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Abstract

The objective of this paper is to apply Support Vector Machines to the
problem of classifying emotion on images of human faces. This well-
defined problem is complicated by the natural variation in people'sfaces,
reguiring the classification algorithm to distinguish the small number of
relevant features from the large pool of input features. Recent experi-
mentation using neural networks has achieved over 85% classification
accuracy. These experiments provide a metric for evaluation of the Sup-
port Vector Machine technique, which was shown to have equivalent per-
formance to neural networks.

1 Introduction

Classification of emotion on faces of actors has traditionally been perceived as a task
only for humans. Given a set of photos, humans will classify emotion consistently 91.7%
[Ekman, 1976] of the time. However, recent work with neural networks have determined
that computers are similarly capable, achieving an accuracy of 85.9% [Dailey et al., 2000].
The objective of this paper is to apply a new technique, Support Vector Machines, to the
problem of emotion classification in an attempt to increase accuracy.

Support Vector Machines (SVMs) view the classification problem as a quadratic optimiza-
tion problem. The technique has successfully been applied to standard classification tasks,
such as text classification [Joachims, 1998a] [Joachims, 1998b] and medical diagnosis
[Morik et al., 1999]. SVMsavoid the “curse of dimensionality” by placing an upper bound
on the margin between the different classes, making it a practical tool for large, dynamic
datasets. The feature space may even be reduced further by selecting the most distinguish-
ing features through minimization of the feature set size [Fung and Mangasarian, 2000].

SVMs plot the training vectors in high-dimensional feature space, and label each vector
with its class. A hyperplane is drawn between the training vectors that maximizes the
distance between the different classes. The hyperplane is determined through a kernel
function, which is given as input to the classification software. The kernel function may



be linear, polynomial, radia basis, or sigmoid. The shape of the hyperplane is generated
by the kernel function, though many experiments select the polynomial kernel as optimal
[Morik et al., 1999][Joachims, 1998b].

This paper will introduce the details of SVMsin Section 2. The software package used to
run the analysisis described in section 3. Section 4 describes the dataset, whichisused in
the experiments detailed in Section 5. Concluding remarks and observations compl ete the
paper in Section 6.

2 Support Vector Machine Details

Support Vector Machines classify data through determination of a set of support vectors,
through minimization of the Structural Risk. The support vectors are members of the set of
training inputs that outline a hyperplane in feature space. ThisI-dimensional hyperplane,
wherel isthe number of features of theinput vectors, definesthe boundary between the dif-
ferent classes. The classification task issimply to determinate which side of the hyperplane
the testing vectorsreside in. Minimizing the structural risk reduces the average error of the
inputs and their target vectors. In the description that follows, training data are classified
into binary classes.

The support vector algorithm approximately performs Structural Risk Minimization. Given
aset of training examples (X1,Y1), (X2,¥2), ---, (X1, V1), if thereis ahyperplane that separates
the positive and negative examples, than the points x which lie on the hyperplane satisfy (w-
Xi) + b =0, wherew is normal to the hyperplane and b is the distance from the origin. The
margin of a separating hyperplaneis defined as the shortest distance to the closest positive
or negative example. The support vector algorithm looksfor the separating hyperplanewith
the largest margin.

SVMs provide ageneric mechanism to fit the surface of the hyperplane to the data through
the use of akernel function. The user may provide afunction, such asaline, polynomial, or
sigmoid curve, to the SV M, which selects support vectors along the surface of thisfunction.
This capability allows abroader range of problemsto be classified, since the user may input
any function, customized to a specific dataset. In the case of linearly inseparable datasets,
the cost of misclassification is accepted through the use of *dack variables'.

An exciting property of SVMs is how the “curse of dimensionality” is avoided by the
upper bound on the VC-dimension. The V C (Vapnik-Chervonkis)-dimension measures the
capacity of the machine (i.e. the ability to learn any training set without error). This bound
does not depend on the dimensionality, but on the separation margin between the classes
[Joachims, 1998b].

3 LIBSVM

The SVM package used for experimentationis LIBSVM. This package is under active de-
velopment and has several advantagesover other packages. LIBSVM isdevel oped by Chih-
Chung Chang and Chih-Jen Lin [Chang and Lin, 2001] and its featuresinclude parameter-
ized kernel functions, different SVM formulations (variabl e optimization algorithms), and
multi-class classification.



3.1 Kerne Functions

The LIBSVM package provides four different standard kernels, which the user defines
during training. The definitions of the kernel functions that follow include the use of pa
rameters such asvy, ¢, and degreethat are defined by the user during training. u isthetesting
vector, and v is the support vector.

| Kernel | Formula |
Linear uv
Polynomial (yuv 4 c)deoree
Radial Basis Function | exp("uV?)
Sigmoid tanh(yuv+ )

3.2 SVM Formulations

LIBSVM alows customization of the formulations, or the decision functions used to clas-
sify the data. Determining the appropriate decision function increases accuracy specific to
the dataset.

| Formulation | Features |
C-Support Vector Classification (C-SVC) C provides an upper bound on the
VC-dimension

nu-Support Vector Classification (nu-SVC) | nu bounds the fraction of training
errors and support vectors

The LIBSVM package also providesa One-class SVM and e- and u-regression formations.
For classification of emotions on faces, One-class SVM is not applicable. Thisformulation
is used to estimate the support vectors in a dataset with high dimensionality, and is not
used for classification. In addition, the e-regression and u-regression formulations (which
bound the error and number of support vectors, respectively) use regression to progres-
sively decrease the error. This method works well for determining probabilities of class
membership, and is not applicable to recognizing emotion classes.

3.3 Multi-classclassification

LIBSVM runsa“one-against-one” classification for each of the k classes. @ classifiers
are actually generated to train the data, where each training vector is compared against two
different classes and the error (between the separating hyperplane margin) is minimized.
The classification of the testing datais accomplished by avoting strategy, where the winner
of each binary comparison increments a counter. The class with the highest counter value
after all classes have been compared is selected.

4 Dataset

The Pictures of Facial Affect (POFA) dataset [Ekman, 1976] was selected for experimen-
tation due to its large number of features and high inter-subject classification accuracy.
The dataset provides a six-way classification (Happy, Sad, Afraid, Angry, Surprised, and
Disgusted) of static human facial photographs. The pictures were digitized, cropped, and
scaled, leaving only the central facial features.



The dataset contained 95 labeled examples from 13 subjects, where each example had
40,600 features. The large number of features is the result of Gabor filtering applied to
each image. Gabor filtering selects a region around each pixel and applies a series of
masks used to determine the contours of that region. This dataset was generated by Matt
Dailey and the processis detailed in [Dailey et al., 2000].

Recent experimentation determined that not all features have an equal effect on the emotion
classification [Padgett and Cottrell, 1998]. Examples include the whites around the eyes
are more representative of fear, and wrinkles around the mouth represent happiness. SVMs
do not provide amechanism for feature selection, and the all features are weighted equally.

5 Experimental Results

The following experiments are designed to answer the following questions:

¢ What is the highest accuracy attainable by SVMs on the POFA dataset?
o Which kernel functions were used to achieve this accuracy?
¢ Which parameters were most influential in the performance of the SYM?

The POFA dataset was divided into twelve subjects for training and one subject for testing.
For each experiment, thirteen tests were performed by varying which individual was used
as the test subject, then the mean accuracy was recorded.

5.1 Binary and Multi-class comparison

The dataset was adjusted for binary classification. One class was selected, for example
happiness. All happy faces were classified as +1, and all non-happy faces were classified
as-1. Theresulting comparisonissimply binary. The next classis selected and the positive
and negative examples are reclassified for training, and the mean score of all six binary
classifications is recorded. Binary classification outperformed the multi-class classifier
provided by the LIBSVM package in al cases, as shown in Figure 1.

The multi-class comparison generates a high number of classifiers, reducing the precision
of the classification, since many irrelevant classifiers are compared and their results are
contribute to the overall classification. Using a binary, single classifier isolates the single
classfrom al other classes, and is shown to have higher performance.

5.2 Kernel and its Formulations

Referring again to Figure 1, the linear kernel for binary classification achieved slightly
higher accuracy than the rest of the kernels. This result indicates that the separating plane
between all of the different classesis simply linear. The polynomial, radial basis, and sig-
moid kernelsall classified the same examples correctly using binary classification, through-
out the cross validation experiments. This result is interesting, since each function is at-
tempting to draw basically aline between the classes, and they accomplish thiswith similar
efficiency.

For the multi-class comparison, one surprising result is the kernel function that generated
the highest accuracy isthe Sigmoid kernel. There was a high degree of variation using the
different kernels with multi-class classification.
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Figure 1: Binary vs multiclass comparison, over al kernels
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Figure 2: Accuracy of Sigmoid kernel adjusting coefficient and gamma

For the multi-class classifications, the C-SVC and nu-SV C formulations were compared,
and C-SVC consistently outperformed the nu-SVC formulation. One reason C-SVC per-
formed so well isdueto the penalty acquired when an exampleis misclassified. The default
penalty of 1 achieved the highest accuracy. The nu-SVC formulation controls the number
of support vectors and bounds the error. Without the additional penalty of misclassifica
tion, the decision values obtained by nu-SVC were not as accurate. This indicates that the
bounds on number of support vectors and the error do not impact the overall accuracy of
the decision functions. Only the C-SV C formulation worked with the binary classification.

5.3 Optimizing the Sigmoid Function: tanh(yuv + c)

Attemptsto optimize the Sigmoid kernel using the multi-class classifier included determin-
ing the center of the tanh function. The coefficient parameter, ¢, in the kernel function
explained above, was varied in this test. The coefficient parameter ¢ adjusts the center of
the tanh function along the x axis. The coefficient has no affect on scaling the sigmoid or
adjusting its y-axis elevation. The default was set to 0 and the default was determined to be
the optimal setting for this experiment. See Figure 2.

The gamma parameter in the Sigmoid kernel scales the width of the sigmoid itself. The
Sigmoid iswider with smaller gammaval ues, and narrow with larger gammavalues. Figure
2 clearly shows a peak at 0.1667, or 1/6. This is 1 over the number of classes. This
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Figure 3: Accuracy by varying degree of Polynomial kernel

value essentially normalizesthe support and testing vectorsto arestricted rangeto optimize
performance.

5.4 Polynomial Degree

Previous papers [Morik et al., 1999][Joachims, 1998b] showed optimal performance with
the polynomial kernel, which lead to this experiment adjusting the degree of the polynomial
to try to increase accuracy. For the binary classification case, the optimal hyperplanewas a
line, independent of the polynomial degree. Thisisindicated by its steady accuracy shown
in Figure 3, with an insignificant peak at degree = 1. For the multi-class classification, the
graph shows a peak and steady decline of accuracy at degree = 1.

5.5 Neural Net Comparison

Determining the overall performance of the SYM requires comparison against a proven
technique, such as neural networks. In arecent experiment [Dailey et al., 2000], a single
layer neural network classified the POFA dataset with 85.9% accuracy. This network con-
tained 216 input units, 6 output units, and no hidden units. The time for training was 210
seconds and the time for classification was 0.26 seconds/pattern. The peak accuracy for
SVMsis 85.7%. Time for training is comparable with 223 seconds, and each pattern was
classified on averagein 62 seconds.

Compared to the SVM techniques, neural nets achieve similar accuracy in lesstime. This
difference in time can be immediately explained by the number of features which were
selected for training and testing. The neural net in the paper above selected 216 features
using Principal Components Analysis. The smaller input size significantly reduced the
classification time.

6 Concluding Observations

The objective of this paper is to determine the highest possible accuracy attainable with
SVMs classifying the POFA dataset, and compare its performance against recent experi-
mentation. The large number of features and well-defined classifications seemed to be a
rich dataset for SVMs. Experimental results determined that for all binary classifications,
SVMs achieved comparable performance to single-layer neural networks. The highest ac-



curacy value obtained by the SVMswas using the Linear kernel with the C-SV C formula-
tion, generating a mean accuracy of 88.1%. The standard deviation of 2% is comparableto
the neural net’s performance of 85.9% accuracy. We believe that higher accuracy may be
obtained through several optimizations.

One possible optimization would be designing a kernel function that will specifically han-
dle asix-way classification. Thiswas suggested by Olvi Mangasarian in a personal corre-
spondence.

This dataset was not optimized for this implementation of Support Vector Machines. Re-
duction of the number of features may lead to higher performance, and certainly reduce
the classification time. Many features in the POFA are inherently noisy, due to the natural
variations in human faces. This would require a feature selection technique, similar to a
minimum set of features suggested by [Fung and Mangasarian, 2000].
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