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Abstract

We present and analyze a model of a two-cell reciprocally inhibitory network
that oscillates. The principal mechanism of oscillation is short-term synaptic
depression. Using a simple model of depression, and analyzing the system
in certain limits, we can derive analytical expressions for various features of
the oscillation, including the parameter regime in which stable oscillations
occur as well as the period and amplitude of these oscillations. These expres-
sions are functions of three parameters: the time constant of depression, the
synaptic strengths, and the amount of tonic excitation the cells receive. We
compare our analytical results with the output of numerical simulations, and
obtain good agreement between the two. Based on our analysis, we conclude
that the oscillations in our network are qualitatively different from those
in networks which oscillate due to postinhibitory rebound, spike-frequency
adaptation, or other intrinsic (rather than synaptic) adaptational mecha-
nisms. In particular, our network can only oscillate via the synaptic escape
mode of Skinner, Kopell and Marder (1994).



Background and motivation

A reciprocally inhibitory (RI) oscillator, also known as a half-center oscilla-
tor, is an oscillatory neuronal circuit that consists of two neurons, each of
which exerts an inhibitory effect on the other. (More generally, a circuit could
be constructed of two populations of neurons, each population inhibiting the
other.) An example of such a circuit is shown in Figure 1A. When the circuit
oscillates, one cell fires for a time while the other is inhibited below threshold,
then the other cell fires for a time while the first is inhibited, and this cycle
repeats itself indefinitely. Such oscillators have been found to be important
components in a number of central pattern generators (CPGs), including the
leech heartbeat CPG (Calabrese, Nadim and Olsen 1995), the Clione swim
CPG (Arshavsky, Deliagina, Orlovsky, Panchin, Popova and Sadreyev 1998),
the lobster gastric and pyloric CPGs (Selverston and Moulins 1987), the leech
swim CPG (Brodfuehrer, Debski, O’Gara and Friesen 1995, Friesen 1989),
the Xenopus tadpole swim CPG (Roberts, Soffe and Perrins 1997), and the
lamprey swim CPG (Grillner, Deliagina, Ekeberg, el Manira, Hill, Lansner,
Orlovsky and Wallén 1995).

A number of mechanisms have been shown to be sufficient to cause an RI
circuit to oscillate. Among these are postinhibitory rebound, spike-frequency
adaptation, and short-term synaptic depression (Reiss 1962, Perkel and Mul-
loney 1974). The first two mechanisms are similar, and we will refer to them
collectively as intrinsic adaptation. Intrinsic adaptation is a property of the
cells themselves, whereas synaptic depression is a property of the connections
between them. Without some sort of adaptational mechanism in the circuit,
one would not expect it to oscillate. This has in fact been proven in one
natural formalization of a non-adaptational RI circuit (Ermentrout 1995).

A number of authors (Wang and Rinzel 1992, Skinner et al. 1994, Lo-
Faro, Kopell, Marder and Hooper 1994, Rowat and Selverston 1997) have
analyzed the behavior of intrinsic adaptation RI circuits by using dynamical
systems techniques. This work has revealed a number of interesting proper-
ties. For instance, Skinner et al. (1994) found that there were at least four
functionally distinct modes of oscillation their model could exhibit: intrinsic
release, intrinsic escape, synaptic escape, and synaptic release. Each of these
modes displayed a different mechanisms of burst termination, and a different
frequency response to parameter variations.

Despite the success of applying dynamical systems methods to intrinsic
adaptation RI circuits, we are aware of no previous attempt to apply the



same techniques to RI circuits in which oscillations arise solely due to synap-
tic depression. Synaptic depression is known to play a role in the oscillation
of at least one well-studied RI circuit, the leech heart CPG, for some modes of
oscillation (Calabrese et al. 1995). There is also evidence of synaptic depres-
sion in CPGs which contain RI subcircuits, including the leech swim CPG
(Mangan, Cometa and Friesen 1994) and the lobster pyloric CPG (Manor,
Nadim, Abbott and Marder 1997). It has been proposed that synaptic de-
pression acts as a ‘switch’ in the lobster pyloric CPG, although it is not
the ultimate source of oscillation in this system (Nadim, Manor, Kopell and
Marder 1999). In addition, there has recently been a great deal of interest in
possible functions of synaptic depression in mammalian neocortex (Abbott,
Varela, Sen and Nelson 1997, Tsodyks and Markram 1997, Galarreta and
Hestrin 1998).

In this paper, we use dynamical systems methods to analyze an RI circuit
in which oscillations arise due to synaptic depression. Using these methods,
and employing certain approximations, we are able to derive a closed-form
expression for the parameter regime in which the model will oscillate. We are
also able to derive closed-form expressions for the period, amplitude, and DC
offset of these oscillations. We find that these synaptic-depression-mediated
oscillations always operate via the synaptic escape mode of Skinner et al.
(1994).

The work presented here grew out of a larger effort to understand how the
leech swim CPG generates oscillations (Taylor, Cottrell and Kristan 2000).
In our earlier work on this subject, we modeled the leech segmental swim
CPG as a set of passive cells with instantaneous synapses between them,
and connectivity roughly consistent with that determined by experiment.
The tentative result of this work was that such a model is able to oscillate,
but that even small perturbations of the synaptic strengths destroy this abil-
ity. We therefore became interested in the possible role of various cellular
and synaptic properties in generating more robust oscillations. One such
property, for which there is some evidence in the leech swim CPG (Mangan
et al. 1994), is synaptic depression.

While this was our original motivation, we should say at the outset that
the purpose of this paper is not to model a known neuronal system, (such as
the leech swim CPG). Our goal in this paper is simply to elucidate some of
the behaviors one would expect of an RI circuit that oscillates via synaptic
depression. It therefore behooves us to study a simple model of such a sys-
tem, since little data is available to justify various possible embellishments.
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Our model makes predictions about the possible modes of oscillation of such
a system, about what parameter regimes permit oscillations, and about how
those oscillations should change as the parameters change. Thus we provide
a set of hypothetical ‘hallmarks’ of RI oscillation via synaptic depression. An
experimenter could then compare these hallmarks with a system under in-
vestigation to evaluate whether it is likely to oscillate via synaptic depression
in the way that is described by our model.

Description of the model

A common simplified model of neuronal dynamics evolves according to the
equation

u̇i = −ui +
∑
j

Wijσ(uj) + bi (1)

There are several ways to derive this equation (or similar equations) from
detailed descriptions of neuronal biophysics, all of which involve some sim-
plifying assumptions (Hopfield 1984, Wilson and Cowan 1972). All variables
in this equation are unitless, owing to the fact that they are nondimensional-
ized versions of physical variables. ui corresponds to the membrane potential
of cell i, Wij to the maximal postsynaptic current due to the synapse from
cell j to cell i (the ‘synaptic strength’), bi to any constant current being in-
jected into cell i. σ(x) is a sigmoid function as defined by Wilson and Cowan
(1972).

We add synaptic depression to this basic model by adding a state variable
dj associated with the synapses from cell j. This variable ranges from zero
to one; at zero the synapse is not depressed at all, and at one the synapse
is completely depressed, and can exert no influence on the postsynaptic cell.
The modified equation for the dynamics of ui is then given by

u̇i = −ui +
∑
j

(1 − dj)Wijσ(uj) + bi (2)

We adopt a form for the dynamics of synaptic depression which is first-order
and linear:

τ ḋi = 1
2
σ(ui) − di (3)

The parameter τ is the time constant of synaptic depression. This form for
the dynamics of synaptic depression is adopted because it is simple and
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captures the basic qualitative features of the phenomenon (Tsodyks and
Markram 1997). The factor of 1/2 in Equation 3 is to ensure that the steady-
state synaptic efficacy ((1 − dj) Wij σ(uj), where uj has been held constant
long enough for dj to come to equilibrium) does not decline with increasing
uj. (In fact, we can generalize by replacing the factor 1/2 by a factor, r, such
that 0 < r ≤ 1/2, and the dynamics do not change qualitatively. We as-
sume r = 1/2 here because this makes the effects of depression large, and for
simplicity.) We remain agnostic about the specific biophysics of depression,
i.e. whether it arises from presynaptic vesicle depletion, presynaptic Ca2+

channel inactivation, postsynaptic receptor desensitization, or some other
mechanism. By using a single time constant, we are implicitly assuming
that the time constants associated with onset and offset of depression are
identical, another simplifying assumption.

Since we are concerned here only with two-cell networks with symmetric
reciprocal inhibition and no self-connections (Figure 1A), we can rewrite the
system equations as

u̇1 = −u1 − (1 − d2)Wσ(u2) + b (4)

u̇2 = −u2 − (1 − d1)Wσ(u1) + b (5)

τ ḋ1 = 1
2
σ(u1) − d1 (6)

τ ḋ2 = 1
2
σ(u2) − d2 (7)

Here W is taken to be nonnegative, since we are interested only in inhibitory
networks. Thus the model has just three parameters: W , b, and τ .

For a range of parameter settings, the two-cell system with synaptic de-
pression is capable of stable oscillation, as shown in Figure 1B. The sigmoid
function used here and in later examples is σ(x) = logistic(4x) = 1/(1+e−4x).
The factor of four is to make the slope at x = 0 equal to one, and thus make
the linear regime approximately one unit wide. The oscillation proceeds in
the following manner: Beginning with cell 1 above threshold and cell 2 below
(marked as interval a in the Figure), cell 1 inhibits cell 2, and the membrane
potential of cell 1 remains relatively constant. This inhibition wanes, how-
ever, due to a buildup of synaptic depression (d1), so the membrane potential
of cell 2 creeps slowly upwards. At the same time, the synapse from cell 2
onto cell 1 is recovering (reflected by the decrease in d2) while cell 2 is below
threshold. Eventually, cell 2’s membrane potential is high enough to cross
threshold and inhibit cell 1 (interval b). Following this quick transition, we
arrive at a state in which cell 2 is above threshold and cell 1 is below (interval
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Figure 1: Circuit schematic and example oscillations of the system. In
Panel A, bars represent excitatory synapses and circles represent inhibitory
synapses. In Panel B, the values of the four state variables of the system, u1,
u2, d1, and d2, are shown versus time, t. All state variables are unitless, owing
to the fact that they are nondimensionalized versions of physical variables. ui

values are membrane potentials measured relative to the potential at which
the synapses are half-activated, this quantity being given in units of the width
of the linear regime of the synaptic activation curve. Time is in units of the
membrane time constant of the cells. The parameters for the simulation in
Panel B are W = 16, b = 9, τ = 16, with σ(x) = logistic(4x) = 1/(1 + e−4x).
See the text for an explanation of the intervals labelled a, b, c, and d.
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c). This situation is the mirror image of the original state, with the roles
of the cells reversed. Thus the membrane potential of cell 1 creeps slowly
upward as the incoming inhibition wanes, until cell 1 crosses threshold and
begins to inhibit cell 2. Again, a switch quickly occurs (interval d), bringing
cell 1 above threshold and pushing cell 2 below. This is the original state,
and so the process repeats itself, and an oscillation is produced.

Analysis of model behavior

In this section we analyze the system to understand in detail how the oscil-
lation ‘works’. This enables us to derive the range of parameters for which
the system oscillates, and how the features of that oscillation (period, am-
plitude, etc.) vary as the parameters are varied. Our analysis relies on two
simplifications:

1. Synaptic depression changes slowly relative to changes in membrane
potential (τ � 1)

2. The sigmoid function can be approximated as a unit step function
(σ(x) ≈ s(x), where s(x) = 1 if x ≥ 0, otherwise s(x) = 0)

Using these two simplifications will allow us to derive approximate closed-
form expressions for the parameter regime in which oscillations are possible
and for the period and amplitude of these oscillations. The first allows us to
apply singular perturbation theory, considering separately the ‘fast’ u system
of Equations 4 and 5 and the ‘slow’ d system of Equations 6 and 7. Further-
more, synaptic depression seems to be about 5-10 times slower than typical
membrane time constants in many systems of interest, among them the leech
swim CPG (Mangan et al. 1994, Calabrese et al. 1995, Manor et al. 1997).
The second simplification allows us to replace a difficult-to-analyze nonlin-
ear function with an easier-to-analyze piecewise constant function. This also
seems to accord roughly with the behavior of known RI circuits: Cells oscil-
late between a hyperpolarized level at which they have little synaptic out-
put, and a highly active level at which they have substantial synaptic output
(Friesen 1989, Calabrese et al. 1995, Manor et al. 1997). Making these two
assumptions results in a reduced system that is piecewise linear, and thus
can be solved exactly.
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The fast system

Assumption 1 implies that the u variables will come to equilibrium much
faster than the d variables, and will remain at approximate equilibrium as the
d variables slowly evolve. If the u variables are approximately at equilibrium,
then u̇1 ≈ u̇2 ≈ 0. Thus Equations 4 and 5 become

−u1 − (1 − d2)Wσ(u2) + b ≈ 0 (8)

−u2 − (1 − d1)Wσ(u1) + b ≈ 0 (9)

We would like to solve these equations for u1 and u2 given d1 and d2, but the
nonlinearity makes it impossible to do this exactly, so we invoke assumption 2,
replacing the sigmoid with a unit step function. Thus Equations 8 and 9
become

−u1 − (1 − d2)Ws(u2) + b ≈ 0 (10)

−u2 − (1 − d1)Ws(u1) + b ≈ 0 (11)

Since the step function can only take on the values 0 or 1, we can break
down Equations 10 and 11 into four separate cases, corresponding to the
four possible values of the pair (s(u1), s(u2)). In each of these cases we can
then solve exactly for the u equilibrium.

Case 00 s(u1) = 0, s(u2) = 0:

In this case u1 < 0 and u2 < 0, and we have

u1 = b < 0 (12)

u2 = b < 0 (13)

In this case, the inequalities imply that this equilibrium of the u system
only exists if b < 0. This makes intuitive sense: b < 0 corresponds to
the situation in which the tonic input is insufficient to elevate the cells’
membrane potential above synaptic threshold.

Case 01 s(u1) = 0, s(u2) = 1:

In this case u1 < 0 and u2 > 0, and we have

u1 = b − (1 − d2)W < 0 (14)

u2 = b > 0 (15)
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Note that the inequalities imply that this solution exists only if b > 0,
and then only if the the values of d2, b, and W satisfy the inequality in
Equation 14. We can reexpress this inequality as d2 < 1−b/W . Again,
this makes intuitive sense: cell 2 is above threshold and cell 1 below,
which can happen only if the tonic input is sufficiently excitatory and
the inhibition onto cell 1 is not too depressed, i.e. only if d2 is below
some specified value. Note that the inequality in Equation 14 implies
that b > 0, since d2 must lie in the interval [0, 1/2].

Case 10 s(u1) = 1, s(u2) = 0:

This case is just the mirror image of the above case. In this case u1 > 0
and u2 < 0, and we have

u1 = b > 0 (16)

u2 = b − (1 − d1)W < 0 (17)

As in the above case, the inequality in Equation 17 can be reexpressed
as d1 < 1 − b/W . Again, this implies that b > 0.

Case 11 s(u1) = 1, s(u2) = 1:

In this case u1 > 0 and u2 > 0, and we have

u1 = b − (1 − d2)W > 0 (18)

u2 = b − (1 − d1)W > 0 (19)

As in cases 01 and 10, the inequalities can be reexpressed as

d1 > 1 − b/W (20)

d2 > 1 − b/W (21)

Intuitively, this case corresponds to both synapses being so depressed
that neither cell is able to inhibit the other below threshold, so both
cells are active. And again, it should be noted that the inequalities in
this case imply that b > 0.

In addition to deriving solutions for the equilibria of the u system, we have
also derived the conditions under which each exists, in terms of the W, b, d1

and d2. Furthermore, for each case above there is a unique u equilibrium,
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so below we will often speak, for instance, of ‘the 01 equilibrium’ or ‘the 11
equilibrium’.

The regions in the (d1, d2) plane where each equilibrium is possible are
shown in Figure 2. Figure 2A shows the rather dull situation which results
when b < 0. In this case, only the 00 equilibrium is possible; both cells are
inactive because they receive no tonic excitation. For b > 0, as shown in
Figures 2B and 2C, the picture is more interesting. The lines d1 = 1 − b/W
and d2 = 1−b/W divide the plane into four ‘quadrants’, each of which allows
for a different set of u equilibria, from the case-by-case analysis above. Only
one equilibrium is possible in three of these quadrants, but in the fourth (the
lower left one) two equilibria are possible: the 01 and 10 equilibria. This is
because d1 < 1 − b/W defines the region of possible (d1, d2) values for the
10 equilibrium (we will call points in this region viable, and the region as a
whole the viable region for that equilibrium), and d2 < 1 − b/W defines the
viable region for the 01 equilibrium, and the lower left quadrant in Figure 2B
is simply the overlap of these two regions.

Figure 2B represents the case where b/W > 1/2, and thus 1−b/W < 1/2.
In this case the lines d1 = 1 − b/W and d2 = 1 − b/W fall within the square
of possible (d1, d2) values (from Equation 3, each of the di’s must be on the
interval [0, 1/2]). If b/W < 1/2, these lines fall outside the square, and the
system no longer has any regions with only one possible u equilibrium. The
system can be in either the 01 or 10 equilibria, regardless of (d1, d2), and
it must be in one of these two equilibria. This has important consequences
for the overall behavior of the system, as will become clear when we consider
the behavior of the slow d system.

The slow system

Now that we have characterized the equilibria of the fast u system for given
d1 and d2, we would like to describe how the slow d variables evolve, given
that the u system is maintained at equilibrium. In Equations 6 and 7, u1 and
u2 appear only via σ(u1) and σ(u2). Utilizing assumption 2, we can write
the slow dynamics as

τ ḋ1 = 1
2
s(u1) − d1 (22)

τ ḋ2 = 1
2
s(u2) − d2 (23)

Each of the u equilibria discussed above corresponds to one of the four pos-
sible values of (s(u1), s(u2)). Which u equilibrium the system currently oc-
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Figure 2: The regions of the (d1, d2) plane for which the various u equilibria
exist. Each panel shows the (d1, d2) plane for a different parameter regime.
The dashed lines in each panel indicate the square to which (d1, d2) is con-
strained. For Panel A, b < 0 and only u equilibrium 00 is possible. Panel B
represents the situation in which b > 0 and b/W > 1/2. In this case there
are three possible u equilibria. Panel C, for which b > 0 and b/W < 1/2, is
similar to Panel B, except that the lines d1 = 1 − b/W and d2 = 1 − b/W
are now outside the square of possible (d1, d2) values.
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cupies will determine the dynamics of the d system. Because of this, we can
draw a separate phase portrait in the (d1, d2) plane for each of these equilib-
ria. This is done in Figure 3. In general, the d dynamics have a single fixed
point, which is stable, at (s(u1)/2, s(u2)/2). However, for u equilibria 01 and
10, this point may or may not be viable, depending on whether b/W > 1/2
or not, i.e. depending on whether Figure 2B or C applies. We concentrate
here on the case depicted in Figure 2B, for which the d fixed points for the
01 and 10 equilibria are not in the respective viable regions. Accordingly,
Figure 3 corresponds with same range of parameters as Figure 2B, in that
1 − b/W > 1/2 in the Figure.

For b > 0 and b/W > 1/2, the 01 and 10 equilibria are not in the viable
region. (Equivalently, we could just say ‘For b/W > 1/2 . . . ’, since this
implies b > 0 given our assumption that W > 0.) In this case the d system
will move toward the fixed point until it hits the edge of the viable region,
where the u equilibrium the system has been ‘tracking’ will disappear. At this
point (u1, u2) will quickly (i.e. on the time scale of the fast system) change to
some other equilibrium of the fast u system. Note that at all points where the
d system can cross from a viable region to a nonviable region, there is only
one u equilibrium to which the fast system can settle after the transition.
Thus the post-transition u equilibrium is uniquely determined in all cases.
Graphically, the current value of (d1, d2) will move within the white region
of one of the panels of Figure 3 until it hits a viable/nonviable (white/dark
gray) border, at which point it will ‘jump’ to the same (d1, d2) point on
another panel, the destination panel being that one for which the current
value of (d1, d2) is in the viable region. Intuitively, the jumps happen when
one of the synapses depresses enough (or recovers enough) that the system as
a whole can no longer support the u-equilibrium the system was previously
in. For instance, if the system is in the 10-equilibrium, but (d1, d2) crosses
the line d1 = 1 − b/W , d1 will now be too large for cell 1 to inhibit cell 2
below threshold, and the system will quickly jump to a state with cell 2 above
threshold.

Attractors

Since the reduced dynamics of (d1, d2) are piecewise linear, they can be solved
exactly. The general solution (including transients) is cumbersome, however,
and does not yield additional insight. Instead of presenting the general solu-
tion, we describe the various steady-state solutions of the system. It should
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Figure 3: The viable regions and phase portraits for the three u equilibria
possible when b/W > 1/2. Points which represent viable states of the system
are in white, nonviable points are dark gray. Example trajectories for each
u equilibrium are shown. The system as shown contains two attractors: a
stable fixed point at s(u1) = 1, s(u2) = 1, d1 = 1/2, d2 = 1/2 and a stable
limit cycle which is comprised of line segments along the line d1 + d2 = 1/2
for s(u1) = 1, s(u2) = 0 and s(u1) = 0, s(u2) = 1. The points in the limit
cycle where the u equilibrium changes are indicated by the arcs connecting
the s(u1) = 1, s(u2) = 0 and s(u1) = 0, s(u2) = 1 planes (Panels A and
B, respectively). The various segments of the limit cycle are also labelled
a, b, c, and d, to correspond with the labelled parts of the oscillation in
Figure 1. The light gray triangles represent regions for which the system will
not oscillate, but rather will eventually transition to the 11 equilibrium.
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be noted that these solutions are exact for the reduced system only, and are
only approximate solutions of the full system. We assess how good these
approximations are in the “Comparison with Simulations” section below.

Limit cycles

For certain values of the parameters, the system is capable of oscillation,
and the mechanism of oscillation can be visualized in Figure 3. For the
10 equilibrium (Figure 3A), the dynamics of (d1, d2) has an attracting fixed
point at (1/2, 0). Therefore (d1, d2) moves towards this point but is unable
to reach it because it is in the nonviable region. Upon reaching the line d1 =
1−b/W , (s(u1), s(u2)) switches to the value (0, 1). (Actually, if d2 > 1−b/W
at the transition, (s(u1), s(u2)) switches instead to (1, 1), and no oscillation
occurs. We discuss this possibility below, but for now assume that d2 < 1 −
b/W at the transition.) For (s(u1), s(u2)) = (0, 1) (Figure 3B), the dynamics
of (d1, d2) have a attracting fixed point at (0, 1/2), and (d1, d2) begins to
move towards this point. Once again the nonviable region intervenes, causing
a switch back to (s(u1), s(u2)) = (1, 0). This cycle then repeats itself.

The fact that this cyclic behavior approaches a stable limit cycle can be
seen by considering the quantity d1+d2. Adding Equation 22 to Equation 23
we have that

d

dt
(d1 + d2) = 1

2
[s(u1) + s(u2)] − (d1 + d2) (24)

Since s(u1) + s(u2) = 1 for both (s(u1), s(u2)) = (1, 0) and (s(u1), s(u2)) =
(0, 1), the sum d1 + d2 monotonically approaches 1/2 as the system switches
back and forth between the u equilibria, and thus the system approaches a
stable limit cycle along the line d1 + d2 = 1/2. This limit cycle is shown in
Figures 3A and 3B. The various phases of the limit cycle are labelled a, b, c,
and d in the Figure to correspond with the same labels in Figure 1.

Since the reduced dynamics are linear between the jump points, we can
write an exact expression for the steady-state oscillatory solution:

d1(t) =

{
dhi exp(−tϕ/τ) tϕ ≤ T/2
1/2 + (dlo − 1/2) exp(−tϕ/τ) tϕ > T/2

(25)

d2(t) =

{
1/2 + (dlo − 1/2) exp(−tϕ/τ) tϕ ≤ T/2
dhi exp(−tϕ/τ) tϕ > T/2

(26)
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where tϕ = mod(t, T ), dhi = 1−b/W , dlo = 1−dhi = b/W −1/2, and T is the
period of the oscillation, given below. This is the steady-state solution for the
initial conditions d1(0) = dhi and d2(0) = dlo, but any initial conditions such
that d1 +d2 = 1/2 will also yield a steady-state oscillation, which will simply
be a phase-shifted version of the above. Essentially, the di’s exponentially
decay from dhi to dlo and back again, in antiphase to one another.

The period of the oscillations is twice the time it takes (d1, d2) to go from
one jump point to the other along the line d1 + d2 = 1/2, thus we can show
that the period is equal to

T = −2τ ln

[
1

2(1 − b/W )
− 1

]
(27)

From Equations 25 and 26 (or by examining the geometry of the limit
cycle, as shown in Figures 3A and 3B) we can derive the amplitude (defined
here as the difference between the maximum and minimum values) and time-
average of the oscillations of the d variables:

Ad = 3
2
− 2 b

W
(28)

〈d〉 = 1
4

(29)

Similarly, we can derive these quantities for the u variables:

Au = 3
2
W − b (30)

〈u〉 = b − 1
4
W + τ

T
(b − W )

[
1 − exp(− T

2τ
)
]

(31)

Equilibrium points

In addition to the stable limit cycle, the system also allows for stable fixed
points. A stable fixed point is located at (d1, d2) = (1/2, 1/2) for the 11
equilibrium (Figure 3C). This corresponds to the situation in which both
synapses are maximally depressed, and neither synapse is able to inhibit the
postsynaptic cell below threshold. In fact all states for which the u system
is at the 11 equilibrium are in the basin of attraction for this fixed point, so
if both d1 and d2 are greater than 1− b/W at any point in time, the system
settles to this fixed point. This reflects the fact that if both synapses get
so depressed that neither cell is able to inhibit the other below threshold,
then both synapses can only get increasingly depressed as time goes on, and
hence approach a state of maximal depression, represented by the fixed point.
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Points in the other u equilibria that are also in the basin of attraction for
this fixed point are shown in light gray in Figures 3A and 3B.

All of the above applies to the b/W > 1/2 case. On the other hand, if
0 < b/W < 1/2, as in Figure 2C, neither the limit cycle or the described
stable fixed point exist. In this case the d equilibria in Figures 3A and 3B
are in the viable region, and are therefore equilibria of the full system. The
system behaves very much like a RI circuit without synaptic depression: It
possesses two mirror-symmetric stable states, one with cell 1 above threshold
and cell 2 below, and one with cell 2 above and cell 1 below.

Oscillatory regime

The size of the viable region for the 11 equilibrium changes as a function of
the parameters, since its borders are defined by the lines d1 = 1 − W/b and
d2 = 1 − W/b. In contrast, the limit cycle (when it exists) is always on the
line d1+d2 = 1/2. As a consequence, the limit cycle exists only for parameter
values such that the valid region of the 11 equilibrium does not overlap the
line d1 + d2 = 1/2. This leads to the constraint that 1 − b/W > 1/4 (or,
equivalently, b/W < 3/4) in order for a stable limit cycle to exist, since the
corner of the viable region for the 11 equilibrium is at (d1, d2) = (1−b/W, 1−
b/W ), and this point just intersects the limit cycle when 1 − b/W = 1/4.
Combined with the fact that b must also satisfy b/W > 1/2 for the limit
cycle to exist, we have the following constraint which must be satisfied for
the system to oscillate:

1
2

< b/W < 3
4

(32)

This defines the region of parameter space in which the system possesses a
limit cycle attractor.

Comparison with simulations

The analysis above applies in the limits of large τ and steep sigmoid function.
However, if ‘typical’ values of the ui’s are such that |ui| � 1, then even if the
linear regime of the sigmoid is of approximately unit width, the sigmoids will
be saturated most of the time, and so will be effectively steep. In the case
of oscillations, therefore, we would expect our approximations to be most
accurate when the amplitude of the oscillations is much greater than one. In
simulations, we find that the oscillations get bigger in amplitude as W and
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b get bigger. (This is fully consistent with Equation 30: if we scale both W
and b by a constant factor, Au will be scaled by the same factor.) Thus we
would expect our approximations give the best agreement with simulations
of the full system for large τ , W , and b.

As a practical matter, however, we find that the results of numerical
simulations of the full system agree fairly well with the analytical predictions,
even when the system is far from these limits. Figure 4 shows the volume of
parameter space for which the model of Equations 4–7 is oscillatory, both in
numerical simulations and according to the analysis. In general, the analysis
gives a good approximation to the oscillatory regime of the full system. Of
course, the closer the system parameters adhere to the assumptions, the
better the predictions are: For large τ the area of the (W, b) plane which is
oscillatory in simulation is closest to the theoretical prediction, with gradually
lessening agreement for lower τ .

To further illustrate the qualitative agreement between simulation and
analysis, Figure 5 shows the period of the system as a function of b, for
a number of discrete values of W and τ . The analytical value given by
Equation 27 shows good agreement with the measured period from numerical
simulations, over a wide range of parameter values. The agreement is again
best for large values of τ , as would be expected. Also, the agreement is
better for large values of W . As W is decreased, Assumption 2 becomes less
appropriate, and the agreement between analysis and numerical experiment
is correspondingly worse. Nonetheless, the agreement between analysis and
simulation is quite respectable even in Panel C of Figure 5, when W is only
a few times greater than one.

Discussion

We have demonstrated an extremely simple RI circuit that oscillates solely
due to synaptic depression. We have analyzed the circuit to elucidate the
mechanisms of this oscillation. Using simple approximations, we have derived
closed form expressions for the region in parameter space in which oscillation
occurs, and for various characteristics of this oscillation. Furthermore, we
have shown that these approximate expressions match simulations of the full
system for a wide range of parameter values.
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Figure 4: The volume of parameter space for which the system oscillates.
Systems which produce stable oscillations in numerical simulations of the
full system are on the inside of the gray ‘wedge’. The planes b/W = 1/2 and
b/W = 3/4, which delineate the analytically determined oscillatory regime
(Equation 32), are also shown, in outline, by solid lines. A log scale is used
for the τ axis to display a large range of possible values. The insets show
the oscillatory regime in the (W, b) plane for fixed values of τ , i.e. horizontal
slices through the three-dimensional volume. The gray region in the insets
is the interior of the wedge shown in the three-dimensional view.
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Figure 5: The period, T , of the oscillation as a function of b for various values
of W and τ . This figure shows the agreement between the analytical value
for the period of the oscillation (Equation 27) and the results of numerical
simulations of the full four-dimensional system. A log scale is used for the
T axis to display periods over several orders of magnitude conveniently. The
dashed lines indicate the limits of the oscillatory regime according to the
analysis. The curves end where the system no longer oscillates, in simulation
or according to the analysis.
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Synaptic depression vs. intrinsic adaptation

A natural question to ask is whether oscillations in our system differ in any
qualitative way from oscillations arising due to intrinsic cellular properties.
On the face of it, we might expect the two mechanisms to lead to similar
behavior. If we consider only the input-output relationship of a single neuron,
intrinsic adaptation and synaptic depression seem very similar in their effects.
In response to a step increase in input, both intrinsic adaptation and synaptic
depression produce a similar effect on the output: a large transient increase
in output followed by a decay to a level intermediate between the initial
level and the peak transient level. This similarity is misleading, however.
The oscillations in our system do differ qualitatively from those arising in
intrinsic adaptation circuits. In order to describe the ways in which they
differ, we will first discuss the modes of oscillation which arise in intrinsic
adaptation RI networks, and then contrast these with the single mode of
oscillation available to our system.

Skinner et al. (1994), building on earlier work by Wang and Rinzel (1992),
analyzed oscillations of RI networks in which the model cells were of the
Morris-Lecar type. These cells include a fast Ca2+ current as well as a slow
K+ current. (Actually, their analysis does not depend on the particular ionic
currents present, but only on the nullcline structure of the dynamics. The
Morris-Lecar cell is simply a well- known model with the required nullcline
structure.) They found that such a model circuit can support oscillation
in one of four distinct modes: intrinsic escape, intrinsic release, synaptic
escape, and synaptic release. Which mode the system is in is characterized
by the events leading up to burst termination, and each mode has particular
features, such as whether the period of oscillation is sensitive to the synaptic
threshold or not. The two ‘intrinsic’ modes of oscillation are made possible by
the presence of the fast Ca2+ current, which makes the membrane bistable
on short time scales. When this current is removed, oscillation can still
occur, but only via the two ‘synaptic’ mechanisms (A.L. Taylor, unpublished
simulations).

In the synaptic escape mode of oscillation, the inhibited cell’s membrane
potential creeps upward until it crosses the synaptic threshold. At this point,
a fast switch occurs in which the inhibited cell becomes dominant and vice-
versa. When the dominant/inhibited transitions take place in this fashion, it
is found that the frequency of oscillations increases as the synaptic threshold
is lowered. In the synaptic release mode, the dominant cell’s membrane
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potential creeps downward until it crosses the synaptic threshold, at which
point the dominant/inhibited switch occurs. In this case, it is found that
the frequency of oscillations decreases as the synaptic threshold is lowered.
Since it is possible for the membrane potential of the dominant cell to creep
downward at the same time as the membrane potential of the inhibited cell is
creeping upward, the mode in which the system oscillates will be determined
by which cell’s membrane potential ‘hits’ the synaptic threshold first.

In our system, on the other hand, only the synaptic escape mode of oscilla-
tion occurs. The membrane potential of the inhibited cell creeps upward due
to the waning synaptic inhibition from the dominant cell, but the membrane
potential of the dominant cell stays constant for the duration of dominance,
since there are no slow currents to cause it to decrease, and it is not under any
synaptic influence from the inhibited cell. Thus dominant/inhibited transi-
tions can only occur when the inhibited cell crosses the synaptic threshold.
In our model, raising b is analogous to lowering the synaptic threshold, and
from Equation 27 we see that increasing b results in an increase in frequency,
as we would expect for the synaptic release mode of oscillation.

Thus oscillation via synaptic depression is qualitatively different from os-
cillation via intrinsic adaptation: synaptic depression oscillations occur only
via a single mode, the synaptic escape mode, whereas intrinsic adaptation os-
cillations can occur via either the synaptic release or synaptic escape modes.
Furthermore, this has immediately relevant functional consequences: The fre-
quency of oscillation in an intrinsic adaptation RI circuit can either increase
or decrease in response to increased tonic excitation, whereas the frequency
of a synaptic depression RI circuit can only increase.

Relation to previous work

The idea that synaptic depression can lead to oscillations in an RI circuit
is not novel. It was suggested in some of the earliest work on spinal CPGs
in mammals (Graham Brown 1911) and since then has been considered as
one of a handful of ‘standard’ mechanisms for generating oscillations in such
a circuit (Reiss 1962, Perkel and Mulloney 1974, Friesen 1994, Ermentrout
1995).

Outside of their role in motor CPGs, RI circuits have also been considered
as a possible mechanism underlying various kinds of perceptual alternations,
such as binocular rivalry and Marroquin patterns (Matsuoka 1984, Blake
1989, Mueller 1990, Wilson, Krupa and Wilkinson 2000). Synaptic depres-
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sion has also been studied in connection with oscillations in larger networks.
A model of rhythmic bursting in developing chick spinal cord relies upon
synaptic depression of excitatory synapses on two separate time scales, one
being that of the within-burst oscillations and the other being that of the
inter-burst period (Tabak, Senn, O’Donovan and Rinzel 2000). Another re-
cent model shows that large networks of randomly connected neurons with
nonlinear synapses (in this case, synapses which both depress and facilitate)
can spontaneously generate ‘population bursts’: times at which nearly all
cells emit a spike, and do so in near-synchrony (Tsodyks, Uziel and Markram
2000).

However, none of the above work examines the case of two cells with
depressing reciprocal inhibition in an analytically tractable model. As a
result, none is able to derive simple expressions for the oscillatory regime,
period, and amplitude of the resulting oscillations. Reiss (1962) considers
a model similar to ours, but with spiking neurons that are not amenable to
analysis. Matsuoka (1984) considers a model that is amenable to analysis, but
incorporating a form of intrinsic adaptation rather than synaptic depression.
Hence, this paper provides a novel analysis of a form of neuronal bursting.
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