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ABSTRACT 
Live programming is a paradigm in which the programmer 
can visualize the runtime values of the program each time the 
program changes. The promise of live programming depends 
on using test cases to run the program and thereby provide 
these runtime values. In this paper we show that in some situ-
ations test cases are insuffcient in a fundamental way, in that 
there are no test inputs that can drive certain incomplete loops 
to produce useful data, a problem we call the loop-datavoid 
problem. The problem stems from the fact that useful data 
inside the loop might only be produced after the loop has been 
fully written. To solve this problem, we propose a paradigm 
called Focused Live Programming with Loop Seeds, in which 
the programmer provides hypothetical values to start a loop 
iteration, and then the programming environment focuses the 
live visualization on this hypothetical loop iteration. We intro-
duce the loop-datavoid problem, present our proposed solution, 
explain it in detail, and then present the results of a user study. 
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CCS Concepts 
•Human-centered computing → Human computer inter-
action (HCI); 

INTRODUCTION 
Live programming [7, 20, 21, 10, 1, 12, 11, 17] is a paradigm 
in which the programmer can visualize the runtime values 
of the program each time the program changes. Live pro-
gramming has been shown to help programmers fnd mistakes 
quickly, as they are writing the code [22, 13]. 

The biggest promise of live programming lies in its ability to 
provide feedback while writing code, not just after the code 
is written. To make this promise a reality, live programming 
requires that data be shown to the programmer while the code 
is being written. The most common approach for produc-
ing this data involves executing the (incomplete) program on 
some input values. These input values are typically provided 
by the programmer as inputs to the entire program or to the 
function/method being written. 
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In this paper we show that such input values are insuffcient 
for imperative programs, in a fundamental way. Indeed there 
are cases where input values will never drive an incomplete 
imperative program to show useful live data in a loop. This 
is because the data that is useful for writing the code inside 
a loop is generated by the loop itself, which does not hap-
pen until the loop has been fully written. In essence, until 
the loop is written in full, the live data in the loop is either 
unavailable, incomplete or incorrect, which not only defeats 
the purpose of live programming, but worse yet actually leads 
to programmers being confused. This situation can arise in a 
such fundamental settings as: insertion sort, Dijkstra’s algo-
rithm for shortest path, building histograms, reversing a list, 
and building an interpreter. 

As such, this paper shows that to see useful live data while 
writing loops, in addition to input values, programmers must 
sometimes provide what we call loop seeds. Loop seeds are 
values that are used to start a hypothetical loop iteration. These 
are hypothetical in the sense that the loop iteration is not some-
thing that can currently be reached in the program, because 
the program is incomplete. The programmer can then focus 
on this hypothetical loop iteration to write the loop body, thus 
only seeing the live data for this one hypothetical loop iteration. 
When the loop body is fnished the programmer can unfocus 
from the hypothetical loop iteration to fall back into seeing the 
program’s behavior for all loop iterations on the test inputs. 
As such, we call this approach Focused Live Programming 
with Seeds (FLiPS). 

In summary, our contributions are as follows: 

• We show that in some cases test inputs at func-
tion/method/program boundaries are not suffcient to pro-
duce useful live data for writing loops. We call this the 
loop-datavoid problem. 

• To solve this problem, we introduce the notion of loop seeds, 
which are values used to start a hypothetical loop iteration, 
thus producing data for the programmer to visualize. One 
important point of this paper is not that loop seeds are just 
helpful, but that they are in some cases a necessity without 
which live programming can loose many of its benefts. 

• We present an approach called Focused Live Programming 
with Seeds (FLiPS) that uses loops seeds to focus the pro-
grammer’s attention on a single hypothetical loop iteration. 

• We evaluate FLiPS through a user study, and show that 
FLiPS is helpful, easy-to-use, and that it signifcantly in-
creases the availability of live data while writing loops. Fi-
nally, we also observe that FLiPS actually provides benefts 
beyond the original ones we anticipated. 
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RELATED WORK 
Live programming is an area of research whose history dates 
back to the seminal work of Hancock [7] that introduced many 
important concepts in live programming. Since then, a variety 
of live environments has been developed for various languages, 
including Python [6, 10], Java [3], Javascript [17, 1], Lisp [2] 
and ML-like languages [16]. As the feld developed, several 
essays were published on categorizing different kinds of live-
ness [19, 21], and several studies explored the benefts of live 
programming [22, 13]. Most recently, there has also been 
work on live editing the output of a program through direct 
manipulation [8, 15, 9]. 

Broadly speaking, our work is different from prior live pro-
gramming research in three ways: (1) we identify the loop-
datavoid problem, which states that, for certain loops, test 
inputs are not enough to provide useful live data while the 
loop is being written (2) we provide a solution to this prob-
lem in the form of loop seeds so the programmer can see 
live data for a hypothetical loop iteration (3) we reify loop 
seeds in a new programming paradigm called Focused Live 
Programming with Seeds (FLiPS). 

Our work is most related to the idea from live programming 
of focusing on a single loop iteration. For example, the Baby-
lonian live editor [17, 18] supports sliders on loops to focus 
on a particular loop iteration. However, this prior work does 
not identify the loop-datavoid problem and does not have the 
concept of loop seeds. Instead, programmers can only provide 
test inputs at method boundaries, which means they can only 
focus on loop iterations that are currently reached, and as we 
will show this does not work well for incomplete loops. 

The Omnicode [10] system, which makes the entire history 
of program execution available to the programmer, supports a 
different kind of focusing: swiping over the code to flter data 
based on the selected statements. But here again, the focusing 
only shows the data from executions on test input, which again 
might not work well for incomplete loops. 

The loop seeds in our work are related to the idea of “over-
rides” from Example-Centric Programming [5] and “over-
writes” from REPLugger [4], both of which allow the pro-
grammer to provide hypothetical values for certain variables. 
However, the prior work on REPLugger and Example-Centric 
Programming does not identify the important connection to 
loops and the loop-datavoid problem. Indeed we show that 
loop seeds are not just useful, but in some cases essential in a 
fundamental way, in that without them some loops just exhibit 
no live data when they are being written. 

Finally, our work is related to expression focusing from Sketch-
n-Sketch [9], which is a direct manipulation editor that trans-
lates changes made to the visual output of a program back 
to the source code. Expression focusing in this setting is a 
way of controlling the scope of the code that will be automati-
cally modifed when changing the visual output through direct 
manipulation. Although our work and expression focusing 
both have a notion of syntactic focusing, our work is in very 
different setting, and addresses a different problem altogether. 

Figure 1. Insertion Sort Full Code 

Figure 2. Partially Written Insertion Sort 

PROBLEM OVERVIEW 

A Task with Loops 
Consider the task of writing insertion sort. Insertion sort works 
by maintaining a sorted result list that is iteratively populated 
with each element of the original list. There are many possible 
implementations of insertion sort. Figure 1 shows one such 
implementation using the Python programming language. This 
implementation was written by one of our human subjects. 

To enable visualization of runtime values, let’s assume that 
the programmer provides a sample input to sort, say the list 
[5,4,8,1]. While live coding visualizations can be useful 
once the code is written, the ultimate goal is to have such visu-
alizations be helpful while the code is being written. With this 
in mind, consider the situation that occurs after the program-
mer has written only lines 1,2 and 3 in Figure 1. At this point, 
the programmer is trying to write the rest of the loop body, 
namely lines 4-11. In particular, the programmer is faced with 
the partial code as shown in Figure 2. 

The Lack of Data 
The problem with Figure 2 is that the data displayed by any live 
visualization at this point provides no assistance in writing the 
body of the loop. Indeed, running the partial code in Figure 2 
on the input [5,4,8,1] will display res as the empty list on 
line 4. This is not useful because at this point the programmer 
is trying to write code to insert i into the sorted list res, and 
the empty list is a degenerate corner case for this code. Ideally, 
the programmer would be able to see res as a sorted non-
empty list so that the programmer can get immediate feedback 
on fnding the right place to insert into res. 

We make the unavailability of good data in this example more 
concrete through the use of a live visualization called Projec-
tion Boxes [14]. Figure 3 shows the incomplete code from 
Figure 2, with Projection Boxes turned on. To make the exam-
ple more salient, we added in Figure 3 the next step in writing 
the code, which is the inner “for idx, j” loop (note that 
all users in our study who took this approach wrote this loop 
frst before realizing they need the variable added). Projec-
tion Boxes show at each line in the program the values of all 
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Figure 3. Partial Sort with Live Programming (but without FLiPS) 

variables at that line. Each box is a table of values and there 
is a straight line that connects the box to the place in the code 
that the box is visualizing. If the statement at a given line 
is executed multiple times, the box for that line contains one 
row for each execution of the statement. For example, the 
projection box at line 4 of Figure 3 has 4 rows because the 
loop is executed 4 times, with the value of i iterating through 
the values from the list [5,4,8,1]. 

Using Projection Boxes, we can now see the problem that 
the programmer faces more concretely: in Figure 3 at line 4, 
the value for res displayed in the projection box is [] for all 
iterations of the loop. Even worse, since res being empty 
means that line 6 is never executed, there is no projection box 
at line 6, which is the place where the programmer is about 
to write code. Thus, as the programmer writes the code to 
insert i into res, there is no meaningful feedback from the 
live visualization. In fact, in our study, programmers in the 
control condition (who did not use FLiPS) were often puzzled 
as to why there was no data in the loops they were writing, 
sometimes thinking they had discovered a bug in the tool. 

Loop-datavoid Problem 
We call the above problem (namely the lack of live data while 
writing loops) the loop-datavoid problem. More concretely: 
Given a loop which generates data that it also references, the 
loop-datavoid problem occurs when the live values inside the 
loop are either non-existent, incomplete or incorrect because 
the loop has not been fully written yet. One important con-
tribution of this paper is the identifcation of this problem. 
It has the potential to happen in any live environment for a 
imperative programming language that has loops. 

The Problem Persists 
The loop-datavoid problem is particularly problematic for two 
reasons. 

First, there is no input that the user can provide which would 
rectify the situation. Indeed, no matter what input is provided 
to sort in Figure 3, the res variable will still be the empty 
list on line 4, meaning line 6 will still show no information. 

Second, the lack of data can often persist for the entire time 
that the programmer writes the loop, because useful values of 
loop variables are only produced by the loop body itself, and 
this does not happen until the loop is written in full. Indeed, 
note that in Figure 1, even after the programmer has written 

Figure 4. Partial Sort with FLiPS 

lines 4-10 of the loop, res will still remain empty. It is only 
when line 11 (the last line of the loop!) is written that the 
data for the entire loop populates; but at this point the loop 
has already been written and so the data inside the loop, while 
possibly useful for debugging, is in no way helpful while 
writing the code. 

OUR SOLUTION 

Loop Seeds 
To address the loop-datavoid problem, we introduce what 
we call loop seeds. Loop seeds are values that are used to 
start a hypothetical loop iteration, thus producing data for 
the programmer to visualize. In the above example, when 
faced with writing the loop in Figure 3, the programmer could 
provide a loop seed, for example res = [2,5,8]. This loop 
seed represents a hypothetical value of res at the start of a 
hypothetical loop iteration. To be useful, the value of res must 
represent a value that could actual occur in the fnal version of 
the code. For insertion sort, res should be sorted, since in the 
fnal code res will remain sorted throughout. 

Focused Live Programming with Seeds 
We reify loop seeds in an approach called Focused Live Pro-
gramming with Seeds (FLiPS). FLiPS is a mode that the pro-
grammer can enter when writing a loop to focus on a particular 
iteration of the loop. When the programmer is done writing 
the loop, the programmer can exit that mode. FLiPS combines 
three key ideas: 

• Loop Seeds: To use FLiPS in a given loop, the programmer 
must provide loop seeds, as described above. 

• Iteration Focus: When the programmer enters FLiPS in a 
loop, the live data visualization is modifed to only display 
the one iteration with the loop seeds (while showing all 
iterations of loops that are nested within the current loop). 

• Code Focus: When the programmer enters FLiPS in a loop, 
some form of visual cue is used to make the code of the 
loop body stand out compared to the surrounding code. 

Although variations of the above three ideas have appeared in 
previous settings (which we discuss more in “Related Work”), 
we are not aware of work that combines all three of the above 
ideas together in one coordinated setting to address the prob-
lem of loops for live programming. 



IMPLEMENTATION 
Figure 4 shows our implementation of FLiPS on top of pro-
jection boxes, using the same example as before. To visually 
focus attention on the loop, our implementation grays out the 
code that is not in the loop. Line 4 uses a special syntax to 
provide loop seeds, in this case seeds for the loop body on 
lines 4-7 (the loop itself starts on line 3). 

Let’s look at the inner loop written at line 5 (which is inside 
the loop body that FLiPS is focusing on). With FLiPS, this 
inner loop now iterates three times because it goes through 
the elements of [1,4,8], which is the loop seed for res. 
As a result, using FLiPS (Figure 4) there is a projection box 
at line 6 that provides helpful immediate feedback on how 
this inner loop works. Contrast this to the situation without 
FLiPS (Figure 3), where this inner loop did even execute once 
because the actual value for res is [], and so no projection 
box was displayed at line 6. 

In our implementation, programmers provide loop seeds using 
the syntax “#@”, followed by a semicolon-separated list of 
assignments. Python comments start with “#” so this is just 
a stylized comment. This allows us to leverage the visual 
cues of comment syntax highlighting to communicate to the 
programmer that loop seeds are an auxiliary part of the code 
(with the squiggly underneath to show which loop seed we 
are focusing on). Furthermore, because semicolon in Python 
combines multiple statements in a single line, the sequence of 
characters after “#@” is in fact an executable Python statement. 
Not only does this make the implementation of seeds simpler, 
but more importantly, we have found in preliminary trials that 
explaining loop seeds as an executable statement is the best 
way for programmers to understand how they work. 

In summary, FLiPS adds to projection boxes: the ability to 
provide loop seeds, the ability to focus on a single iteration 
based the loop seeds, and the grayed-out code. 

FLIPS WORKFLOW 
The workfow for using FLiPS is as follows. 

Before FLiPS: The programmer frst starts writing a loop 
within a live programming environment, in our case Projection 
Boxes. At the point where they begin writing the loop body, 
or at some point while writing the loop body, the programmer 
might realize that they are not satisfed with the live data 
they are getting. At this point, the programmer can decide to 
provide loop seeds. As soon as the programmer types “#@” or 
edits a line that starts with “#@”, the programming environment 
switches into FLiPS mode. 

During FLiPS: Once in FLiPS mode, the programmer can fo-
cus on a single iteration of the loop, seeing data that can assist 
in writing the loop body. Once the programmer has written 
the loop body, they can adjust the loop seeds to essentially test 
the loop body on different inputs, inspecting the values at all 
points in the loop body. This provides the very useful ability 
to test the loop body on as a piece of code that is essentially 
not part of the loop. 

After FLiPS: Once the programmer is happy with their loop 
body, they can press “ESC” to escape out of FLiPS mode, 

Question Avg 
1: I found FLiPS helpful 4.5 
2: FLiPS helped me get more useful live data in loops 4.6 
3: I found FLiPS easy to use 4.6 
4: I would like to have FLiPS available 4.6 
5: I think FLiPS will be useful beyond today’s tasks 4.4 
6: Utility of providing loop seed values 4.9 
7: Utility of seeing one iteration of the loop at a time 3.9 
8: Utility of graying out code that is not in the loop 3.5 
Figure 5. Questions in survey along with average scores. Questions 1-
5 are on a 5 point Likert scale with 1 being “Disagree” and 5 being 
“Agree”. Questions 6-8 asked the users to rate the utility of three fea-
tures of FLiPS, on a 5 point Likert scale with 1 being “Not Useful” and 
5 being “Useful”. All questions had a median of 5, except for Question 7 
with median 4 and Question 8 with median 3.5. 

at which point the programmer is back to seeing all loop 
iterations. When outside of FLiPS mode, there is a keyboard 
shortcut that programmers can use to switch back into FLiPS 
mode to further debug, test or understand their loop. 

EXPERIMENTAL STUDY 
We ran a user study to understand: (1) whether FLiPS is 
helpful, and if so under what conditions (2) to what extent 
FLiPS helps programmers get live data while writing loops 
when compared to not using FLiPS (3) how programmers use 
FLiPS (4) what aspects of FLiPS are most helpful. 

We recruited 10 programmers (8 men, 2 women) with between 
2 and 15 years of programming experience, who rated their 
familiarity with Python as between 3 and 5 out of 5. None of 
the programmers had ever seen or used Projection Boxes. 

We had four programming tasks: (A) insertion sort (B) dictio-
nary manipulation that involves repeatedly inverting a dictio-
nary (C) list manipulation where elements are removed if they 
don’t make a palindrome with any prior elements in the list 
(D) list encoding that involves list rotation. 

Each subject solved: two problems with projection boxes 
without FLiPS (control condition), and two problems with pro-
jection boxes with FLiPS (test condition). We used two orders 
of the problems: 5 subjects did problems A,B without FLiPS, 
then C,D with FLiPS; and 5 did problems C,D without FLiPS, 
then A,B with FLiPS. Thus, for each of the four problems, we 
had 5 subjects who did it with FLiPS and 5 who did it without. 

We instructed participants (both FLiPS and control) to try to 
get live data when writing their loops. After the study we had 
subjects fll out a survey and conducted post-study interviews 
to further understand their experience. 

SURVEY RESULTS 
Figure 5 shows the questions that we asked participants, and 
the average score for each. We can see that overall: (1) subjects 
found FLiPS helpful, specifcally in getting more useful live 
data in loops (2) subjects found FLiPS easy to use (3) subjects 
would like to have FLiPS available when using projection 
boxes (4) subjects felt FLiPS would be useful beyond the tasks 
they saw in the study (5) the most useful aspect of FLiPS by 
far is the ability to provide loop seeds, followed by the ability 
to display one iteration at a time, followed by the graying out 
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the code not in the loop. Although subjects found the graying 
markedly less useful (Question 8), in preliminary trials where 
we did not gray out the code, subjects were confused about 
how loop seeds worked, and specifcally suggested that it 
would be helpful to have a visual mechanism to show that 
FLiPS is focusing on just the loop body. 

EFFECTIVENESS AT GETTING USEFUL DATA IN LOOPS 
We would like to quantify the effectiveness of FLiPS at en-
abling useful data in loops, where useful data means having a 
projection box with a non-empty list or dictionary to operate 
on. To this end, we compare the availability of useful data 
in loops when problems were solved in the control condition 
(without FLiPS) vs in the test condition (with FLiPS available). 
All participants were told to try to get as much useful data as 
possible when they are coding their loops. 

Recall that we had 4 problems, and each problem was solved 
by 5 subjects without FLiPS and 5 subjects with FLiPS avail-
able. So we had a total 20 problems solved without FLiPS and 
20 problems solved with FLiPS available. 

Let’s consider the control condition, which is without FLiPS. 
In only 3 out of the 20 problems without FLiPS did subjects 
have useful data while writing their loop. In these 3 cases, the 
subjects didn’t explicitly try to have data – they just uninten-
tionally wrote the code in a way that the list or dictionary was 
populated frst. This could happen for example in Figure 1 if 
the programmer had written lines 4, 10 and 11 frst, only then 
to write lines 5-9. In the 17 cases that did not have useful data, 
most didn’t even show a projection box in the loop, as in line 
6 of Figure 3, because the code was never executed. Of the 17 
without useful data, in 4 cases the subject tried to change their 
code to get better data, but failed and gave up. Finally, in the 
17 who did not have data, almost every single one had a bug 
they only discovered later, which they could have discovered 
earlier had they had useful data while writing the loop. 

Now, for the test condition, where FLiPS was available, in 
18 out of 20 problems, the subject realized they did not have 
useful data, and then used FLiPS to get useful data while 
writing the loop. Furthermore, there was 1 case where the 
subject did not use FLiPS but still had useful data because 
this programmer just wrote the code in a way that data was 
available. This gives us the following result: 

In the control condition (without FLiPS) only 3 out of 20 
had meaningful data while writing their loops, and in the 
test condition (with FLiPS available), 19 out of 20 had 
meaningful data (18 of which were enabled by FLiPS) 

The one remaining case in the test condition was a case where 
the subject did not have useful data, but did not use FLiPS; the 
programmer in this case wrote the code very quickly (and cor-
rectly), and later observed they just didn’t need the immediate 
feedback, so they didn’t bother with enabling FLiPS. 

DISCUSSION AND LESSONS LEARNED 

Applicability 
Based on observations of users working with FLiPS and our 
own exploration of FLiPS, we have developed an understand-
ing of what loops FLiPS is useful for. FLiPS is most useful for 

loops that have at least one loop-carried variable, which means 
a variable that directly or indirectly depends on its own value 
from some prior iterations (res in Figure 1). Furthermore, 
this loop-carried variable should have two properties. 

First, the starting value for this loop-carried variable must 
be a corner case for the loop body, so that when the loop 
body is incomplete, this starting value provides little feedback 
for writing the loop. Second, the loop body must perform 
some non-trivial operations on this loop-carried variable. If 
the operations are too simple, the lack of data in the live 
visualization will not hinder the programmer much. 

This can be summarized as follows: 

FLiPS is most useful for loops that have at least one 
loop-carried variable with the following two properties: 
(1) the starting value for the loop-carried variable is 
a corner case (2) the loop body performs non-trivial 
operations on this loop-carried variable. 

In prior studies involving live programming [22, 13, 10, 14], 
out of 14 tasks, only one really required a loop with a non-
trivial loop-carried dependency (Dijkstra’s algorithm). This 
is because prior tasks are mostly ones that create a new data 
structure from a given one, as opposed to a computation that 
iteratively builds a data structure – this is also the difference 
between “map” operations and “reduce/fold” operations in 
functional programming or MapReduce. This points to the fact 
that the kinds of loop-carried dependencies we are discussing 
here may have been under-explored in the live programming 
literature. 

Note that when using recursion instead of loops, the loop-
datavoid problem will not occur if we assume that users pro-
vide sample inputs for each function: the sample inputs for a 
recursive function would essentially act as seeds. 

How Programmers use FLiPS 
Many programmers in the study used FLiPS for the purpose 
we actually designed it for, which is to have data while writing 
a loop. However, we also found that FLiPS has several other 
important use cases. 

Reduce Information Overload. One big challenge with always-
on live visualizations is information overload, which happens 
when the amount of displayed information becomes intrusive, 
overwhelming and/or distracting. Some users mentioned that 
by focusing on a single loop iteration, FLiPS in fact makes 
the live information more manageable. For example, subject 4 
specifcally mentioned that one situation they envision FLiPS 
being useful is a deeply nested loop that is executed many 
times, where without FLiPS mode there would be a large 
number of iterations, but with FLiPS mode, the programmer 
could focus on just a particular iteration of the most inner loop. 

Testing and debugging while using FLiPS. Right after fnishing 
to write a loop body, the loop seeds in FLiPS allow the pro-
grammer to test their loop body one input at a time, before they 
consider how the entire loop works. This is very useful usage 
modality for FLiPS – every programmer who used FLiPS did 
this. Subjects 4 and 6 mentioned specifcally how useful this 



can be, because in many cases it’s hard to understand what 
inputs to provide to a function to create a particular input for 
the loop body (especially if the loop body is deeply nested 
inside other loops). 

Debugging after leaving FLiPS. We also noticed that FLiPS 
can be useful for debugging a loop after the loop body has 
been written and the programmer is no longer in FLiPS. In-
deed, suppose that the programmer has fnished writing a loop 
(either with or without FLiPS) and is now out of FLiPS mode. 
They now fnd that there is a bug in the loop body. While 
a buggy loop body often does generate live data for all loop 
iterations, the generated data is diffcult-to-predict, and worse 
yet sometimes violates intended invariants. This makes it dif-
fcult for the programmer to reason about the loop body and 
how it operates on the live data. Just as one example, consider 
insertion sort again: a buggy loop can generate intermediate 
iterations where the list is not even sorted. This makes it hard 
to debug the loop body, which was designed specifcally with 
the assumption that the list will be sorted. In these kinds of 
situations, FLiPS allows the programmer to debug the loop 
body by seeing how it operates on a chosen seed for which 
they know precisely what should happen. Subject 7 and 9 not 
only used this debugging strategy during the study (entering 
FLiPS mode again after the entire loop was written), but they 
also mentioned in a post-study interview that this would be 
very useful in practice. 

Code Understanding. Subject 5 said that FLiPS would be 
useful in understanding natural language processing code that 
they were writing. That code often has loops with loop-carried 
dependencies (usually on previous states earlier in the sen-
tence), and subject 5 said it would be useful to try hypothetical 
iterations to understand how the model works. 

All of the above uses can be summarized as follows: 

In addition to being useful for getting better data when 
writing a loop, FLiPS is also useful for: (1) reducing 
information overload (2) testing and debugging and (3) 
code understanding. 

Situations that make FLiPS less useful 
Our study also taught us where FLiPS would be less useful. 
One such situations was brought up by subject 2, who rated 
FLiPS 3/5 on Question 1 from Figure 5 and 2/5 in Question 5 
(these were the single lowest scores). Subject 2 gave these low 
scores because in practice he felt that he would have written 
the body of the loop in a separate function, and added test cases 
to that function. This is indeed an important consideration: 

One alternative to FLiPS is moving the loop body into a 
separate function. 

Subject 3 also made this observation, although both subject 
2 and 3 still gave 4/5 to Question 4 (“Do you want to have 
FLiPS available”). This shows that because FLiPS needs to 
be explicitly invoked, it can still be considered useful as an 
available feature, even if invoked infrequently. 

Finally, this brings us to our fnal observation. Previous work 
on Projection Boxes [14] showed that programmers have very 

different preferences when it comes to live visualizations. 
Some programmers like a lot of feedback, others want much 
less feedback. Some programmers want feedback frequently, 
some only want the feedback after they have written their code. 
We noticed that all these preferences affect the extent to which 
users will fnd FLiPS useful: 

Preferences about the extent to which a programmer 
might look at a live visualization carry over to FLiPS. 

In fact, subject 2 above, who gave the lowest scores, mentioned 
that he did not look at the projection boxes much, and would 
have preferred they be turned off until he found a bug in his 
code. Projection Boxes do support this feature (including many 
other customizations), although in this study we did not focus 
on customizations of Projection Boxes, so it was not explicitly 
explained to subjects. However, the above observation does 
point to the fact that all the customizability of Projection Boxes 
will also be useful for programmers who are using FLiPS. 

Limitations and Future Work 
Our user study was a small-scale lab study with specifc pre-
defned tasks. Furthermore, because users were told about 
FLiPS right before the study, they might be more likely to 
try it. As such, it remains an open research question how our 
results generalize to programming in the wild, including how 
often the loop-datavoid problem manifests itself in practice. A 
more realistic study would help address these questions. 

The mechanism of using comments to store loop seeds is ad-
hoc, and could lead to several problems, for example loop 
seeds being overlooked or going out of date. An interesting 
future direction would be to automatically generate loop seeds 
from the program and the runtime state. 

Another interesting research direction would be to explore 
how FLiPS (and Projection Boxes) could be made to work 
with more complex data, using abstraction or summarization. 

Finally, as loop seeds can be seen as a form of “overrides” [5] 
and “overwrites” [4] that enable FLiPS, we believe that 
through further research, one could come up with a uniform 
framework for all kinds of input values: program input, func-
tion/method input, loop body input, and overrides/overwrites. 

CONCLUSION 
In this paper, we identifed the loop-datavoid problem: in a live 
programming environment, when programmers write certain 
kinds of loops, there is no useful live data. This is because 
the data inside the loop is generated by the loop itself, and 
until the loop is fully written the data inside the loop is either 
incomplete or incorrect. To address this problem, we proposed 
the idea of loop seeds, which provide hypothetical values 
for loop variables. We reifed loop seeds in a programming 
mode called Focused Live Programming with Seeds (FLiPS), 
which allows the programmer to focus on a hypothetical loop 
iteration. Through a user study, we showed that FLiPS is 
helpful and easy to use, and that it increases the availability 
of live data while writing loops. Finally, we also observed 
that FLiPS provides additional benefts, namely: (1) reducing 
information overload, (2) testing and debugging loop bodies 
one iteration at a time and (3) code understanding. 

http:incorrect.To
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