
Designers use built-in self-test (BIST) in state-

of-the-art chip designs to improve test quality and

reduce the cost of test development and appli-

cation. Despite such benefits, designers have not

adopted BIST as the primary test methodology.

Fault diagnosis in a BIST environment is prob-

lematic because only limited information is avail-

able in a compact signature like that produced

with BIST.

Previous techniques have focused on

extracting information hidden in the BIST sig-

nature, such as identification of fault-detecting

test vectors.1-3 However, the test signatures’ high-

ly compact nature, coupled with the inability

to precisely model fault behavior, have con-

fined such techniques to faults detected by

only a few vectors.

For faults detected by more than a few vectors,

aliasing problems prevent designers from extract-

ing all the relevant information. In a scan-based

BIST environment, fault-detecting vectors typically

outnumber fault-embedding scan cells (those in

which fault effects are manifested). However,

such scan cells are still plentiful enough to thwart

techniques for extracting diagnostic information

directly from the BIST signature.

Consequently, researchers have attempted

to gather more information by repeating the

same test with different applications while

adjusting signature analyzer parameters or

observation outputs or by increasing signature

register size.4-9 In particular, partitioning-based

diagnosis schemes4,5,7 have been highly effec-

tive—and are possibly the only viable solu-

tion—for large industrial circuits.

Partitioning-based schemes provide effec-

tive fault diagnosis in a scan-based BIST envi-

ronment, but generating the partitions using

pseudorandom approaches makes it difficult to

predict diagnosis results.7 Both the linear feed-

back shift register (LFSR) parameters used for

this partitioning and the faulty cell locations

affect fault diagnosis time. Furthermore, the

randomness of LFSR-generated partitions

makes incorporating design-specific informa-

tion into the diagnosis procedure difficult.

Deterministically partitioning scan cells

eliminates these complications, but identifying

cost-effective hardware implementations of
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Identifying fault-embedding scan cells is a

significant challenge for fault diagnosis in scan-

based BIST. Deterministic partitioning techniques

provide cost-effective solutions to this problem.

Both mathematical solutions and simulations on

hardware implementations demonstrate the

effectiveness of these techniques.
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such deterministic partitioning imposes a for-

midable challenge. In this article, we address

such challenges by proving that deterministic-

partitioning schemes are possible, and we

describe their low-cost hardware implementa-

tions. Our proposed deterministic-partitioning

approaches are capable of incorporating

design and fault information, further reducing

diagnosis time and enabling complex emerg-

ing fault models. We initially establish a quan-

titative measure for the partitions’ diagnostic

quality through correlation analysis, which indi-

cates that a uniform overlap throughout the

entire partitioning structure results in high-qual-

ity partitions. Cost-effectively generating such

partitions in hardware requires regular, uni-

formly overlapping partitioning structures.

Partitioning-based diagnosis
A partitioning-based diagnosis scheme suc-

cessively groups scan cells into a set of nonover-

lapping partitions. Each set is a partition group.

The test signatures corresponding to each par-

tition yield valuable diagnostic information;

each fault-free signature signals the absence of a

fault in all cells within the corresponding parti-

tion. A single partition group, however, cannot

adequately identify fault-embedding scan cells,

because all cells in a partition that exhibits a fail-

ing signature are potential culprits. Conse-

quently, test engineers must repeatedly apply

the same test set but with differing partition ele-

ments. This process incrementally refines the

candidate failures. Each application of the same

test set, with repartitioned scan cells, also con-

stitutes a partition group.

Figure 1 depicts a possible scan-cell-parti-

tioning hardware implementation using an

LFSR and an initial value register (IVR).7 To gen-

erate each partition in a particular partition

group, the circuit loads the LFSR from the IVR.

When the partition group is completely gener-

ated, the circuit updates the IVR with the LFSR’s

current state. The comparator (comprised of

XOR and NOR gates) compares the test counter

value to an arbitrarily selected set of the LFSR’s

r outputs and, when the value matches the out-

puts, compacts the corresponding scan cell out-

put. For each partition, the test counter has a

unique value, which distinguishes each parti-

tion in a partition group. Updating the IVR at

the end of each partition group guarantees the

distinctiveness of the partition groups because

LFSR-generated sequences do not repeat.

Figure 2 is a pseudocode segment of the
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Figure 1. LFSR-based scan cell selector.7

for each partition group c

for each partition b in group c

shift_counter = 0, LFSR = IVR

while shift_counter != N

if r bits of LFSR = b

compact the current output

shift_counter++

IVR = LFSR

Figure 2. LFSR-based partitioning

procedure.



diagnosis procedure for LFSR-generated parti-

tions. In this pseudocode, N and b correspond

to the scan chain’s size and test counter’s

value. The pseudocode is specific to LFSR-

based partitions with scan cells indexed by

scan order.

Figure 3 shows a canonical form, with gen-

eralized cell selection logic and scan cell iden-

tifiers, for the partitioning-based scheme. In this

canonical formulation, P(c, b, i) indicates the

numeric identifier of a scan cell in location i,

partition b, and partition group c. The permu-

tation function, π, provides distinct numeric

identifiers for the scan cells.

Diagnostic quality of partitions
Although partitions inside a given partition

group do not overlap, partitions belonging to

distinct partition groups overlap in various

numbers of scan cells, depending on how the

partitions were generated. Overlap between

partitions increases diagnostic time because it

reduces the information available if both parti-

tions happen to be fault free. A partitioning

scheme polluted by an excessive number of

highly overlapping partitions unnecessarily

lengthens the diagnosis procedure.

We can analytically determine the amount

of overlap for two partitions in distinct parti-

tion groups for any partitioning scheme in

which a group’s partitions are disjoint and

cover all scan cells in the scan chain. A parti-

tion’s overlap with the union of all partitions

in a distinct group is equal to the partition size,

because the partition group covers all N scan

elements. The expected partition size is N/B,

where B is the number of partitions in a parti-

tion group. The expected overlap of one par-

tition in the group is the expected partition

size times the probability of selecting that par-

tition: (N/B)(1/B) = N/B2.

Because the expected overlap value is iden-

tical for any partition generation scheme, the

cause of possibly differing partition quality is

found in higher-order measures such as over-

lap deviations. We convert overlap deviations

into a single quality measure by calculating the

root mean square (RMS) of the deviations.

Although we can make deterministic partitions

exhibit an RMS of 0 as long as the partition over-

lap uniformly equals the expected overlap

value, we can show that the RMS for LFSR-gen-

erated partitions is nonzero and varying.

We compute the RMS value for partitionings

generated by all primitive polynomials of

degree 14 and 15. (There are 756 primitive

polynomials of degree 14, and 1,800 of degree

15.) Figure 4 provides the expected overlap

and the RMS deviation in overlap values for

scan cell length and partition counts that result

in an expected overlap of 4, 8, and 16 scan

cells. The overlap among partitions signifi-

cantly varies from the expected value with

RMS deviation ranging from 25% to 50% of the

expected overlap. However, the RMS deviation

varies only slightly depending on the LFSR

width. 

The RMS deviations depicted in Figure 4

constitute the average deviation value for all

primitive polynomials of corresponding degree.

Although RMS values indicate significant over-

lap deviations, it is unclear whether such

deviations translate into diagnostic time degra-

dations. Figure 5 shows the results of our cor-

relation analysis to validate the RMS measure’s

diagnostic quality.

For each simulation parameter (the number

of cells, the number of partitions, and the LFSR

size) in Figure 4, we simulated the diagnosis

procedure to determine the expected fault

diagnosis time for each primitive polynomial.

Furthermore, we calculated the correlation

between the RMS overlap deviation and the

expected fault diagnosis time. The results

depicted in Figure 5 clearly show a significant,

positive correlation between the expected fault

diagnosis time and the RMS partition quality

measure we’ve proposed.
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for each partition group c

for each partition b in c

shift_counter = 0, i = 0

while shift_counter != N

if P(c, b, i) = 

π(shift_counter)
compact the current output

i++

shift_counter++

Figure 3. Canonical form of the partitioning

procedure.
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Constructing deterministic
partitions

Reduced partition overlap reduces diagno-

sis time. Accordingly, as only deterministic par-

titioning can minimize overlap variation, we

can generate deterministic partitions that

achieve an RMS value of 0 and so are far bet-

ter than LFSR-based schemes at aiding fault

diagnosis.

A partitioning with 0 RMS overlap deviation

must have uniformly minimal overlap with all

partitions, strictly constraining partition struc-

ture. If the number of partitions in a partition

group equals the partition size, S, where S =

N/B, a partition must have a single overlap to

each partition inside every other partition

group. This constraint sharply limits the num-

ber of attainable partition groups, making their

identification and construction complex.

Mathematical foundation
Table 1 illustrates a deterministic partition-

ing that satisfies the aforementioned constraints

for a scan chain size of 25 cells. The scan chain

comprises five partition groups, each consist-

ing of five partitions. Each row in Table 1 cor-

responds to a partition group with five

partitions. We can easily verify that the number

of overlapping cells for these partitions consis-

tently equals 1 for partitions in distinct partition

groups and 0 for partitions in the same group.

We can trace the minimal overlap property, at

least for a single partition, by observing in bold

all the elements of the first partition of the first

partition group in this table.

Although such partitions have minimal over-

lap, generating them in hardware is difficult.

The relationships across groups yield the recur-

rence relation in equation 1. Equation 2

denotes a simple definition of the initial parti-

tion group. In these and the following equa-

tions, assume that c, b, and i vary between 0

and S – 1 (in Table 1, S = 5).

P(c + 1, b, i ) = P(c, [b + i] mod S, i ) (1)

P(0, b, i ) = bS + i (2)

Although these equations are straightforward,

generating the partitions directly through these

equations requires high area overhead because

of recursion. A direct implementation of a recur-

rence relation requires that the previous result

be stored. A simple hardware implementation

for the partition groups in Table 1 requires a solu-

tion of the recurrence relations in equations 1

and 2. Recursive application of equation 1’s

recurrence relation, starting from the initial par-

tition group of equation 2, results in the follow-

ing nonrecursive partition equation:

P(c, b, i ) = ([ci + b] mod S )S + i (3)

The existence of partitions with minimal over-

lap, as Table 1 shows, is not coincidental. The

following theorem shows that partition groups

generated by equation 3 always exhibit the min-

imal overlap of 1 for any prime number S.

Theorem: Partitions generated by equation 3

have an overlap of 1 whenever they are in dis-

tinct partition groups, and have no overlap

whenever they are in the same partition group

(for S prime; and c, b, and i each less than S).

Proof: For the elements of two partitions, 

P(c1, b1, i1) and P(c2, b2, i2), to overlap, the fol-

lowing equality must be satisfied:

P(c1, b1, i1) = P(c2, b2, i2) (4)
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Table 1. Deterministic partitioning of a 25-cell scan chain. (Bold numbers identify the overlap with partition 0 in group 0.)

Partition group         Partition 0          Partition 1         Partition 2        Partition 3         Partition 4     

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 6 12 18 24 5 11 17 23 4 10 16 22 3 9 15 21 2 8 14 20 1 7 13 19

2 0 11 22 8 19 5 16 2 13 24 10 21 7 18 4 15 1 12 23 9 20 6 17 3 14

3 0 16 7 23 14 5 21 12 3 19 10 1 17 8 24 15 6 22 13 4 20 11 2 18 9

4 0 21 17 13 9 5 1 22 18 14 10 6 2 23 19 15 11 7 3 24 20 16 12 8 4
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Because |i1 – i2| < S, equation 4 holds if i1 = i2 = i.

Therefore, the overlap condition reduces to

(5)

For partitions in different partition groups (c1 ≠
c2) we need to analyze only two cases:

� b1 = b2 (there is a unique solution, i = 0); and

� b1 ≠ b2 (a unique solution exists for S prime).

For partitions inside the same partition group

(c1 = c2), overlap necessitates equality of b1 and

b2; a partition can only overlap with itself inside

a partition group.

We have shown that partitions within dis-

tinct partition groups have an overlap of 1, and

that partitions within the same group do not

overlap. Consequently, the partitions generat-

ed by equation 3 fulfill the minimal overlap

requirement and have 0 RMS overlap deviation.

Monotonic partitions
We can simplify the hardware implementa-

tion corresponding to the pseudocode in Figure

3 by choosing π as the identity function.

However, this selection necessitates that function

P(c, b, i) be monotonic in parameter i, because

the scan cells can be accessed only sequentially

in a regular scan shift operation. Table 1 shows

that not all partitions are monotonic.

Because ordering numeric identifiers inside

a partition has no restrictions, we can easily

reorder them to satisfy the monotonicity

requirement. However, arbitrarily reordering

these identifiers destroys the regular recurrence

relations. To generate partitions with low-cost

hardware implementation, we investigate the

structure of partitions generated by equation 3,

and, with that structure, provide an alternative

partitioning for which the increasing order

property holds. Determining the structure of

partitions generated by equation 3 requires

grouping the scan cell identifiers according to

their remainder and quotient to S.

All partitions in Table 1 except those in the

first row include one element from each of the

remainder and quotient groups. Partition ele-

ments are always composed of elements of the

remainder groups 0, 1, 2, …, S – 1. We can gen-

erate elements of the first partition of each

group by selecting an element from the quo-

tient groups in increments of 0, 1, 2, …, S – 1.

We can generate elements of the higher num-

bered partitions by rotating the quotient selec-

tion sequence to the right. Besides the partition

in Table 1, all such partitions generated by

equation 3, for S prime, exhibit the same regu-

lar structure. We call this class of partitions

remainder uniform partitions.

From these observations, we can build par-

titions with the monotonically increasing order

property by interchanging the quotient and the

remainder in the partition structure. We call this

new class of partitions quotient uniform parti-

tions. Table 2 shows an example, for S = 5. A

comparison of Tables 1 and 2 reveals that,

except for the first group, both partitionings are

identical, yet they order partition groups and

partitions differently. Consequently, in both

tables, the total number of partition groups sat-

isfying the minimal overlap property is 6.

Indeed, exhaustive computer simulations for S

up to 7 indicate that for a scan size of S 2 there

are at most S + 1 partition groups satisfying the

minimal overlap criterion.

We obtain the partition equation for the

quotient uniform partitions by interchanging

the terms corresponding to the quotient group,

(ci + b), and remainder group, i, in equation 3:

  
c c i b b

S

1 2 2 1−( ) = −
mod

47January–February 2002

Table 2. Quotient-uniform-deterministic partitioning of a 25-cell scan chain.

Partition group         Partition 0          Partition 1         Partition 2        Partition 3         Partition 4     

0 0 5 10 15 20 1 6 11 16 21 2 7 12 17 22 3 8 13 18 23 4 9 14 19 24

1 0 6 12 18 24 1 7 13 19 20 2 8 14 15 21 3 9 10 16 22 4 5 11 17 23

2 0 7 14 16 23 1 8 10 17 24 2 9 11 18 20 3 5 12 19 21 4 6 13 15 22

3 0 8 11 19 22 1 9 12 15 23 2 5 13 16 24 3 6 14 17 20 4 7 10 18 21

4 0 9 13 17 21 1 5 14 18 22 2 6 10 19 23 3 7 11 15 24 4 8 12 16 20



P(c, b, i) = iS + (ci + b) mod S (6)

Generalization
We have shown the existence of determin-

istic partitioning schemes with uniform over-

lap and monotonicity, although for prime

partition sizes. The primality constraint can be

eased for partition size because the proof of

the uniform overlap theorem uses the con-

straint solely to guarantee the uniqueness of

the inverse of the term c1 – c2. With a modulo

arithmetic, the integers modulo a prime num-

ber constitute a finite field—a Galois field

denoted GF(s)—which guarantees that every

field element except 0 has only one inverse.

We can thus achieve uniformly overlapping

monotonic partitions for any finite field in

equation 6. Furthermore, (ci + b) constitutes

the sole term needing evaluation in the finite

field. Consequently, with the following gener-

ic partition equation, we can generate uni-

formly overlapping monotonic partitions:

P(c, b, i) = iS + (c ⊗ i) ⊕ b (7)

In equation 7, ⊗ and ⊕ denote the two finite-

field arithmetic operators. One possible choice

for the finite field that provides partition sizes

equal to those generated by pseudorandom

partitioning is the extension fields of GF(2).

Hardware implementation of
deterministic partitions

Although so far our analysis has focused

largely on monotonic implementations, we

imposed monotonicity because of the monoto-

nicity constraint on the scan cell ordering.

Under multiple scan chains and more complex

control, we can drop this constraint on scan cell

ordering, and thus enable nonmonotonic imple-

mentations. Here, we show tapped implemen-

tations for nonmonotonic partitions and outline

cost-effective hardware implementations both

for a prime number of partitions and for parti-

tion sizes corresponding to powers of two.

Nonmonotonic implementation
We can generate nonmonotonic partitions

without modifying the regular scan shift opera-

tion, because each partition has an element

from every remainder group in remainder uni-

form partitions. The partitions’ nonmonotonic-

ity necessitates nonsequential access to the

scan chain. Tapping the scan chains so that

each scan cell group between taps has the

same quotient group can circumvent the prob-

lems associated with such nonsequential

access. Figure 6 shows our proposed tap imple-

mentation, which directly mimics the parti-

tions’ structure. Access to the scan chain’s

internal points provides direct access to quo-
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tient groups, and the shifting process affords

access to remainder groups. Because partitions

have a single element from each remainder

group, the output multiplexer can select the

correct quotient group when necessary.

For example, for the third partition of the

fourth partition group in Table 1, the multi-

plexer receives the select signals 3, 1, 4, 2, and

5. At the end of the first cycle, the multiplexer

selects scan cell 10, which is in remainder

group 0. After the shift operation, the content

of scan cell 1, which is in remainder group 2, is

shifted into scan cell 0, and the multiplexer

selects it for compaction. Another shift opera-

tion shifts the content of scan cell 17 into scan

cell 15, which the multiplexer consequently

selects. After five cycles, all necessary scan cell

outputs for the third partition have been com-

pacted at the output.

If extra signature compactors are available,

they can produce signatures in parallel for all

partitions in a partition group by connecting the

output of the last scan cell to the input of the first

scan cell. The result is sharply reduced diagno-

sis time, despite some associated hardware

overhead. Although it might seem that diagno-

sis time is further reduced by a factor of S, the

reduction is actually only a factor of S/2. The

reason is that the connection from the last to the

first scan cell eliminates the capability of shift-

ing in new patterns while shifting out results.

Although the tapped implementation lets us

generate nonmonotonic partitions with seem-

ingly low-cost hardware, the routing overhead,

especially for a higher number of partitions, can

be high. Therefore, we also address hardware

implementation of monotonic partitions, which

do not suffer from high routing overheads.

Monotonic implementation
The partitions generated with modulo arith-

metic, defined by equation 6, can be generat-

ed in hardware via the generic pseudocode of

Figure 3. This partition generation hardware

does the P(c, b, i) implementation directly by

using two multipliers, two adders, and a mod-

ulo operator. We call this an absolute-value-

based implementation. Figure 7, which shows

an alternative, improved implementation using

difference D = P(c, b, i + 1) – P(c, b, i), corre-

sponds to the pseudocode of Figure 8 (next

page). D reduces to c + S unless [c(i + 1) + b]

mod S < (ci + b) mod S, in which case it reduces

to c. This successive-difference-based hardware

implementation requires significantly fewer
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for each partition group c

for each partition b in group c

ShiftCounter = 0––

Add = b, ShiftIncrement = b

while ShiftCounter != N

Until ShiftIncrement = 0

ShiftIncrement––, ShiftCounter––

compact the output of the current cell

Add = Add + c

If Add >= S

Add = Add – S

ShiftIncrement = c

Else

ShiftIncrement = c + S

Figure 8. Successive-difference-based partitioning procedure.



hardware components, compared to the

absolute-value-based implementation.

In the modified implementation, both register

Add and counter ShiftIncrement are set to

the first element of the current partition, which 

is always equal to the partition number.

Subsequently, register Add continuously holds

the current remainder group of the current ele-

ment in the partition. The current remainder

group is updated whenever that element is

reached in the scan chain. The circuit reloads the

ShiftIncrement counter with the difference

between P(c, b, i + 1) and P(c, b, i) upon reach-

ing 0. After the entire scan chain is shifted, the

process restarts. At the end of the test application

session, the signature is shifted out, the partition

count is incremented, and the process repeated.

GF(2) implementation
We can implement, in both absolute-value-

and successive-difference-based approaches,

partitions that use the GF(2) extension fields.

Here, however, we outline an implementation

in which we use a scheme based on successive

differences to calculate the term that is evaluat-

ed in binary arithmetic, iS; and we use an

absolute-value-based approach to implement

the term, (c ⊗ i) ⊕ b, that uses extension fields

of GF(2).

The pseudocode in Figure 9 implements

term iS through successive differences and

directly implements term (c ⊗ i) ⊕ b. We cal-

culate c ⊗ i, however, by progressively employ-

ing an LFSR. We can generate the

elements of the field GF(2k) with a

primitive polynomial of degree k

starting from α, which is one of

the primitive elements of GF(2k),

and successively multiplying it by

α. Therefore, the elements of

GF(2k) can be ordered as 0, 1, α,

α2, …. Of course, once the degree

of the elements equals k, the

remainder with respect to the

primitive polynomial must be eval-

uated. If we follow the same

sequence during partition genera-

tion, term ci results in sequence 0,

c, cα, cα2, …. We evaluate this

sequence by employing a k-bit

LFSR with the same primitive poly-

nomial that generates field GF(2k) and with the

initial seed of c. An XOR operation can simply

add b to c ⊗ i.

As illustrated in Figure 9, whenever counter

s identifies the condition that scan cell iS is

reached, the circuit initializes counter gf to

(c ⊗ i) ⊕ b. Whereas counter s is a binary

modulo 2k counter, counter gf is implement-

ed as an LFSR counting in reverse. We aug-

ment the reverse-counting LFSR such that it

visits the all-zeros state after the state 0 … 01.

Because counter s is a modulo 2k counter, we

can eliminate it from the circuitry by employ-

ing the shift counter’s least significant k bits.

Figure 10 depicts a hardware implementation

corresponding to the pseudocode given in

Figure 9.

IEEE Design & Test of Computers

for each partition group c

for each partition b in group c

ShiftCounter = 0

s = S–1

gf = b

ci = c

While ShiftCounter != 0

ShiftIncrement––

if gf == 0

Compact current output

if s == 0

gf = ci + b

s = S–1

ci++

Figure 9. GF(2k)-based partitioning

procedure.

Counter gf

Counter ci

Scan chain
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Pattern
counter

Partition
counter

Shift
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Figure 10. Hardware implementation of GF(2k)-based partitions.
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Hardware overhead
The partitioning-based diagnosis schemes,

whether pseudorandom or deterministic, require

additional hardware atop the regular BIST for

scan cell selection. Here we compare additional

hardware requirements for LFSR-based parti-

tioning7 and for two deterministic-partitioning

schemes based on modulo and finite-field arith-

metic. The LFSR-based scheme employs one

LFSR, one register, one log(S) bit comparator,

and one log(N/S) bit counter. Although the sizes

of the LFSR and the register are typically user

defined, LFSRs of size 16 are satisfactory.7 The

deterministic-partitioning scheme based on mod-

ulo arithmetic uses one log(S) bit register, two

[log(S) + 1] bit adders and comparators, two

log(S) bit counters, one [log(S) + 1] bit counter,

and three multiplexers. Finally, the partitioning

scheme based on finite-field arithmetic exploits

four log(S) bit LFSRs, one log(S) bit comparator

and multiplexer, and a few AND and XOR gates.

Whereas the modulo-arithmetic-based partition-

ing scheme has the highest hardware overhead,

the finite-field-arithmetic-based partitioning

scheme’s hardware overhead is comparable to

that for pseudorandom partitioning.

Simulation results
We ran a set of simulation experiments to ver-

ify the effectiveness of our proposed partitioning

techniques. We compared the deterministic-par-

titioning techniques to the best pseudorandom

partitioning techniques available: a pseudoran-

dom partitioning with superposition,5 and one

with no superposition.7 In comparing the deter-

ministic-partitioning techniques to our earlier

results with superposition,5 we incorporated the

superposition principle to conduct a fair com-

parison. We exploited the superposition princi-

ple in earlier research to generate composite

partitions from already examined partitions. In

turn, this increased the number of partitions

without additional application of the test. An

increased number of partitions boosts the infor-

mation extracted without additional test time

and so reduces diagnosis time.5

Improvements for GF(s)
We began our simulations for partitions

using modulo arithmetic. In this case, we per-

formed simulations on two prime number par-

titions, 17 and 31. A fair comparison suggests

that the number of partitions be kept equal, yet

the two compared schemes display conflicting

requirements. We selected primes 17 and 31

because they are adjacent to the correspond-

ing powers of 2 (16 and 32)—LFSR-based par-

titioning forces the number of partitions to be

powers of 2—and because they bestow a slight

advantage on alternating schemes.

Figure 11 shows the improved diagnosis

time for 31 deterministically partitioned parti-

tions compared to 32 pseudorandomly parti-

tioned partitions, and for 17 deterministically

partitioned partitions compared to 16 pseudo-

randomly partitioned partitions. The figure

shows improvement for both full diagnostic

resolution (all fault-embedding scan cells are

exactly identified) and diagnostic resolution

of 0.1 × error count. (The diagnosis resolution
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Figure 11. Diagnosis time improvements for B = S = 17

(a) and B = S = 31 (b).



metric of 0.1 × error count, originally suggest-

ed by Rajski and Tyszer,7 is the time at which

many fault-free scan cells remain ambiguous

and still reside in the candidate-failing scan

cell set.)

We have used Rajski and Tyszer’s results7

whenever available, as with some of the diag-

nosis results for the resolution metric 0.1 × error

count; otherwise, our results came from imple-

menting the outlined procedure.

Our results indicate that deterministic parti-

tioning consistently reduces diagnosis time.

The improvement is best for full diagnostic res-

olution, smaller partition sizes, and no super-

position. Whereas pseudorandom partitioning

easily exhibits good diagnostic resolution up to

a point, full resolution benefits significantly

from deterministic techniques.

Improvements for GF(2)
Additional simulation experiments performed

on the partitions generated using the extension

fields of GF(2), displayed similar improvements

(as can be observed in Figure 12), affected by the

same parameters: superposition, partition size,

and number of errors. The number of partitions

did not exactly match the pseudorandom case

in previous experiments. But in the GF(2) simu-

lations, the number of partitions exactly matched

the number of pseudorandom partitions, pro-

viding an exact comparison.

Diagnostic time variations
We also conducted further experiments to

compare the predictability of diagnosis proce-

dures. We exploited the standard deviation of

the diagnostic times as a measure of predict-
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(a) and B = S = 32 (b).
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Figure 13. Improvements in diagnostic time variations

for B = S = 16 (a) and B = S = 32 (b).



ability. Figure 13 shows that the variations in

diagnosis time for the deterministic case are

lower than those for the pseudorandom case.

Because superposition effectively reduces the

effect of varying overlaps, it also lessens

improvements in diagnosis time predictability.

ALTHOUGH IMPLEMENTING deterministic parti-

tioning in hardware is challenging, especially

within low area overhead, the regular partition

structures we’ve identified enable low-cost hard-

ware implementations. Implementation regu-

larity, associated reduction in hardware

overhead, significant reduction in average diag-

nostic time, and imperviousness to diagnostic

time deviations make deterministic partitioning

a powerful new BIST-based diagnosis tool.

The importance of BIST-based diagnosis will

undoubtedly increase as designers exploit its

potential for incorporating design and fault effect

information. We are investigating methodologies

to incorporate such design and fault effect infor-

mation in deterministic partitioning. �
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