly crafted by experts [16, 28]. Even higher level opera-
tions, like those on matrices and vectors, are implemented
in thousands of lower-level operations, often building on
both hardware floating-point instructions and lower-level
math libraries [22]. Previous tools report error locations as
individual opcode addresses, which may be deep within the
internals of the implementation of a sophisticated operation.
This is unfortunate, as most users are unwilling and/or un-
able to modify a libm or BLAS implementation; instead such
operations should be treated as atomic black boxes so that
users can focus on ensuring such operations are accurately
used at a higher level of abstraction. In contrast, Herbgrind
supports abstracting over such library calls which enables
more useful error location reporting and permits meaningful
shadowing in high-precision.

Root cause analysis There are twoways inwhich floating-
point error can affect observable program behavior: either by
flowing directly to an output, or changing control flow. BZ [3]
can detect changes in control flow due to error; but cannot
reason about how error affects program outputs. Verrou and
FpDebug have no support for detecting observable program
behavior affected by error. When an error is detected, FpDe-
bug reports the binary address where the error was found,
while Verrou and BZ only report that something has gone
wrong, not where it has gone wrong. In contrast, Herbgrind
characterizes both the full range and error-inducing inputs
to the problematic computations observed during analysis.

3 Overview

We illustrate Herbgrind by detailing its use on a simple com-
plex function plotter. Given function f : C → C, region
R = [x0,x1] × [y0,y1] in the complex plane, and a resolution,
the plotter tiles R with a grid of pixels, and colors each pixel
based on arg(f (x + iy)) at the center (x ,y) of each pixel.3

Since the output of the program is an image, minor errors in

3arg is also known as atan2

258

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock

Table 1. Comparison of floating-point error detection tools. Note that all tools are run on distinct benchmark suites.

Feature FpDebug BZ Verrou Herbgrind
Error Detection

Dynamic ✓ ✓ ✓ ✓

Detects Error ✓ ✓ ✓ ✓

Shadow Reals ✓ ✗ ✗ ✓

Local Error ✗ ✗ ✗ ✓

Library Abstraction ✗ ✗ ✗ ✓

Root Cause Analysis

Output-Sensitive Error Report ✗ ✗ ✗ ✓

Detect Control Divergence ✗ ✓ ✗ ✓

Localization Opcode Address None None Abstracted Code Fragment
Characterize Inputs ✗ ✗ ✗ ✓

Other

Automatically Re-run in High Precision ✗ ✓ ✗ ✗

Overhead* 395x 7.91x 7x 574x

the evaluation of f can usually be ignored. However, floating-
point error can compound in unexpected ways. Consider the
function4

f (z) = 1/
(√
ℜ(z) −

√
ℜ(z) + i exp(−20z)

)
.

To evaluate this function, the plotter must provide codes
for evaluating the square root of a complex number. The
standard formula is

√
x + iy =

(√√
x2 + y2 + x + i

√√
x2 + y2 − x

)
/
√
2,

where the square roots in the definitions are all square roots
of real numbers (typically provided by standard math li-
braries).

Implementing f using this formula and plotting the region
R = [0, 14] × [−3, 3] results in the left image of Figure 1. The
speckling is not an accurate representation of f ; in fact, f is
continuous in both x and y throughout R.
Herbgrind uses three key components (detailed in Sec-

tion 4) to identify the root cause of error in the plotting
program: (1) a shadow taint analysis, which tracks the ways
that erroneous operations influence important program lo-
cations called spots; (2) a shadow symbolic execution, which
builds expressions representing the computations that pro-
duced each value; and (3) an input characterization system,
which maintains information about the set of inputs to each
computation.
Herbgrind detects that the plotter computes wrong pixel

values due to significant error from a subtraction with high
local error:

4ℜ(z) indicates the real (non-imaginary) part of z

Compare @ main.cpp:24 in run(int, int)

231878 incorrect values of 477000

Influenced by erroneous expressions:

(FPCore (x y)

:pre (and (<= -2.061152e-9 x 2.497500e-1)

(<= -2.619433e-9 y 2.645912e-9))

(- (sqrt (+ (* x x) (* y y))) x))

Example problematic input: (2.061152e-9, -2.480955e-12)

This report shows that at line 24 of the main.cpp source file,
inaccuracy is caused by the expression:

√
x2 + y2 − x .

Running Herbie [29] on the above expression produces
this more accurate version.

√
x2 + y2 − x ⇝




√
x2 + y2 − x if x ≤ 0

y2/
(√

x2 + y2 + x
)

if x > 0
.

Substituting this expression back into the original complex
square root definition (and simplifying) yields

√
x + iy =

1
√
2




|y |/
√√

x2 + y2 − x + i
√√

x2 + y2 − x if x ≤ 0
√√

x2 + y2 + x + i |y |/
√√

x2 + y2 + x if x > 0

for the complex square root. Replacing the complex square
root computation in the plotter with this alternative imple-
mentation fixes the inaccurate computation, as confirmed
by running Herbgrind on the repaired program5. The fixed
code produces the right graph in Figure 1.

While error in the complex plotter is primarily in a single
compilation unit, real world numerical software often has
many numerical components which interact, and root causes
often cannot be isolated to one component. We evaluate

5Automating the process of inserting improved code back into the
binary is left to future work, but Herbgrind can provide source locations
for each node in the extracted expression.

259

Finding Root Causes of Floating Point Error PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

Herbgrind on several large numerical systems which exhibit
these issues in Section 7.

4 Analysis

The implementation of Herbgrind’s analysis requires han-
dling complex machine details including different value pre-
cisions, multiple distinct storage types, and bit-level opera-
tions, which we detail in Section 5. To first clarify the core
concepts, this section describes Herbgrind’s analysis in terms
of an abstract float machine. Herbgrind’s analysis consists
of three components: a spots-and-influences system to de-
termine which operations influence which program outputs
(Section 4.2), a symbolic expression system to track com-
putations across function and heap data structure bound-
aries (Section 4.3), and an input characteristics system to
determine on which inputs the computation is erroneous or
accurate (Section 4.4).

4.1 Abstract Machine Semantics

The abstract machine has floating-point values and oper-
ations as well as memory and control flow (Figure 2). A
machine contains mutable memory M : Z → (F | Z)
which stores floating-point values or integers and a pro-
gram counter pc : Z that indexes into the list of program
statements. Statements include: computations, control op-
erations, and outputs. A program is run by initializing the
memory and program counter, and then running statements
until the program counter becomes negative.
Herbgrind’s analysis describes candidate root causes for

programs on this abstract machine (Figure 3 and Figure 4)
by updating analysis information for each instruction in
the program. Each computation instruction with floating-
point output is associated with an operation entry, which
describes the computation that led up to that operation, and
a summary of the values that computation takes. All other
instructions have a spot entry, which lists the error at that
location and the erroneous computations that influence the
location (Section 4.2).

Shadow Reals Floating-point errors are generally silent:
evenwhen error invalidates a computation, that computation
still produces a floating-point value without any indication
that the value is erroneous. Herbgrind follows prior work in
detecting the floating-point errors in a program by comput-
ing a real number shadow for every floating-point value in
ordinary program memory.6 For each such statement, Her-
bgrind executes the statement’s operation in the reals on
real-number shadow inputs, and stores the resulting real
number to the real-number shadow memory. Herbgrind’s
handling of mathematical libraries and similar details is dis-
cussed in Section 5.

6While the abstract analysis is defined in terms of computing over
reals, the implementation must settle merely for high precision (e.g., 1000-
bit mantissa) approximations (Section 5.1).

4.2 Spots and Influence Shadows

Herbgrind uses the real-number execution to measure the
floating-point error at program outputs, conditional branches,
and conversions from floating-point values to integers; these
three types of program locations are collectively called spots.
Since error is non-compositional, the root cause of error
at a spot can be far from the spot itself. To overcome this,
Herbgrind identifies candidate root causes and tracks their
influence on spots using a taint analysis: every floating-point
value has a łtaintž set of influencing instructions which is
propagated by computation.
Herbgrind uses local error to determine which floating-

point operations cause error (Figure 4). Local error [29] mea-
sures the error an operation’s output would have even if
its inputs were accurately computed, and then rounded to
native floats. Using local error to assess operations avoids
blaming innocent operations for erroneous operands. Any
operation whose local error passes a threshold Tℓ is treated
as a candidate root cause.7

In the case of the complex plotter from Section 3, the sub-
traction at the top of the reported expression was determined
to have high local error, resulting in it being tracked.

4.3 Symbolic Expressions

Identifying the operation that introduced error, as the influ-
ences system does, is not sufficient to understand the error,
because floating-point error is non-local: to understand why
an operation is erroneous requires understanding how its
inputs were computed. In many cases those inputs are sepa-
rated from the erroneous operation by function boundaries
and heap data structure manipulations. Herbgrind analyzes
through those boundaries by providing symbolic expressions

for the erroneous operation and its inputs.
Symbolic expressions represent an abstract computation

that contains a candidate root cause. Each symbolic expres-
sion contains only floating-point operations: it therefore ab-
stracts away function boundaries and heap data structures. A
symbolic expression must be general enough to encompass
any encountered instance of a computation, while still being
specific enough to be as helpful as possible to the user.

Herbgrind constructs symbolic expressions by first record-
ing a concrete expression for every floating-point value and
then using anti-unification to combine these concrete expres-
sions into symbolic expressions. Each concrete expression
tracks the floating-point operations that were used to build
a particular value. Concrete expression are copied when a
value is passed to a function, entered in a heap data structure,
or stored and retrieved later, but these operations themselves
are not recorded. A single concrete expression (and the re-
sulting symbolic expression), might encompass a subtraction

7Herbgrind only reports those sources of error where error flows into
spots, so that users are only shown erroneous code that affects program
results.

260

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock

Addr = PC = Z

M[a : Addr] : F | Z

pc : PC

prog[n : PC] : Addr← f (−−−→Addr)
| if P(−−−→Addr) goto PC

| out Addr

run(prog) =
M[−] = 0, pc = 0
while pc ≥ 0
M, pc = Jprog[pc]K(M, pc)

Jy ← f (−→x)K(M, pc) =
r = Jf K(−−−−→M[x])
M[y 7→ r], pc + 1

Jif P(−→x) goto nK(M, pc) =
pc′ = if JPK(−−−−→M[x]) then n else pc + 1
M, pc′

Jout xK(M, pc) =
printM[x]
M, pc + 1

Figure 2. The abstract machine semantics for low-level floating-point computation. A machine contains memory and a
program counter which indexes into a list of statements. Statements either compute values and store the result in memory,
perform a conditional jump, or output a value.

Expr = R | f (−−−→Expr)

MR[a : Addr] : R
MI [a : Addr] : Set PC
ME [a : Addr] : Expr

ops[n : PC] :
Set (Expr × List (Set F) × (Position→ Set F))

spots[n : PC] : (Set R) × (Set PC)

analyze(prog) =
M[−] =MR[−] =ME [−] = 0,MI [−] = ∅
pc = 0, spots[−] = (∅, ∅), ops[−] = ∅
while pc ≥ 0
M ′, pc′ = Jprog[pc]K(M, pc)
M ′
R
= Jprog[pc]KR(M,MR)

M ′
I
= Jprog[pc]KI (MR,MI , pc)

M ′
E
= Jprog[pc]KE (M ′R,ME)

record(prog, pc, ops, spots,M ′,MR,M ′I ,M
′
E
)

pc = pc′,M =M ′,MR =M ′R,MI =M ′I ,ME =M ′E
return spots, ops

Figure 3. The Herbgrind analysis for finding root causes for floating-point error. Herbgrind maintains shadow memories for
real values (MR), influences (MI), and concrete expressions (ME). Additionally, Herbgrind tracks concrete expressions and
input sets (both total and problematic) for operations in ops and error and influences for spots in spots. Note that Herbgrind
follows floating-point control flow branches during analysis; cases when it diverges from the control flow interpreted under
reals are reported as errors.

from one function, a series of multiplications from another,
and an exponentiation which occurs after the value is stored
in a hash table and later retrieved.

From the concrete expression for every value, Herbgrind
computes symbolic expressions using a variant of the clas-
sic anti-unification algorithm [30] for computing the most-
specific generalization of two trees. Symbolic expressions
are much like concrete expressions, but include variables
which can stand in for any subtree; variables which stand in
for equivalent subtrees are the same. To produce expressions
which are more useful for program improvement, Herbgrind
uses a modified version of anti-unification. These modifica-
tions are described in an extended tech report. Reporting
detailed symbolic expressions is essential for diagnosing the
root causes of error; in the case of the plotter, the full ex-
tracted expression was essential for producing an improved
complex square root definition.

4.4 Input Characteristics

Because floating-point error is non-uniform, the error of
a computation is highly dependent on its inputs. In many
cases, a developer must know on the range of inputs to a
computation in order to improve its error behavior, but the
actual intermediate inputs such computations receive during
program execution are difficult to ascertain from the original,
top-level program input. Herbgrind satisfies this need by
computing input characteristics for each symbolic expression
it produces.8 These input characteristics can show the ranges
of each symbolic variable, example inputs, or other features
of the expression inputs.
To compute input characteristics, Herbgrind stores, for

every symbolic expression, a summary of all values seen
for that symbolic expression’s free variables. Every time a
section of code (a function or a loop body, say) is re-executed,

8Note that Herbgrind’s input characteristics apply to the inputs of
symbolic expressions identified by Herbgrind, not to the program inputs
provided by the developer.

261

Finding Root Causes of Floating Point Error PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

// Reals
Jy ← f (−→x)KR(M,MR)whenMR[y] ∈ R =
−→v = if

−−−−−→MR[x] ∈ R then
−−−−−→MR[x] else

−−−−→M[x]
MR[y 7→ Jf KR(−→v)]

// Influences
Jy ← f (−→x)KI (MR,MI , pc)whenMR[y] ∈ R =

s =
⋃−−−−−→MI [x]

if local-error(f ,−−−−−→MR[x]) > Tℓ then
s = pc : : s

MI [y 7→ s]

local-error(f ,−→v) =
rR = F(Jf KR(−→v))
rF = Jf KF(

−−−→
F(v))

E(rR, rF)

// Expressions
Jy ← f (−→x)KE (MR,ME)whenMR[y] ∈ R =

e = if
−−−−−→MR[x] ∈ R then f (−−−−−→ME [x]) elseMR[y]

ME [y 7→ e]

update-problematic-inputs(e, ĉ)
nodes, positions =

get-all-descendant-nodes(e)
ĉ ′ = make-table()
for node, position in zip(nodes, positions) :

ĉ ′[position] = ĉ[position] + {node.value}

record(prog, pc, ops, spots,M,MR,MI ,ME) =
e,−→c , ĉ = ops[pc]
ε, i = spots[pc]
match prog[pc]with

| (y ← f (−→x))whenM[y] ∈ F =⇒
e ′ =ME [y] : : e−→c ′ = update-total-inputs(−→x ,−→c)
if local-error(f ,−−−−−→MR[x]) > Tℓ then

ĉ ′ = update-problematic-inputs(ME [y], ĉ)
ops[pc] = (e ′,−→c ′, ĉ ′)

| (y ← f (−→x))whenM[y] ∈ Z =⇒
if Jf KR(

−−−−−→MR[x]) =M[y] then
spots[pc] = (1 : : ε, i⋃−−−−−→MI [x])

else

spots[pc] = (0 : : ε, i)
| (if P(−→x) goto y) =⇒

if JPKR(
−−−−−→MR[x]) = JPK(−−−−→M[x]) then

spots[pc] = (1 : : ε, i⋃−−−−−→MI [x])
else

spots[pc] = (0 : : ε, i)
| (out x) =⇒

r = E(M[x],MR[x])
if r > Tm then

spots[pc] = (r : : ε, i ∪MI [x])
else

spots[pc] = (r : : ε, i)

update-total-inputs(−→v ,−→c) =
−→c ′ = []
forv, c in zip(−→v ,−→c) :
−→c ′ = (c + {v}) :: −→c ′

−→c ′ = reverse(−→c ′)

Figure 4. On the left, the real-number execution, influence propagation, and concrete expressions building in Herbgrind;
shadow executions not shown are no-ops. On the right, how Herbgrind updates the operation and spot information on every
statement. Below are helper functions.

the inputs from that run are added to the summary. The input
characteristics system is modular, and Herbgrind comes with
three implementations.9 In the first kind of input character-
istic, a representative input is selected from the input. In the
second kind of input characteristic, ranges are tracked for
each variable in a symbolic expression. In the third kind of in-
put characteristic, ranges are tracked separately for positive
and negative values of each variable.

Herbgrind operates on a single execution of the client pro-
gram using representative inputs provided by the developer.
During execution problematic code fragments typically see
a range of intermediate values, only some of which lead to
output error.Herbgrind’s input characteristics characterize

9The abstract Floatgrind analysis supports any arbitrary summary
function on sets of input points, and for performance the summary function
must be incremental.

that range of intermediate values, and thus rely on a well-
chosen representative input for the program. For example, in
our complex plotter example in the overview, the function f

is run for every pixel in the image, fully exercising its input
range. Since only some executions of a block of code lead
to high local error, the input characteristics system provides
two outputs for each characteristic and each expression: one
for all inputs that the expression is called on, and one for all
inputs that it has high error on.

The characteristics reported are tightly coupled to the sym-
bolic expression for the relevant program fragment; each
characteristic applies to a single variable in the expression.
For instance, when the symbolic expression is sqrt(x+1)
- sqrt(x), the input characterization system might report
that the variable x ranges from 1 to 1e20. This uses the spe-
cific variable name reported in the expression, and applies to
both nodes labeled x in the expression. Since anti-unification

262

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock

guarantees that nodes assigned the same variable have taken
the same values on each concrete expression, any valid sum-
maries of the two nodes will be equivalent.

5 Implementation

The previous section described Herbgrind’s analysis in terms
of an abstract machine; however, important numerical soft-
ware is actually written in low level languages like C, C++,
and FortranÐsometimes a polyglot of all three.
To support all these use cases, we refine the algorithm

presented in Section 4 to operate on compiled binaries in-
stead of abstract machine programs. Herbgrind does this
by building upon Valgrind [27], a framework for dynamic
analysis through binary instrumentation. Building upon Val-
grind requires mapping the abstract machine described in
Section 4 to the VEX machine internal to Valgrind.
Analyses built upon Valgrind receive the instructions of

the client program translated to VEX, and can add instru-
mentation to them freely before they are compiled back to
native machine code and executed.

Implementing the algorithm from Section 4 with Valgrind
requires adapting the abstract machine’s notions of values,
storage, and operations to those provided by Valgrind.

5.1 Values

Unlike the abstract machine, VEX has values of different
sizes and semantics. Floating-point values come in different
precisions, so the Herbgrind implementation makes a dis-
tinction between single- and double-precision floating-point
values. Both types of values are shadowed with the same
shadow state, but their behaviors in the client program are
different, and they have different sizes in memory. Client
programs also have file descriptors, pointers, and integers
of various sizes, but this does not affect Herbgrind, since it
does not analyze non-floating-point computations.

The algorithm in Section 4 tracks the exact value of com-
putations by shadowing floating-point values with real num-
bers. Herbgrind approximates the real numbers using the
MPFR library [13] to shadow floating-point values with
arbitrary-precision floating-point.10 As an alternative, we
could use an efficient library for the computable reals [5, 23,
26].11

5.2 Storage

The abstract machine model of Section 4 represents storage
as a single map from locations to values. However, VEX
has three different types of storageÐtemporaries, thread
state, and memoryÐand the latter two store unstructured
bytes, not values directly. Herbgrind uses slightly different
approaches for each.

10The precision used is configurable, set to 1000 by default.
11Herbgrind treats real computation as an abstract data type and alter-

nate strategies could easily be substituted in.

To support SIMD instructions in the SSE instruction set,
temporaries can contain multiple floating-point values, un-
like the memory locations in the abstract machine. Herb-
grind attaches a shadow temporary to each temporary: a
type-tagged unit which can store multiple shadow values.
The shadow values stored in a shadow temporary correspond
to the individual floating-point values inside a SIMD vec-
tor. Temporaries that only store a single value have trivial
shadow temporaries.

Thread state in VEX, which represents machine registers,
is an unstructured array of bytes, so it does not use shadow
temporaries. Each floating-point value consumes multiple
bytes, and floating-point values of different sizes take up dif-
ferent numbers of bytes. This means that for reads and writes
to memory, Herbgrind must be careful to check whether they
overwrite nearby memory locations with shadow values.
Herbgrind also supports writing SIMD results to memory
and reading them back at an offset, as long as the boundaries
of individual values are respected. In the rare cases where
client programs make misaligned reads of floating-point val-
ues, Herbgrind conservatively acts as if the read computes a
floating-point value from non-floating-point inputs.
Like thread state, memory is an unstructured array of

bytes, with the complication that it is too large to shadow
completely. Herbgrind shadows only memory that holds
floating-point values; memory is shadowed by a hash table
from memory addresses to shadow values.

5.3 Operations

In the abstract machine model, all floating-point operations
are handled by specialized instructions. However, few ma-
chines support complex operations such as logarithms or
tangents in hardware. Instead, client programs evaluate these
functions by calling libraries, such as the standard libm.
Shadowing these internal calculations directly would mis-
compute the exact value of library calls; Herbgrind therefore
intercepts calls to common library functions before building
concrete expressions and measuring error. For example, if
a client program calls the tan function, Herbgrind will in-
tercept this call and add tan to the program trace, not the
actual instructions executed by calling tan.12

Expert-written numerical code often uses łcompensatingž
terms to capture the error of a long chain of operations, and
subtract that error from the final result. In the real numbers,
this error term would always equal zero, since the reals don’t
have any error with respect to themselves. Yet in floating
point, these łcompensatingž terms are non-zero and compu-
tations that produce them therefore have high local error. A
naive implementation of Herbgrind would therefore report
spots influenced by every compensated operation used to

12The library wrapping system in the implementation is extensible:
users can add a new library call to be wrapped by appending a single line
to a python source file.

263

Finding Root Causes of Floating Point Error PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

compute it, even though the compensating terms increase
the accuracy of the program.

Instead, Herbgrind attempts to detect compensating oper-
ations, and not propagate influence from the compensating
term to the output of the compensated operation. Herbgrind
identifies compensating operations by looking for additions
and subtractions which meet two criteria: they return one of
their arguments when computed in the reals; and the output
has less error than the argument which is passed through.
The influences for the other, compensating, term, are not
propagated.

While most floating-point operations in real programs are
specialized floating-point instructions or library calls, some
programs use bitwise operations to implement a floating-
point operation. Programs produced by gcc negate floating-
point values by XORing the value with a bitmap that flips the
sign bit, and a similar trick can be used for absolute values.
Herbgrind detects and instruments these bitwise operations,
treating them as the operations they implement (including
in concrete expressions).

6 Optimization

A direct implementation of the algorithm in Section 5 is pro-
hibitively expensive. Herbgrind improves on it by using the
classic techniques of laziness, sharing, incrementalization,
and approximation.

Laziness Since program memory is untyped, it is initially
impossible to tell which bytes in the program correspond
to floating-point values. Herbgrind therefore tracks floating-
point values in memory lazily: as soon as the client program
executes a floating-point operation on bytes loaded from a
memory location, that location is treated as a floating-point
location and shadowed by a new shadow value.

Besides lazily shadowing values in the client program, Her-
bgrind also minimizes instrumentation. Some thread state
locations can always be ignored, such as CPU flag registers.
VEX also adds a preamble to each basic block representing
the control flow effects of the architecture, which Herbgrind
also ignores.

For more fine-grained instrumentation minimization, Her-
bgrind makes use of static superblock type analysis. Values
known to be integers do not have to be instrumented, and
values known to be floating point can have type checking
elided. This combination of static type analysis and dynamic
error analysis is crucial for reducing Herbgrind’s overhead.
Unfortunately, Herbgrind must still instrument many simple
memory operations, since values that are between storage
locations but not operated on could have shadow values.

The static type analysis is also used to reduce reduce calls
from the instrumentation into Herbgrind C functions. Val-
grind allows the instrumentation to call into C functions
provided by Herbgrind, which then compute shadow values,
build concrete expressions, and track influences. However,

calls from client program to host functions are slow. The
static type analysis allows inlining these computations di-
rectly into VEX, avoiding a client-host context switch, be-
cause the type system tracks the size of values in thread
state. Knowing the size means no type or size tests need to
be done, so instrumentation can be inlined without requiring
branches and thus crossing superblock boundaries. Inlining
is also used for copies between temporaries, and for some
memory accesses, where the inlined code must also update
reference counts.

Sharing Many floating-point values are copies of each
other, scattered in temporaries, thread state, and memory.
Though copying floating-point values is cheap on most ar-
chitectures, copying shadow values requires copying MPFR
values, concrete expressions, and influence sets. To save
time and memory, shadow values are shared between copies.
Shadow values are reference counted to ensure that they can
be discarded once they no longer shadow any floating-point
values. The trace nodes stored in a shadow value are not
freed along with the shadow value, since traces also share
structure. Traces are therefore reference counted as well,
with each shadow value holding a reference to its trace node,
and each trace node holding references to its children.
Many shadow values are freed shortly after they are cre-

ated. Related data structures, like trace nodes, are also allo-
cated and freed rapidly, so memory allocation quickly be-
comes a bottleneck. Herbgrind uses custom stack-backed
pool allocators to quickly allocate and free many objects of
the same size.

Incrementalization The algorithm in Section 4 accumu-
lates errors, concrete expressions, and operation inputs per-
instruction, and summarizes all the results after the program
finishes running. For long-running programs, this approach
requires storing large numbers of ever-growing concrete
expressions. The implementation of Herbgrind avoids this
problem by aggregating errors (into average- and maximum-
total and local errors) concrete expressions (into symbolic
expressions) and inputs (into input characteristics) incremen-
tally, as the analysis runs. This leads to both large memory
savings and significant speed-ups.
This incrementalization does not change the analysis re-

sults since our implementation of anti-unification, used to
aggregate concrete expressions, and summation, used to ag-
gregate error, are associative.

6.1 Approximation

Herbgrind makes a sound, but potentially incomplete, ap-
proximation to the standard anti-unification algorithm to
speed it up. Anti-unification requires knowing which pairs
of nodes are equivalent, so that those nodes could be gen-
eralized to the same variable. Symbolic expressions can be
trees hundreds of nodes deep, and this equivalence infor-
mation must be recomputed at every node, so computing

264

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock

these equivalence classes for large trees is a significant por-
tion of Herbgrind’s runtime. To limit the cost, Herbgrind ex-
actly computes equivalence information to only a bounded
depth for each node, 5 by default. In practice, this depth
suffices to produce high-quality symbolic expressions. This
depth bound also allows freeingmore concrete program trace
nodes, further reducing memory usage.

7 Case Studies

This section describes three examples where Herbgrind was
used to identify the root causes of floating-point errors in
numerical programs: in all three cases, the bugs were fixed
in later versions of the software. Herbgrind’s three major
subsystems were crucial in detecting and understanding
these bugs.

Gram-Schmidt Orthonormalization Gram-Schmidt or-
thonormalization transforms a collection of vectors into a or-
thogonal basis of unit vectors for their span. We investigated
an implementation of Gram-Schmidt orthonormalization
provided by the Polybench benchmark suite for numerical
kernels. Polybench is provided in several languages; we used
the C version of Polybench 3.2.1.
In the Gram-Schmidt orthonormalization kernel, Herb-

grind detected a floating-point problem which it reported to
have 64 bits of error, surprising for a vetted numerical bench-
mark. Upon investigating, we found that Gram-Schmidt de-
composition is not well defined on the given inputs, resulting
in a division by zero; Herbgrind reports the resulting NaN

value as having maximal error. The fundamental problem is
not in the Gram-Schmidt procedure itself but in its invoca-
tion on an invalid intermediate value. Luckily, Herbgrind pro-
vides, as its example problematic input to the computation in
question, a zero vector, an invalid input to Gram-Schmidt or-
thonormalization. Herbgrind’s input characteristics system
was able to link the error in the program output to the root
cause of an input violating the precondition of the orthnor-
malization procedure. Note that there was nothing wrong
with the procedure itself, but rather its interaction with the
program around it. Upon understanding the bug (and fixing
it ourselves), we tested version 4.2.0 of Polybench and con-
firmed that this more recent version fixed the problem by
changing the procedure that generated the vectors to ensure
that valid inputs to Gram-Schmidt orthonormalization are
produced.

PIDController Aproportional-integral-derivative controller
is a control mechanism widely used in industrial control sys-
tems. The controller attempts to keep somemeasure at a fixed
value. It runs in a loop, receiving the current value of the
measure as input and outputting the rate at which to increase
or decrease the measure. We investigated an adaptation of
a simple PID controller which runs for a fixed number of
iterations and with a fixed rate of change to the measure [9].

We initially ran Herbgrind on the PID controller expecting
to find, perhaps, some floating-point error in the controller
code itself. Instead, we found that Herbgrind was detecting a
problem in the loop condition. To run the PID controller for
a limited number of seconds, the program tests the condition
(t < N), where N is the number of seconds. The variable t
is stored as a double-precision floating-point number, and
is incremented by 0.2 on every iteration through the loop.
As we experimented with different loop bounds, Herbgrind
noticed that the condition, for some loop bounds, iterates
once too many times. For example, if the loop bound is set
to 10.0, the loop executes 51 times, not 50 times, because
adding 0.2 to itself 50 times produces a value 3.5 · 10−15 less
than 10. This bug is closely related to one that occurred in
the Patriot missile defense system in 1992, resulting in the
death of 28 people [36]. Herbgrind’s automatic marking of
all control flow operations as spots was necessary to detect
the bug and link the inaccurate increment to its affect on
control flow. Herbgrind was successfully able to trace back
from error detected in the output of the program to the
root cause of the error, the inaccurate increment; the output
contained the source location of the erroneous compare and
reported that it was influenced by the inaccurate increment.
We notified the authors of the adapted PID controller and
they confirmed the bug and identified a fix: incrementing
the t variable by 1 instead of 0.2, and changing the test to
(t * 0.2 < N).

Gromacs Gromacs is a molecular dynamics package used
for simulating proteins, lipids, and nucleic acids in drug dis-
covery, biochemistry, andmolecular biology.We investigated
the version of Gromacs that ships with the SPEC CPU 2006
benchmark suite. Gromacs is a large programÐ42 762 lines
of C, with the inner loops, which consume approximately
95% of the runtime, written in 21 824 lines of Fortran. We
tested Gromacs on the test workload provided by CPU 2006,
which simulates the protein Lysozyme in a water-ion solu-
tion.

During this run, Herbgrind reported an error in the routine
that computes dihedral angles (the angle between two planes,
measured in a third, mutual orthogonal plane). For inputs
where the dihedral angle is close to flat, corresponding to
four colinear molecules, the dihedral angle computation was
returning values with significant error due to cancellation
in the computation of a determinant. These cases, though
a small subset of all possible angles, were important. First,
collections of four colinear molecules are common, for ex-
ample in triple-bonded organic compounds such as alkynes.
Second, molecular dynamics is chaotic, so even small errors
can quickly cause dramatically different behavior.
Herbgrind’s symbolic expression system was crucial in

understanding the root cause of this bug. The dihedral angle
procedure invokes code from multiple source files, across
both C and Fortran, moving data into and out of vector data

265

Finding Root Causes of Floating Point Error PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

structures. The symbolic expression gathered together the
slivers of computation that contributed to the high rounding
error. From the expression reported by Herbgrind the poten-
tial for cancellation was clear and the input characteristics
provided by Herbgrind allowed us to narrow our investiga-
tions to flat angles. We identified the problem and developed
a fix based on the numerical analysis literature [33]. After
we contacted the developers, they confirmed the bug and
explained that they had deployed a similar fix in recent Gro-
macs versions.

8 Evaluation

This section shows that Herbgrind identifies correct root
causes of error in inaccurate floating-point program bina-
ries, and that the root causes are reported with sufficient
precision to allow improving accuracy. The first subsection
demonstrates this for Herbgrind in its default configuration,
while the second subsection examines the effect of Herb-
grind’s various tunable parameters. Each experiment uses
the standard FPBench suite of general-purpose floating-point
programs [10].

8.1 Improvability

The true root cause of a floating-point inaccuracy is a part
of the inaccurate computation which can be rewritten to
reduce error. Herbgrind’s value is its ability to find true
root causes; thus, this evaluation measures the fraction of
true root causes found by Herbgrind, and the fraction of
Herbgrind’s candidate root causes that are true root causes.

Methodology To determine whether a candidate is a true
root cause, one must determine whether its error can be
improved, which depends on the expertise of the program-
mer. As a mechanical, easily quantifiable proxy, we picked a
state-of-the-art tool, Herbie [29], and used it to determine
which of Herbgrind’s identified root causes were improv-
able. To use Herbgrind on the FPBench benchmarks, these
benchmarks must be compiled to native code. We do so by
using the publicly available FPCore-to-C compiler provided
with FPBench, and then compiling this C code, along with
some driver code which exercises the benchmarks on many
inputs, using the GNU C Compiler. We then run the binary
under Herbgrind, and pass the resulting output to Herbie.
We also timed the benchmarks to measure their speed.13

All experiments were run on an Intel Core i7-4790K proces-
sor at 4GHzwith 8 cores, running Debian 9with 32 Gigabytes
of memory.14. Herbgrind introduces a 574x overhead on the
FPBench suite.

Not every benchmark in the FPBench suite exhibits signifi-
cant error, nor can Herbie improve all of the benchmarks that
exhibit error. To provide a valid comparison for Herbgrind’s

13Our original timing code actually had a floating point bug, which we
discovered when Herbgrind included it in its output.

14Results were obtained using GNU Parallel [35]

results, we compare Herbgrind against an łoraclež which di-
rectly extracts the relevant symbolic expression from source
benchmark.

Results The oracle finds that, of 86 benchmarks, 30 have
significant error (> 5 bits). Of these, 29 are determined by
Herbgrind to have significant error.
Of the 30 benchmarks with significant error, the oracle

produces an improvable root cause for all 30 benchmarks.
Herbgrind determines candidate root causes for 29 of the

errors (96%), and for 25 of the benchmarks, Herbie detects
significant error in the candidate root causes reported (86%).
The remaining programs reflects either limitations in Herb-
grind’s ability to properly identify candidate root causes15, or
limitations in Herbie’s ability to sample inputs effectively. Fi-
nally, of the 30 total benchmarks which had error detectable
by the oracle and Herbie, Herbgrind can produce improvable
root causes for 25 (83%).

Overall, Herbgrind is able to determine the true root cause
for 25 of the programs in the FPBench suite, demonstrat-
ing that it is useful for diagnosing and fixing floating-point
inaccuracies.

8.2 Subsystems

Herbgrind’s analysis consists of three main subsystems, in-
fluence tracking, symbolic expressions, and input character-
istics. In this section we will demonstrate the effect of these
subsystems.
Figure 5a shows the result of running Herbgrind with

various error thresholds for the influences system. The er-
ror threshold selected determines how much local error an
expression has to have before it is marked as łsignificantly
erroneousž, and tracked as a source of error.
A higher threshold means that fewer computations are

reported as being problematic. Users might want to use a
higher error threshold on certain applications when there
are too many expressions that are somewhat erroneous to
address them all. In highly critical applications, where it
is important to address even a small source of error, users
might choose to lower the error threshold to catch even more
errors.

Because of the non-local nature of floating-point error, the
root cause of error is often spread across many floating-point
operations. To measure how far root causes are spread, we
varied the maximum expression depth Herbgrind tracked.
In Figure 5c and Figure 5d, we measured the runtime and ef-
fectiveness of Herbgrind using various maximum expression
depths.
A maximum expression depth of 1 node deep effectively

disables symbolic expression tracking, and only reports the

15Candidate root causes in which Herbie can not independently detect
error mostly reflect limitations in Herbgrind’s ability to accurately charac-
terize inputs. Note that the input characterization system is modular and
easily extended.

266

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock

Figure 5. In (a) we compare the number of computations flagged with various error thresholds. In (b) we show how many
benchmarks can be improved with various types of ranges. (c) and (d) explore the effect of different maximum expression
depths on runtime and number of benchmarks improved.

operation where error is detected, much like FpDebug and
similar floating-point debugging tools. However, unlike those
tools, it still tracks the influence of error and the range of
inputs to the operation. As you can see from the figure, not
tracking operations before the one that produced error re-
sults in a speedup over the normal configuration, but at a
high cost: none of the expressions produced are significantly
improvable.

Finally, to test the effectiveness of input characterization,
we measured the improvability of our benchmarks in three
configurations: with ranges turned off , with a single range
for all inputs, and with separate ranges for positive and
negative inputs (see Figure 5b). In this dataset it appears
that input ranges do not significantly affect results; however,
this could be due to the fact that these programs are small
micro-benchmarks.

Library Wrapping Herbgrind instruments calls to math-
ematical library functions such as sqrt and tan to correctly
evaluate the exact result of a computation and provide sim-
pler symbolic expressions. With this wrapping behavior
turned off, Herbgrind finds significantly more complex ex-
pressions, representing the internals of library functions: the
largest expressions are not 9 but 31 operations in size, and
133 expressions16 have more than 9 operations. For example,
instead of ex − 1, Herbgrind finds 17 expressions such as

(x−0.6931472(y−6.755399e15)+2.576980e10)−2.576980e10.

Furthermore, as discussed in Section 5, without wrapping
calls to mathematical libraries, Herbgrind measures output
accuracy incorrectly, though on the FPBench examples the
inaccuracy is slight.

8.3 Handling Expert Tricks

Detecting compensating terms (see Section 5.3) in client code
is important for reducing false positives in Herbgrind’s out-
put. To test the compensation detection system, we applied

16With library wrapping disabled, Herbgrind identifies 848 problematic
expressions, mostly corresponding to false positives in the internals of the
math library.

Herbgrind to analyze Triangle, an expert-written numerical
program.
Triangle [32], written in C by Jonathan Shewchuk, is a

mesh generation tool, which computes the Delaunay triangu-
lation of a set of input points, and can add additional points
so that the triangulation produced satisfies various stabil-
ity properties, such as avoiding particularly sharp angles.
Running on Triangle’s example inputs, we found that Her-
bgrind’s compensation detection correctly handles all but
14 of 225 compensating terms with local error and does not
present these false positives to the user.
The 14 remaining compensated operations are not de-

tected, because the compensating term affects control flow:
Triangle checks whether the compensating term is too large,
and if so runs the same computation in a different way. Her-
bgrind’s real-number execution computes the accurate value
of a compensating term to be 0, so these branches often
go the łwrong wayž. Fortunately, given Herbgrind’s candi-
date root cause, this behavior is always easy to check in the
Triangle source.

9 Related Work

There is a rich literature on analyzing andmitigating floating-
point error. Below we discuss the most closely related work.
Recently, work on statically analyzing error for floating

point programs has made tremendous progress [6, 8, 11, 14,
15, 24, 34]. Broadly, this work focuses on providing sound,
though conservative, error bounds for small numerical ker-
nels. This work is useful for reasoning about the expressions
returned by Herbgrind, but does not on its own scale to large
numerical software.

Several papers in recent years have used dynamic analyses
to analyze floating-point error.

FpDebug [4] uses Valgrind to build a dynamic analysis of
floating point error. Like Herbgrind, it uses MPFR shadow
values to measure the error of individual computations. Un-
like FpDebug however, Herbgrind’s shadow real execution
is based on a model of full programs, including control flow,
conversions, and I/O, as opposed to FpDebug’s model of
VEX blocks. This enables a rigorous treatment of branches
as spots, and leads to extensions such as wrapping library

267

Finding Root Causes of Floating Point Error PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

functions, sharing shadow values, SIMD operations, and
bit-level transformations. All these features required signifi-
cant design and engineering to scale to 300 KLOC numerical
benchmarks from actual scientific computing applications.
In addition to an improved real execution, Herbgrind de-
parts from FpDebug with its spots and influences system,
symbolic expressions, and input ranges, which allow it to
connect inaccurate floating-point expressions to inaccurate
outputs produced by the program. Herbgrind’s use of local
error, symbolic expressions, and input ranges, help the user
diagnose the parts of the program that contributed to the
detected error.

Similarly to FpDebug and Herbgrind, Verrou [12] is a dy-
namic floating point analysis built on Valgrind. Verrou’s aim
is also to detect floating point error in numerical software,
but attempts to do so at much lower overhead. The result-
ing approach uses very little instrumentation to perturb the
rounding of a floating point program, thus producing a much
more conservative report of possible rounding errors.

Recent work by Bao and Zhang [3] also attempts to detect
floating-point error with low overhead, with the goal of de-
termining when floating-point error flows into what they call
łdiscrete factorsž. The tool is designed to detect the possible
presence of inaccuracy with very low runtime overhead to
enable re-running in higher precision. In this context, a very
high false positive rate (> 80-90% in their paper) is acceptable,
but it is not generally acceptable as a debugging technique.
Bao and Zhang’s discrete factors address only floating-point
errors that cause changes in integer or boolean values (hence
łdiscretež). Unlike [3], Herbgrind tracks all factors (not just
discrete ones), including changes in floating-point values
that lead to changes in floating-point outputs. Re-running
programs in higher precision is untenable in many contexts,
but may work for some.
Herbie [29] is a tool for the automatically improving the

accuracy of small floating point expressions (≈ 10 LOC). Her-
bie uses randomly sampled input points and an MPFR-based
ground truth to evaluate expression error. This statistical, dy-
namic approach to error cannot give sound guarantees, but
is useful for guiding a search process. Herbie’s main focus
is on suggesting more-accurate floating-point expressions
to program developers. Herbie can be combined with Her-
bgrind to improve problematic floating point code in large
numerical programs, by feeding the expressions produced
by Herbgrind directly into Herbie to improve them.
Wang, Zou, He, Xiong, Zhang, and Huang [37] develop

a heuristic to determine which instructions in core mathe-
matical libraries have an implicit dependence on the preci-
sion of the floating-point numbers. A ground truth for such
precision-specific operations cannot be found by evaluating
the operations at higher precision. These results justify Her-
bgrind detecting and abstracting calls to the floating-point
math library.

CGRS [7] uses evolutionary search to find inputs that
cause high floating-point error; these inputs can be used for
debugging or verification. Unlike Herbgrind, these inputs
can be unrealistic for the program domain, and CGRS does
not help the developer determine which program expres-
sions created the high error. However, users who want to
analyze the behavior of their programs on such inputs can
use Herbgrind to do so.

10 Conclusion

Floating point plays a critical role in applications supporting
science, engineering, medicine, and finance. This paper pre-
sented Herbgrind, the first approach to identifying candidate
root causes of floating point errors in such software. Herb-
grind does this with three major subsystems: a shadow taint
analysis which tracks the influence of error on important pro-
gram locations, a shadow symbolic execution which records
the computations that produced each value, and an input
characterization system which reports the inputs to problem-
atic computations. Herbgrind’s analysis is implemented on
top of the Valgrind framework, and finds bugs in standard
numerical benchmarks and large numerical software written
by experts.

References
[1] Micah Altman, Jeff Gill, and Michael P. McDonald. 2003. Numerical

Issues in Statistical Computing for the Social Scientist. Springer-Verlag.
1ś11 pages.

[2] Micah Altman and Michael P. McDonald. 2003. Replication with
attention to numerical accuracy. Political Analysis 11, 3 (2003), 302ś
307. http://pan.oxfordjournals.org/content/11/3/302.abstract

[3] Tao Bao and Xiangyu Zhang. 2013. On-the-fly Detection of Instability
Problems in Floating-point Program Execution. SIGPLAN Not. 48, 10
(Oct. 2013), 817ś832. https://doi.org/10.1145/2544173.2509526

[4] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A
Dynamic Program Analysis to Find Floating-point Accuracy Problems
(PLDI ’12). ACM, New York, NY, USA, 453ś462. http://doi.acm.org/10.

1145/2254064.2254118

[5] Hans-J. Boehm. 2004. The constructive reals as a Java Library. J. Log.
Algebr. Program 64 (2004), 3ś11.

[6] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev,
Ganesh Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous
Floating-point Mixed-precision Tuning. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages (POPL

2017). ACM, New York, NY, USA, 300ś315. https://doi.org/10.1145/

3009837.3009846

[7] Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamarić, and
Alexey Solovyev. 2014. Efficient Search for Inputs Causing High
Floating-point Errors. ACM, 43ś52.

[8] Nasrine Damouche, Matthieu Martel, and Alexandre Chapoutot. 2015.
Formal Methods for Industrial Critical Systems: 20th International
Workshop, FMICS 2015 Oslo, Norway, June 22-23, 2015 Proceedings.
(2015), 31ś46.

[9] N. Damouche, M. Martel, and A. Chapoutot. 2015. Transformation of a
{PID} Controller for Numerical Accuracy. Electronic Notes in Theoretical
Computer Science 317 (2015), 47 ś 54. https://doi.org/10.1016/j.entcs.
2015.10.006 The Seventh and Eighth International Workshops on
Numerical Software Verification (NSV).

268

http://pan.oxfordjournals.org/content/11/3/302.abstract
https://doi.org/10.1145/2544173.2509526
http://doi.acm.org/10.1145/2254064.2254118
http://doi.acm.org/10.1145/2254064.2254118
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1016/j.entcs.2015.10.006
https://doi.org/10.1016/j.entcs.2015.10.006

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock

[10] Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Jason Qiu,
Alex Sanchez-Stern, and Zachary Tatlock. 2016. Toward a Standard
Benchmark Format and Suite for Floating-Point Analysis. (July 2016).

[11] Eva Darulova and Viktor Kuncak. 2014. Sound Compilation of Reals
(POPL ’14). ACM, New York, NY, USA, 235ś248. http://doi.acm.org/10.

1145/2535838.2535874

[12] François Févotte and Bruno Lathuilière. 2016. VERROU: Assessing
Floating-Point Accuracy Without Recompiling. (Oct. 2016). https:

//hal.archives-ouvertes.fr/hal-01383417 working paper or preprint.
[13] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier,

and Paul Zimmermann. 2007. MPFR: A Multiple-Precision Binary
Floating-Point Library with Correct Rounding. ACM Trans. Math.

Software 33, 2 (June 2007), 13:1ś13:15. http://doi.acm.org/10.1145/

1236463.1236468

[14] Eric Goubault and Sylvie Putot. 2011. Static Analysis of Finite Precision
Computations (VMCAI’11). Springer-Verlag, Berlin, Heidelberg, 232ś
247. http://dl.acm.org/citation.cfm?id=1946284.1946301

[15] Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Al-

gorithms (2nd ed.). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

[16] Andreas Jaeger. 2016. OpenLibm. http://openlibm.org/

[17] W. Kahan. 1965. Pracniques: Further Remarks on Reducing Truncation
Errors. Commun. ACM 8, 1 (Jan. 1965), 40ś. https://doi.org/10.1145/
363707.363723

[18] William Kahan. 1971. A Survey of Error Analysis.. In IFIP Congress

(2). 1214ś1239. http://dblp.uni-trier.de/db/conf/ifip/ifip71-2.html#

Kahan71

[19] W. Kahan. 1987. Branch Cuts for Complex Elementary Functions
or Much Ado About Nothing’s Sign Bit. In The State of the Art in

Numerical Analysis (Birmingham, 1986), A. Iserles and M. J. D. Powell
(Eds.). Inst. Math. Appl. Conf. Ser. New Ser., Vol. 9. Oxford Univ. Press,
New York, 165âĂŞ211.

[20] W. Kahan. 1998. The Improbability of Probabilistic Error Analyses for

Numerical Computations. Technical Report. 34 pages. http://www.cs.
berkeley.edu/~wkahan/improber.pdf

[21] William Kahan. 2005. Floating-Point Arithmetic Besieged by łBusiness
Decisionsž. World-Wide Web lecture notes.. , 28 pages. http://www.cs.
berkeley.edu/~wkahan/ARITH_17.pdf

[22] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Basic
Linear Algebra Subprograms for Fortran Usage. ACM Trans. Math.

Softw. 5, 3 (Sept. 1979), 308ś323. https://doi.org/10.1145/355841.355847
[23] Vernon A. Lee, Jr. and Hans-J. Boehm. 1990. Optimizing Programs over

the Constructive Reals. In Proceedings of the ACM SIGPLAN 1990 Con-

ference on Programming Language Design and Implementation (PLDI

’90). ACM, New York, NY, USA, 102ś111. https://doi.org/10.1145/93542.
93558

[24] Matthieu Martel. 2009. Program Transformation for Numerical Preci-
sion (PEPM ’09). ACM, New York, NY, USA, 101ś110. http://doi.acm.

org/10.1145/1480945.1480960

[25] B. D. McCullough and H. D. Vinod. 1999. The Numerical Reliability
of Econometric Software. Journal of Economic Literature 37, 2 (1999),
633ś665.

[26] Marvin L. Minsky. 1967. Computation: Finite and Infinite Machines.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[27] Nethercote and Seward. 2007. Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation. (June 2007).

[28] Dr. K-C Ng. 1993. FDLIBM. http://www.netlib.org/fdlibm/readme

[29] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary
Tatlock. 2015. Automatically Improving Accuracy for Floating Point
Expressions. In Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’15). ACM.
[30] Gordon D. Plotkin. 1970. A note on inductive generalization. Machine

Intelligence 5 (1970), 153ś163.
[31] Kevin Quinn. 1983. Ever Had Problems Rounding Off Figures? This

Stock Exchange Has. The Wall Street Journal (November 8, 1983), 37.
[32] Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Quality

Mesh Generator and Delaunay Triangulator. In Applied Computa-

tional Geometry: Towards Geometric Engineering, Ming C. Lin and
Dinesh Manocha (Eds.). Lecture Notes in Computer Science, Vol. 1148.
Springer-Verlag, 203ś222. From the First ACM Workshop on Applied
Computational Geometry.

[33] Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh
Generator. ACM Trans. Math. Softw. 41, 2, Article 11 (Feb. 2015),
36 pages. https://doi.org/10.1145/2629697

[34] Alexey Solovyev, Charlie Jacobsen, Zvonimir Rakamaric, and Ganesh
Gopalakrishnan. 2015. Rigorous Estimation of Floating-Point Round-
off Errors with Symbolic Taylor Expansions (FM’15). Springer.

[35] O. Tange. 2011. GNU Parallel - The Command-Line Power Tool. ;login:
The USENIX Magazine 36, 1 (Feb 2011), 42ś47. http://www.gnu.org/s/
parallel

[36] U.S. General Accounting Office. 1992. Patriot Missile Defense: Software
Problem Led to System Failure at Dhahran, Saudi Arabia. http://www.
gao.gov/products/IMTEC-92-26

[37] Ran Wang, Daming Zou, Xinrui He, Yingfei Xiong, Lu Zhang, and
Gang Huang. 2015. Detecting and Fixing Precision-Specific Operations
for Measuring Floating-Point Errors (FSE’15).

[38] Debora Weber-Wulff. 1992. Rounding error changes Parliament
makeup. http://catless.ncl.ac.uk/Risks/13.37.html#subj4

269

http://doi.acm.org/10.1145/2535838.2535874
http://doi.acm.org/10.1145/2535838.2535874
https://hal.archives-ouvertes.fr/hal-01383417
https://hal.archives-ouvertes.fr/hal-01383417
http://doi.acm.org/10.1145/1236463.1236468
http://doi.acm.org/10.1145/1236463.1236468
http://dl.acm.org/citation.cfm?id=1946284.1946301
http://openlibm.org/
https://doi.org/10.1145/363707.363723
https://doi.org/10.1145/363707.363723
http://dblp.uni-trier.de/db/conf/ifip/ifip71-2.html#Kahan71
http://dblp.uni-trier.de/db/conf/ifip/ifip71-2.html#Kahan71
http://www.cs.berkeley.edu/~wkahan/improber.pdf
http://www.cs.berkeley.edu/~wkahan/improber.pdf
http://www.cs.berkeley.edu/~wkahan/ARITH_17.pdf
http://www.cs.berkeley.edu/~wkahan/ARITH_17.pdf
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/93542.93558
https://doi.org/10.1145/93542.93558
http://doi.acm.org/10.1145/1480945.1480960
http://doi.acm.org/10.1145/1480945.1480960
http://www.netlib.org/fdlibm/readme
https://doi.org/10.1145/2629697
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel
http://www.gao.gov/products/IMTEC-92-26
http://www.gao.gov/products/IMTEC-92-26
http://catless.ncl.ac.uk/Risks/13.37.html#subj4

	Abstract
	1 Introduction
	2 Background
	2.1 Floating-Point Challenges
	2.2 Existing Debugging Tools

	3 Overview
	4 Analysis
	4.1 Abstract Machine Semantics
	4.2 spots and Influence Shadows
	4.3 Symbolic Expressions
	4.4 Input Characteristics

	5 Implementation
	5.1 Values
	5.2 Storage
	5.3 Operations

	6 Optimization
	6.1 Approximation

	7 Case Studies
	8 Evaluation
	8.1 Improvability
	8.2 Subsystems
	8.3 Handling Expert Tricks

	9 Related Work
	10 Conclusion
	References

