
Automated Soundness Proofs
for Dataflow Analyses and Transformations via Local Rules

Sorin Lerner Todd Millstein
Univ. of Washington UCLA

lerns@cs.washington.edu todd@cs.ucla.edu

Erika Rice Craig Chambers
Univ. of Washington Univ. of Washington

erice@cs.washington.edu chambers@cs.washington.edu

ABSTRACT
We present Rhodium, a new language for writing compiler
optimizations that can be automatically proved sound. Un-
like our previous work on Cobalt, Rhodium expresses opti-
mizations using explicit dataflow facts manipulated by lo-
cal propagation and transformation rules. This new style
allows Rhodium optimizations to be mutually recursively
defined, to be automatically composed, to be interpreted
in both flow-sensitive and -insensitive ways, and to be ap-
plied interprocedurally given a separate context-sensitivity
strategy, all while retaining soundness. Rhodium also sup-
ports infinite analysis domains while guaranteeing termina-
tion of analysis. We have implemented a soundness checker
for Rhodium and have specified and automatically proven
the soundness of all of Cobalt’s optimizations plus a variety
of optimizations not expressible in Cobalt, including An-
dersen’s points-to analysis, arithmetic-invariant detection,
loop-induction-variable strength reduction, and redundant
array load elimination.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification – correctness
proofs, reliability, validation; D.3.4 [Programming Lan-
guages]: Processors – compilers, optimization; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs – mechanical verification

General Terms: Reliability, languages, verification.

Keywords: Compiler optimization, automated correctness
proofs.

1. INTRODUCTION
Compilers are an important part of a programmer’s com-

puting infrastructure. If the compiler doesn’t generate cor-
rect code, the whole application being compiled is compro-
mised. As a result, much work has been directed toward
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making compilers trustworthy, including testing, transla-
tion validation [25, 23], credible compilation [26], and man-
ual proof techniques [8, 9, 37, 14, 17, 10]. In previous
work [19], we presented a system in which optimizations
could be checked for soundness automatically. An optimiza-
tion is sound if it is guaranteed to preserve the semantics
of any program it optimizes. Our solution was centered on
a domain-specific language for writing optimizations, called
Cobalt. An optimization written in Cobalt was checked for
soundness by asking an automatic theorem prover to dis-
charge a small set of simple proof obligations. We proved
by hand, once and for all, that if a Cobalt optimization
satisfies these obligations, then the optimization is indeed
sound. Unlike testing, credible compilation, and translation
validation, this checking is done once when the compiler is
developed, separately from any particular programs being
optimized. Cobalt thus enables a key component of modern
optimizing compilers to become trusted, and it opens the
door for users to extend their compilers with application-
specific optimizations without compromising the correctness
of the compiler.

Cobalt is expressive enough to allow a range of flow-
sensitive intraprocedural optimizations to be defined and
proved correct. Using Cobalt, we were able to write and
automatically check the soundness of constant propagation,
copy propagation, dead-assignment elimination, common
subexpression elimination, partial redundancy elimination,
partial dead-code elimination, and simple kinds of pointer
analyses. However, Cobalt’s design, where optimizing trans-
formations are triggered based on a restricted temporal-logic
predicate over the entire control flow graph (CFG), imposes
limits that make it difficult to extend to a wider range of
optimizations.

In this paper we present Rhodium, a new domain-specific
language for optimizations that can express a much greater
range of optimizations while still proving them sound auto-
matically. The key technical change from Cobalt is to make
dataflow facts explicit (rather than implicit in a temporal-
logic predicate) and to use a separate and extensible set of
local propagation and transformation rules to generate new
dataflow facts from old dataflow facts and to specify when
statements are optimized based on inflowing dataflow facts.
Each dataflow fact is given a semantic meaning, in the form
of a predicate over program states. To prove a Rhodium
optimization correct, our system asks an automatic theo-



rem prover to discharge a local soundness lemma for each
propagation and transformation rule, using the meanings of
the facts manipulated by the rules and the concrete seman-
tics of the program’s statements. We proved, once by hand,
that these lemmas imply that the optimization is globally
sound. Because Rhodium’s local propagation model is fun-
damentally different from Cobalt’s, this hand proof is also
fundamentally different, and couched in terms of abstract
interpretation [8].

Rhodium’s use of explicit dataflow facts with local prop-
agation and transformation rules enables several important
advances over Cobalt’s use of global temporal-logic predi-
cates:

• Traditional form. A local propagation rule is a kind of
flow- or transfer function, which may be a more comfort-
able and understandable model for an optimization writer
than Cobalt’s global model.

• Extensibility. Rhodium allows new propagation rules
to be added without modifying any existing rules or fact
definitions, enabling optimizations to be enhanced more
easily.

• Recursively defined analyses. When deciding
whether to generate a particular dataflow fact on a state-
ment’s successor edge, a Rhodium propagation rule can
examine any other dataflow facts on the statement’s
predecessor edges. Cobalt was in effect only able to
propagate the same dataflow fact through a statement
unchanged. Rhodium allows the propagation rules of
dataflow facts to be defined mutually recursively, signifi-
cantly increasing their expressiveness and clarity.

• Composed analyses and transformations. By us-
ing a model based on local propagation and transforma-
tion rules, we can exploit previous work on automatically
composing analyses and transformations [18] to enable
Rhodium optimizations to be automatically composed.

• Flow-insensitive analyses. We show how to interpret
Rhodium propagation rules in a flow-insensitive manner,
soundly, yielding more-efficient analyses with no extra
optimization-writer work. In contrast, Cobalt’s global
model was inherently flow-sensitive.

• Interprocedural analyses. We show how to de-
fine a context-sensitive interprocedural analysis from a
Rhodium intraprocedural analysis and a specification of
a context-sensitivity strategy. Rhodium’s local propaga-
tion model allows the local propagation rule for call state-
ments to be derived automatically. If the intraprocedural
analysis is sound, then the interprocedural one is sound,
too.

In addition to moving to a local propagation model, we
have also enriched Rhodium’s expressiveness in the following
orthogonal ways:

• Dynamic semantics extensions. Rhodium allows the
optimization-writer to define “virtual” extensions to the
intermediate language’s dynamic semantics which can
compute properties of program execution traces. For ex-
ample, the statement at which each memory location was
allocated can be computed via a dynamic semantics ex-
tension. These extensions can then be referenced in the
meanings of dataflow facts, for instance in a points-to
analysis with allocation-site heap summaries, enabling a

wider class of optimizations to be proved sound automat-
ically.

• Infinite analysis domains. Rhodium allows dataflow-
fact domains to be infinite, leading to increased expres-
siveness over Cobalt which only allowed finite domains
(such as the set of constants, variables, and expressions
that appeared in the program being optimized). We
present sufficient conditions, including some adapted from
the database community, for automatically guaranteeing
that analyses terminate even in the face of such infinite
domains. Rhodium analyses can also specify widening
operators [8], without affecting soundness.

The end result is a language that is significantly more
expressive than Cobalt but nonetheless provides the same
strong soundness guarantees. We have implemented our
strategy for automatically proving Rhodium analyses and
optimizations sound using Simplify, the automatic theorem
prover from ESC/Java [12]. We defined and automatically
proved sound all of Cobalt’s optimizations plus the follow-
ing new optimizations and analyses that were not express-
ible in Cobalt: loop-induction-variable strength reduction,
a flow-sensitive version of Andersen’s points-to analysis [3]
with heap summaries, arithmetic invariant detection, con-
stant propagation through array elements, redundant array
load elimination, and integer range analysis. Our Rhodium
code defines 24 dataflow facts, 105 propagation rules, and
14 transformation rules. Moreover, all these analyses can
be interpreted as flow-insensitive analyses and/or context-
sensitive or -insensitive interprocedural analyses, and they
can be automatically composed together to yield more-
precise solutions, soundly.

Section 2 introduces the new flow-function-oriented way
of writing optimizations in Rhodium and describes the as-
sociated automated proof strategy based on abstract inter-
pretation. Section 3 presents our technique for reducing the
complexity of proof obligations using extensions to the dy-
namic semantics and shows how our technique can be used
to reason automatically about heap summaries. Section 4
describes how we support infinite analysis domains while
still being able to guarantee termination. Sections 5 and 6
present our frameworks for building provably sound flow-
insensitive and interprocedural optimizations. Section 7 dis-
cusses our execution engine for Rhodium in the Whirlwind
compiler. Finally, sections 8 and 9 discuss future work and
related work, respectively.

2. Rhodium
Rhodium optimizations run over a C-like intermediate

language (IL) with functions, recursion, pointers to dy-
namically allocated memory and to local variables, and
arrays. This section describes how intraprocedural, flow-
sensitive analyses are expressed and automatically proven
sound in Rhodium; sections 5 and 6 respectively discuss
flow-insensitive and interprocedural analyses. Rhodium op-
timizations operate over a CFG representation of the IL pro-
gram, with each node representing a simple register-transfer-
level statement.

Dataflow information is encoded in Rhodium by means
of dataflow facts, which are user-defined function symbols
applied to a set of terms, for example hasConstValue(x, 5)
or exprIsAvailable(x, a + b). A Rhodium analysis uses prop-
agation rules, which are a stylized way of writing flow func-
tions, to specify how dataflow facts propagate across CFG



1. decl X:Var, Y :Var, Z:Var

2. define edge fact mustNotPointTo(X:Var, Y :Var)
3. with meaning σ(X) 6= σ(&Y )

4. if stmt(X := &Z) ∧ Y 6= Z

5. then mustNotPointTo(X,Y )@out

6. if mustNotPointTo(X,Y )@in ∧ mustNotDef (X)
7. then mustNotPointTo(X,Y )@out

Figure 1: Simple pointer analysis in Rhodium.

nodes. These user-defined flow functions implicitly define a
dataflow analysis, whose solution is the least fixed point of
the standard equations induced by the flow functions. Once
an analysis has reached a fixed point, the computed infor-
mation can be used by Rhodium transformation rules to
rewrite some of the CFG’s nodes.

We wish to automatically prove Rhodium analyses and
transformations sound. An analysis is sound if, for all IL
procedures P , the dataflow information computed for P is
consistent with the procedure’s concrete semantics. A trans-
formation is sound if, for all IL procedures P , the transfor-
mation preserves P ’s semantics.

Section 2.1 illustrates Rhodium’s propagation rules, and
section 2.2 describes how such rules are automatically
proven sound using abstract interpretation. In section 2.3
we compare Rhodium’s design and proof strategy with those
of Cobalt and show the expressiveness benefits of our new
design in Rhodium. Section 2.4 discusses Rhodium trans-
formations and how they are automatically proven sound.
Section 2.5 shows how to incorporate profitability informa-
tion into Rhodium optimizations.

2.1 Propagation Rules
We illustrate Rhodium’s propagation rules with a simple

pointer analysis, shown in figure 1. The analysis determines
that a variable x definitely does not point to another variable
y if x was assigned the address of a variable different from
y, and then x was not modified afterwards. Because our
strategy for automated soundness checking is geared toward
must analyses, we encode our pointer information using the
must-not-point-to relation instead of the may-point-to re-
lation. Each edge in the CFG will therefore be annotated
with facts of the form mustNotPointTo(X,Y ), where X and
Y range over variables in the associated IL procedure. The
declaration of the mustNotPointTo edge fact is shown on
line 2 of the Rhodium code (for now the meaning on line 3
can be ignored).

Propagation rules in Rhodium indicate how edge facts
are propagated across CFG nodes. For example, the rule
on lines 6-7 of figure 1 defines a condition for preserv-
ing a mustNotPointTo fact across a node: if the fact
mustNotPointTo(X,Y ) appears on the incoming CFG edge
of a node n and n does not modify X, then the dataflow
fact mustNotPointTo(X,Y ) should appear on the outgoing
edge of n.

The left-hand side of a rule is called the antecedent and
the right-hand side the consequent. Each propagation rule
is interpreted within the context of a CFG node. Edge
facts are followed by @ signs, with the name after the
@ sign indicating the edge on which the fact appears.
For example, mustNotPointTo(X,Y )@in is true if the in-

coming CFG edge of the current node is annotated with
mustNotPointTo(X,Y ). Facts without @ signs are node
facts, and they represent information about the current
node. For example, the user-defined mustNotDef (X) fact
holds at a node if the node does not modify X. An accom-
panying technical report [20] shows how users can define
these node facts.

The semantics of a propagation rule on a CFG is as fol-
lows: for each substitution of the rule’s free variables that
make the antecedent valid at some node in the CFG, the
fact in the consequent is propagated. For the rule described
above, the mustNotPointTo(X,Y ) fact will be propagated
on the outgoing edge of a node for each substitution of X
and Y with variables that makes the antecedent valid.

While the rule in lines 6-7 of figure 1 specifies how to
preserve mustNotPointTo facts, the rule in lines 4-5 specifies
how to introduce them in the first place. That rule says that
the outgoing CFG edge of a statement X := &Z should be
annotated with all facts of the form mustNotPointTo(X,Y ),
where Y and Z are distinct variables.

All rules in figure 1 are forward : the antecedent only refers
to a node’s incoming CFG edge and the consequent only
refers to a node’s outgoing CFG edge. Rhodium also sup-
ports backward rules, where the antecedent only refers to
out and the consequent only refers to in. The primary fo-
cus of our Rhodium work so far has been on forward analyses
and transformations, and so we do not present any backward
rules here. Also, for brevity and clarity, we only present def-
initions and theorems for the forward case, with the back-
ward case covered in the accompanying technical report [20].
Section 8 discusses the state of backward analyses and trans-
formations in Rhodium.

A set of propagation rules together implicitly define a
dataflow analysis A whose domain D is the powerset lattice
of all dataflow facts: (D,t,u,v,>,⊥) = (2Facts ,∩,∪,⊇,
∅,Facts), where Facts is the set of all dataflow facts. Each
edge in the CFG is therefore annotated with a set of dataflow
facts, where bigger sets are more precise than smaller sets.1

The flow function F of the analysis is defined by the prop-
agation rules: given a node and a set of incoming dataflow
facts, F returns the set of all dataflow facts propagated by
any of the individual rules.

Formally, the flow function F is defined in terms of the
meaning of an antecedent ψ, which is given by the function
JψK : Node ×D× Subst → bool (where Node is the set of all
CFG nodes and Subst is the set of all substitutions). Given
a node n, a set of facts d, and a substitution θ, JψK(n, d, θ)
is true iff θ(ψ) holds at node n with incoming facts d (where
θ(·) represents substitution application). The definition of
JψK is straightforward, with the interesting case being:

Jf(
−→
t )@inK(n, d, θ) = f(θ(

−→
t )) ∈ d

(where
−→
t denotes a sequence of terms)

A complete definition of JψK is given in the accompanying
technical report [20]. The flow function F : Node ×D → D
induced by a set R of forward propagation rules is then:

F (n, d) = {θ(f(
−→
t )) | [if ψ then f(

−→
t )@out ] ∈ R ∧

JψK(n, d, θ)}

The solution of the induced analysis A is the least fixed

1We use the abstract interpretation convention that ⊥ is the
most optimistic information, and > is the most conservative
information.



point of the standard set of dataflow equations generated
from F . Although the two rules in figure 1 propagate the
same dataflow fact, different rules can propagate different
dataflow facts, and the fixed point is computed over all
dataflow facts simultaneously.

In addition to edge facts and node facts, Rhodium also
provides virtual dataflow facts, which can be used to de-
fine shorthands for boolean combinations of other facts.
This facility allows a may-point-to fact to be defined and
referred to in analyses and transformations if desired:
mayPointTo(X,Y ) , ¬mustNotPointTo(X,Y ). Such vir-
tual facts get replaced with the boolean expression they
stand for as a preprocessing step.

Negation is provided in Rhodium only as a convenience.
After all the virtual facts have been expanded out, and nega-
tion has been pushed to the inside through conjunctions,
disjunctions and quantifiers, we require all negation on edge
facts to cancel out. The absence of negated edge facts guar-
antees the monotonicity of F , as shown in the accompanying
technical report [20]. Although disallowing negated edge
facts sounds restrictive, it actually corresponds to a com-
mon usage pattern. Because Rhodium facts are all must
facts, the absence of a fact does not provide any informa-
tion – only its presence does. As a result, we never found
the need to use any negated edge facts, except as a nota-
tional convenience. For example, in our analyses that use
mayPointTo(X,Y ), it is always the lack of possible points-to
information, i.e., ¬mayPointTo(X,Y ), that enables more-
precise analysis or transformation, which when expanded
yields mustNotPointTo(X,Y ).

2.2 Proving soundness automatically
Our goal is to ensure automatically that the dataflow in-

formation computed by the analysis A is sound with respect
to the concrete collecting semantics of the IL. Our automatic
proof strategy separates the proof that A is sound into two
parts: the first part is analysis dependent and it is discharged
by an automatic theorem prover; the second part is anal-
ysis independent and it was shown by hand once and for
all. For the analysis-dependent part, we define a sufficient
soundness property that must be satisfied by each propa-
gation rule in isolation, and we ask an automatic theorem
prover to discharge this property for each rule. Separately,
we have shown manually that if all propagation rules sat-
isfy the soundness property, then the dataflow information
computed by the analysis A is sound. The formalization
of Rhodium, including this manual proof, employs our pre-
vious abstract-interpretation-based framework for compos-
ing dataflow analyses and transformations [18]. As a result,
all Rhodium analyses and transformations can be composed
soundly, while allowing them to interact in mutually bene-
ficial ways.

The definition of soundness of a propagation rule depends
on meaning declarations that describe the concrete seman-
tics of edge facts. The meaning of a fact f is a predicate on
concrete execution states, σ, with the intent that whenever f
appears on an edge, the meaning of f should hold in all con-
crete execution states σ that can appear on that edge. For
example, the meaning of mustNotPointTo(X,Y ), shown on
line 3 of the Rhodium code, is σ(X) 6= σ(&Y ), where σ(E)
represents the result of evaluating expression E in execution
state σ. The meaning of mustNotPointTo therefore says that
the value of X in the execution state σ should not be equal
to the address of Y . We denote the meaning of a fact f

by JfK, so that for example JmustNotPointToK(X,Y, σ) ,

σ(X) 6= σ(&Y ).
To be sound, a propagation rule must preserve meanings:

if a rule fires at a CFG node n, and the meanings of all facts
flowing into n hold of execution states right before n, then
the meaning of the propagated fact must hold for execution
states right after n. To define this formally, we denote by
State the set of concrete execution states σ, and we use

σ
n
→ σ′ to say that the execution of n from state σ yields

state σ′. We also use allMeaningsHold(d, σ) to say that the
meanings of all facts in d hold of a program state σ:

allMeaningsHold(d, σ) , ∀f(
−→
t ) ∈ d . JfK(

−→
t , σ)

The soundness of a propagation rule can then be stated as
follows:

Def 1. A propagation rule if ψ then f(
−→
t )@out is said

to be sound iff it satisfies the following property:

∀(n, σ, σ′, d, θ) ∈ Node × State2 ×D × Subst .
»

JψK(n, d, θ) ∧ σ
n
→ σ′ ∧

allMeaningsHold(d, σ)

–

⇒ JfK(θ(
−→
t ), σ′)

(prop-ok)

For each propagation rule, we use an automatic theorem
prover to discharge (prop-ok). The allMeaningsHold as-
sumption provides a one-way link between JψK(n, d, θ) and
meanings of facts: it allows the theorem prover to derive

JfK(
−→
t , σ) from f(

−→
t )@in, but not the other way around.

For example, consider the rule in lines 6-7 of figure 1. We
effectively ask the theorem prover to show that if a state-
ment satisfying mustNotDef (X) is executed from a state σ
in which σ(X) 6= σ(&Y ), then σ′(X) 6= σ′(&Y ) in the re-
sulting state σ′. The truth of this formula follows easily
from the user-provided definition of mustNotDef and the
system-provided concrete semantics of our IL.

If all propagation rules are sound, then it can be shown
by hand, once and for all, that the flow function F is sound.
The definition of soundness of F is the one from our frame-
work on composing dataflow analyses [18]. This definition
depends on an abstraction function α : Dc → D, which
formalizes the notion of approximation. The concrete se-
mantics of our IL is a collecting semantics, so that elements
of Dc are sets of concrete stores. Meaning declarations nat-
urally induce an abstraction function α: given a set c ∈ Dc

of concrete stores, α(c) returns the set of all dataflow facts
whose meanings hold of all stores in c. An element d ∈ D

approximates an element c ∈ Dc if α(c) v d, or equiva-
lently if the meanings of all facts in d hold of all stores in c.
The definition of soundness of F , taken from [18], is then as
follows (where Fc is the concrete collecting semantics flow
function):

Def 2. A flow function F is said to be sound iff it satis-
fies the following property:

∀ (n, c, d) ∈ Node ×Dc ×D .

α(c) v d⇒ α(Fc(n, c)) v F (n, d)

The following lemma, which is proved in the accompa-
nying technical report [20], formalizes the link between the
soundness of local propagation rules and the soundness of
F .

Lemma 1. If all propagation rules are sound, then the

induced flow function F is sound.



Once we know that the flow function F is sound, we can
use the following definition and lemma from our framework
on composing dataflow analyses to show that the analysis
A is sound (where we denote by EP the set of edges in IL
procedure P ):

Def 3. An analysis A is said be sound iff for any IL

program P , the concrete solution Sc : EP → Dc and the ab-
stract solution SA : EP → D satisfy the following property:
∀e ∈ EP . α(Sc(e)) v SA(e).

Lemma 2. If the flow function F is sound, then the anal-
ysis A induced by the standard dataflow equations of F is

sound.

A proof of lemma 2 can be found in the accompanying
technical report [20]. The following theorem is immediate
from lemmas 1 and 2:

Theorem 1. If all propagation rules are sound, then the
analysis A induced by the propagation rules is sound.

Theorem 1 summarizes the part of the soundness proof of
A that was done by hand once and for all. The automatic
theorem prover is only used to discharge (prop-ok) for each
propagation rule, thus establishing the premise of theorem 1
that all propagation rules are sound. This way of factoring
the proof is critical to automation. The proof of theorem
1 (which includes proofs of lemmas 1 and 2) is relatively
complex. It requires reasoning about F , α and the fixed
point computation, each one adding extra complexity. The
proof also requires induction, which would be difficult to
fully automate. In contrast, (prop-ok) is a non-inductive
local property that requires reasoning only about a single
state transition at a time. We have found that the heuristics
used in automatic theorem provers are well suited for these
kinds of simple proof obligations.

2.3 Comparison with Cobalt
To better explain the additional expressive power of

Rhodium, we show the Cobalt version of the pointer analysis
from figure 1:

decl X:Var, Y :Var, Z:Var
stmt(X := &Z) ∧ Y 6= Z

followed by

mustNotDef (X)
defines

mustNotPointTo(X,Y )
with witness

σ(X) 6= σ(&Y )

The Cobalt version says that an edge e should be annotated
with the mustNotPointTo(X,Y ) fact if on all CFG paths
reaching e, there exists a statement X := &Z where Y 6= Z,
which is followed by zero or more statements that do not
modify X until the edge e is reached. The region between
the statement X := &Z and the edge e is called the witness-
ing region, and the key property of this region is that the
witness, in this case σ(X) 6= σ(&Y ), holds of all program
states σ in the region.

As shown above, the condition for triggering a Cobalt
transformation is expressed as a global temporal-logic pred-
icate over the entire control flow graph (CFG). This styl-
ized global condition codifies a scenario common to many
dataflow analyses: an enabling statement establishes a

dataflow fact, and then a sequence of zero or more innocu-

ous statements preserve it. The Cobalt proof strategy was
tailored toward such analyses: we asked the theorem prover
to show that the witness was established by the enabling
statement and preserved by any innocuous statements. In
the pointer-analysis example, the theorem prover would be
asked to show that σ(X) 6= σ(&Y ) holds after a statement
X := &Z, where Y 6= Z, and that σ(X) 6= σ(&Y ) is pre-
served by statements that don’t modify X.

While Cobalt can express this analysis and prove it sound
automatically, Cobalt’s global condition for expressing op-
timizations has drawbacks. First, Cobalt’s proof strategy
only allows each dataflow fact to have one associated global
condition. This requirement makes it difficult to extend an
existing Cobalt analysis. In contrast, a Rhodium analysis
can be easily and modularly extended simply by writing
new propagation rules.

Second, Cobalt’s global condition requires the same
dataflow fact to hold throughout the entire witnessing re-
gion. In contrast, the Rhodium abstract interpretation
strategy allows fine-grained control over how facts are propa-
gated. Programmers can write propagation rules that string
different dataflow facts together in flexible ways. This al-
lows Rhodium to express many kinds of global conditions
not supported by Cobalt.

Third, Cobalt’s metatheory did not allow an analysis to
refer to itself, either directly or indirectly. One consequence
of this restriction is that the mustNotDef fact used in our
pointer analysis had to be overly conservative because it
could not make use of the pointer information currently
being computed. In contrast, the antecedents of Rhodium
rules can refer to arbitrary facts, even those that are being
propagated in the consequent. The fixed-point semantics
of Rhodium and the accompanying abstract interpretation
theory ensure that such recursion is well-defined.

To illustrate some of the additional flexibility of Rhodium,
we extend our simple pointer analysis from figure 1 with ad-
ditional rules, slowly building up toward a flow-sensitive ver-
sion of Andersen’s points-to analysis [3]. This analysis was
not expressible in Cobalt. We start with a rule for propa-
gating pointer information through simple assignments:

decl X:Var , Y :Var , A:Var
if stmt (X := A) ∧ mustNotPointTo(A,Y )@in
then mustNotPointTo(X,Y )@out

The outgoing information, mustNotPointTo(X,Y ), is a
different instantiation of the mustNotPointTo fact than
the incoming information, mustNotPointTo(A, Y ). This
way of stringing together mustNotPointTo(X,Y ) and
mustNotPointTo(A,Y ) was impossible to achieve in Cobalt.

Next we extend our Rhodium analysis with a rule for prop-
agating pointer information through pointer stores:

decl X:Var , Y :Var , A:Var , B:Var
if stmt (∗A := B) ∧ mustPointTo(A,X)@in ∧

mustNotPointTo(B, Y )@in

then mustNotPointTo(X,Y )@out

The mustPointTo(A,X) fact, computed by rules not shown
here, says that A definitely points to X, and its meaning is
σ(A) = σ(&X).

The above rule for pointer stores performs a strong update
in which we know exactly what A points to. We can also
write a weak-update rule for pointer stores:



decl X:Var , Y :Var , A:Var , B:Var

if stmt(∗A := B) ∧ mustNotPointTo(X,Y )@in ∧
mustNotPointTo(B, Y )@in

then mustNotPointTo(X,Y )@out

Finally, we add a rule for propagating pointer information
through pointer loads:

decl X:Var , Y :Var , A:Var
if stmt(X := ∗A) ∧

mustNotPointToHeap(A)@in ∧
∀ B:Var . mayPointTo(A,B)@in ⇒

mustNotPointTo(B, Y )@in

then mustNotPointTo(X,Y )@out

The mustNotPointToHeap(A) fact, whose rules are not
shown here, says that A does not point to the heap (or equiv-
alently, that A points to some variable), and its meaning is
∃Z : Var . σ(A) = σ(&Z). The mayPointTo fact is a vir-

tual dataflow fact as defined earlier: mayPointTo(X,Y ) ,

¬mustNotPointTo(X,Y ). The rule as a whole says that X
does not point to Y after a statement X := ∗A if all the
variables in the may-point-to set of A do not point to Y .

Starting with a simple pointer analysis and extending it
step by step with additional rules, we have now expressed
in Rhodium a flow-sensitive intraprocedural version of An-
dersen’s pointer analysis. Rhodium’s propagation rules are
the key enablers of this expressiveness leap over Cobalt.
Propagation rules allow us to define mustNotPointTo re-
cursively, and they allow us to string together instances of
the mustNotPointTo fact, and other facts, in flexible ways.
Rhodium’s new proof strategy allows us to automatically
prove this analysis sound, despite the extra expressiveness
over Cobalt. In section 3 we will show how to extend our
Rhodium pointer analysis even further by adding heap sum-
maries, and in sections 5 and 6 we will show how to make it
flow-insensitive and/or interprocedural, all while retaining
automated soundness reasoning.

2.4 Transformation Rules
Rhodium propagation rules are used to define dataflow

analyses. The information computed by these analyses can
then be used in transformation rules to optimize IL pro-
grams. A transformation rule describes the conditions un-
der which a node in the CFG can be replaced by a new node
without changing the behavior of the program.

To illustrate transformations, figure 2 shows an arithmetic
simplification optimization. The optimization is driven by
an arithmetic invariant analysis that keeps track of invari-
ants of the form E1 = E2 ∗ E3, represented in Rhodium
with the equalsTimes dataflow fact. Some of the rules for
this analysis are shown in figure 2. The optimization per se
is performed by a single transformation rule on lines 27-28,
which says that a statement Y := I ∗C can be transformed
to Y := X if we know that X = I ∗ C holds before the
statement.

We want to automatically show that a Rhodium optimiza-
tion is sound, according to the following definition:

Def 4. A Rhodium optimization O, which includes any

number of propagation rules and transformation rules, is
sound iff for all IL procedures P , the optimized version P ′

of P , produced by performing some subset of the transfor-

mations suggested by O, has the same semantics as P .

8. decl E1:Expr, E2:Expr, E3:Expr
9. decl X:Var, Y :Var, I:Var
10. decl C:Int, C1:Int, C2:Int, C3:Int

11. define edge fact equalsTimes(E1:Expr, E2:Expr,
12. E3:Expr

13. with meaning σ(E1) = σ(E2) ∗ σ(E3)

14. if equalsTimes(E1, E2, E3)@in ∧
15. unchanged (E1) ∧ unchanged (E2) ∧
16. unchanged (E3)
17. then equalsTimes(E1, E2, E3)@out

18. if stmt(X := I ∗ C) ∧X 6= I

19. then equalsTimes(X, I, C)@out

20. if stmt(I := I + C1) ∧X 6= I ∧
21. equalsTimes(X, I, C2)@in
22. then equalsTimes(X, I − C1, C2)@out

23. if stmt(X := X + C1) ∧X 6= I ∧
24. equalsTimes(X, I − C2, C3)@in ∧
25. C1 = applyBinaryOp(∗, C2, C3)
26. then equalsTimes(X, I, C3)@out

27. if stmt(Y := I ∗ C) ∧ equalsTimes(X, I, C)@in
28. then transform Y := X

Figure 2: Arithmetic simplification optimization in

Rhodium. Due to space limitations, only a few rep-

resentative rules are shown here.

As with propagation rules, our automatic proof strategy
requires an automatic theorem prover to discharge a local
soundness property for each transformation rule. This prop-
erty is given in the following definition of soundness for a
transformation rule.

Def 5. A transformation rule if ψ then transform n′

is said to be sound iff it satisfies the following property:

∀(n, σ, σ′, d, θ) ∈ Node × State2 ×D × Subst .
»

JψK(n, d, θ) ∧ σ
n
→ σ′ ∧

allMeaningsHold(d, σ)

–

⇒ σ
n′

→ σ′

The following theorem, which is proven in the accompany-
ing technical report [20], summarizes the part of the proof of
soundness of an optimization O that is performed by hand:

Theorem 2. If all the propagation rules and transforma-
tion rules of a Rhodium optimization O are sound, then O
is sound.

As described earlier, the fact that each propagation rule
is sound is sufficient to ensure that the induced analysis A
is sound. This fact, along with the fact that each transfor-
mation rule is sound, is sufficient to show that any subset
of the suggested transformations can be performed without
changing the semantics of any IL procedure.

2.5 Profitability heuristics
In many optimizations, the condition that specifies when

a transformation is legal can be separated from the condition
that specifies when a transformation is profitable. Rhodium
provides profitability edge facts for implementing profitabil-
ity decisions. Because they are not meant to be used for
justifying soundness, these facts have an implicit meaning of



i := 0;
while (...) {

...
i := i + 1;
...
if (...) {
i := i + 1;

}
...
y := i * 20;

}

i := 0;
x := i * 20; ⇐ inserted
while (...) {
...
i := i + 1;
x := x + 20; ⇐ inserted
...
if (...) {
i := i + 1;
x := x + 20; ⇐ inserted

}
...
y := x; ⇐ transformed

}

(a) (b)

Figure 3: Code snippet before and after loop-

induction-variable strength reduction.

true , and as a result, they can always be safely added to the
CFG. We can therefore give programmers a lot of freedom in
computing these facts. In particular, we allow programmers
to write regular compiler passes called profitability analy-
ses, which are given a read-only view of the compiler’s data
structures, except for the ability to add profitability facts
to the CFG. In this way, one can for example use standard
algorithms to annotate the CFG with facts indicating where
the loop heads are, what the loop-nest is, or how many times
a variable is accessed inside of a loop – these algorithms do
not have to be expressed using propagation rules. Transfor-
mation rules can then directly use these facts to select only
those transformations that are profitable.

To illustrate the use of profitability facts, we show
how to write loop-induction-variable strength reduction in
Rhodium. The idea of this optimization is that if all defi-
nitions of a variable I inside of a loop are increments, and
some expression I ∗ C is used in the loop, then we can (1)
insert X := I ∗ C before the loop (2) insert X := X + C
right after every increment of I in the body of the loop and
(3) replace I ∗ C with X in the body of the loop. Con-
sider for instance the code snippet in figure 3(a). The result
of performing loop-induction-variable strength reduction is
shown in figure 3(b). This optimization was not expressible
in Cobalt.

The effect of this optimization can be achieved in
Rhodium in two passes. The first pass inserts assignments
to the newly created induction variable x. The second pass
propagates arithmetic invariants in order to determine that
x = i * 20 holds just before the statement y := i * 20,
thereby justifying the strength-reduction transformation. A
dead-assignment elimination pass can also be run afterwards
in order to clean up the dead assignments to i.

For the first pass, determining when it is safe to insert
an assignment is simple: an assignment X := E can be in-
serted if X is dead after the insertion point. The tricky part
of this first pass lies in determining which of the many legal
insertions should be performed so that the later arithmetic-
invariant pass can justify the desired strength reduction.
This decision of what assignments to insert can be guided
by profitability facts. A profitability analysis running stan-
dard algorithms can insert the following three profitability
facts:

• indVar (I,X,C) is inserted on the edges of a loop (includ-

ing the incoming edge into the loop) to indicate that I is
a induction variable in the loop, X is a fresh induction
variable that would be profitable to insert, and C is the
anticipated multiplication factor between I and X.

• afterIncr (I) is inserted on the immediate edge following
a statement I := I + 1.

• afterLoopInit (I) is inserted on the immediate edge follow-
ing a statement I := E that is at the head of a loop.

In the example of figure 3, indVar (i, x, 20) would be in-
serted throughout the loop, afterIncr (i) would be inserted
after the increments of i and afterLoopInit(i) would be in-
serted after the assignment i := 0. The following two trans-
formation rules then indicate which assignments should be
inserted:

decl X:Var , I:Var , C:Const

if stmt (skip) ∧ dead(X)@out ∧
afterIncr (I)@in ∧ indVar (I,X, C)@in

then transform X := X + C

if stmt (skip) ∧ dead(X)@out ∧
afterLoopInit (I)@in ∧ indVar(I,X,C)@in

then transform X := I ∗ C

Following our previous work on Cobalt, we express inser-
tion as replacement of a skip statement. These skip state-
ments are only virtual, and the compiler implicitly inserts
an infinite supply of them in between any two nodes in the
CFG. The above transformations are sound because of the
dead (X) fact. The other facts are simply there to guide
which dead assignments to insert. Since their meaning is
true and they are used in a conjunction, they do not have
any impact on soundness checking.2

Rhodium’s way of incorporating profitability information
is superior to Cobalt’s approach. Cobalt allowed profitabil-
ity decisions to be made in a choose function that did not af-
fect soundness: after the set of all legal transformations was
generated, the choose function would select a subset of these
transformations to actually perform. The generate-and-test
approach of the choose function is not always well-suited in
practice because there may be infinitely many legal trans-
formations to generate. The above example is such a case:
there are infinitely many expressions E for which we can
insert an assignments X := E when X is dead. Rhodium
solves this problem by allowing programmers to write ar-
bitrarily complex compiler passes for inserting profitability
facts that can then be used to prune out the transformations
at the point where they are generated.

For the second pass that runs after the dead assign-
ments have been inserted, we can use the arithmetic-
invariant analysis from figure 2. The rules in figure 2
are sufficient to trigger the strength-reduction transforma-
tion in figure 3(b). The statement x := i * 20 establishes
the dataflow fact equalsTimes(x, i, 20). Every sequence
of i := i + 1 followed by x := x + 20 propagates first
equalsTimes(x, i-1, 20) and then equalsTimes(x, i, 20). As a
result, equalsTimes(x, i, 20) is propagated to y := i * 20,
thereby triggering the transformation to y := x.

2This example uses the backward dataflow fact dead(X).
Section 8 describes the state of backward analyses and trans-
formations in Rhodium.



3. DYNAMIC SEMANTICS EXTENSIONS
The meaning of dataflow facts we have seen so far all

talked about the concrete program states occurring on edges
annotated with the fact. Unfortunately, the natural way
to express the meaning of certain dataflow facts is to talk
about complete traces of program states rather than single
program states.

As a motivating example, consider extending our pointer
analysis from section 2.1 with heap summaries, where each
allocation statement S represents all the memory blocks al-
located at S. The meaning of mustNotPointTo(X,S), where
X is a variable and S is an allocation site, is that X does
not point to any of the memory blocks allocated at S. This
property, however, cannot be expressed by just looking at
the current program state, because there is no way to deter-
mine which memory blocks were allocated at site S.

We could try to fix this problem by enriching our meanings
so that they talk about execution traces. From the execution
trace one can easily extract the memory blocks that were
allocated at site S (by evaluating, for each statement S :
X := new T in the trace, the value of X in the successor
state). However, in order to extract this information, one
has to use quantifiers that range over indices of unbounded-
length traces. Unfortunately, we have found the heuristics
used in automatic theorem provers for managing quantifiers
to be easily confounded by these kinds of quantified formulas
that arise when using unbounded-length traces.

In order to solve this problem Rhodium allows the pro-
gram state to be extended with user-defined components
called state extensions. These components are meant to
gather the information from a trace that is relevant for a
particular dataflow fact. Instead of referring to the trace,
the meaning can then refer to the state extension. For the
above heap summary example, the state would be extended
with a map describing which heap locations were allocated
at which sites, and the meaning of mustNotPointTo could
then use this map instead of referring to the trace.

To update the user-defined components of the state, pro-
grammers also extend the dynamic semantics of the interme-
diate language. Because of the way these extensions to the
semantics are declared, they are guaranteed to be conser-
vative, meaning that the trace of a program in the original
semantics and the corresponding trace in the extended se-
mantics agree on all the components of the program state
from the original semantics. As a result, if we preserve the
extended semantics using our regular Rhodium proof strat-
egy, we are guaranteed to also preserve the original seman-
tics. User defined state extensions are just a formal tool for
proving soundness: they can be erased without having any
impact on how analyses or IL programs are executed.

We present state extensions in more detail by show-
ing how they can be used to extend our pointer analysis
with heap summaries. In order to define the meaning of
mustNotPointTo over summaries, we define an additional
component of the program state called summary of , which
maps each heap location to the heap summary that repre-
sents it. We start by considering allocation site summaries,
where the locations created at the same site are summarized
together by the node that created them. The declaration of
summary of then looks as follows:

type HeapSummary = Node
define state extension

summary of : Loc → HeapSummary

The summary of map gets updated according to the follow-
ing dynamic semantics extension:

decl X:Var , T :Type

if stmt (X := new T )
then (σ@out).summary of =

(σ@in).summary of [σ@out(X) 7→ currNode ]

The terms σ@in and σ@out refer respectively to the pro-
gram states before and after the current statement, while
the special term currNode refers to the current CFG node.
The rule as a whole says that an allocation site X := new T

updates the summary of component of the state by mak-
ing the newly created location, obtained by evaluating X in
σ@out , map to the CFG node that was just executed. In all
other cases the summary of component implicitly remains
unchanged.

We can easily modify the above declarations to achieve
other kinds of summaries. In particular, table 1 shows how
to modify the HeapSummary definition and change what
σ@out(X) maps to in the dynamic semantics extension in
order to specify different summarization strategies. The rest
of our treatment of heap summaries applies to all of the
strategies, except when explicitly stated. The next step is
to define the domain of abstract locations:

type AbsLoc = Var | HeapSummary

An abstract memory location AL is either a variable or a
heap summary. The intuition is that AL represents a set of
concrete memory locations: if AL is a variable, it represents
the address of the variable; if AL is a heap summary, it
represents the set of summarized heap locations.

We can now modify our mustNotPointTo fact to take ab-
stract locations, instead of just variables (the meaning is
explained below):

define edge fact mustNotPointTo(AL1:AbsLoc,
AL2:AbsLoc)

with meaning

∀L : Loc .
belongsTo(L,AL1, σ) ∧ isLoc(σ(∗L)) ⇒

¬belongsTo(σ(∗L), AL2, σ)

define belongsTo(L:Loc, AL:AbsLoc, σ:State) ,

isVar(AL) ⇒ [L = σ(&AL)] ∧
isHeapSummary(AL) ⇒ [σ.summary of [L] = AL]

The meaning of mustNotPointTo says that none of the lo-
cations belonging to AL1 point to any of the locations be-
longing to AL2. The locations belonging to AL1 are those
locations L for which belongsTo(L,AL1, σ) holds. For all
these locations L, we look up the memory content of L us-
ing σ(∗L). If the memory content σ(∗L) is a location (as
opposed to a scalar value, which cannot hold pointers), then
we want σ(∗L) to not belong to AL2.

The auxiliary function belongsTo(L,AL, σ) returns
whether or not a location L belongs to an abstract loca-
tion AL in state σ. The definition of belongsTo is split into
two cases, based on the type of AL. If AL is a variable, then
L belongs to AL if L is exactly the address of AL. If AL
is a heap summary, then L belongs toAL if σ.summary of
maps L to AL.

The rules for our pointer analysis must now be modified to
take summaries into account. Because of space limitations,



HeapSummary σ@out(X) maps to this in the
dynamic semantics extension

Allocation site summaries Node currNode
Type based summaries Type T
Variable based summaries Var X

Single heap summary unit ()

Table 1: Various kinds of heap summarization strategies achievable by varying the definition of HeapSummary
and the dynamic semantics extension.

we only present some representative rules here. The com-
plete set of rules can be found in the accompanying technical
report [20].

The following rule, which only works for allocation site
summaries, says that after an allocation site X := new T ,
X does not point to any heap summary that is different from
the current node:

decl Summary :HeapSummary , X:Var , T :Type

if stmt(X := new T ) ∧ Summary 6= currNode
then mustNotPointTo(X, Summary)@out

To prove this rule sound, the theorem prover must show
that the meaning of mustNotPointTo(X, Summary) holds
after X := new T . Since X is a variable and Summary is
a heap summary, the meaning expands to isLoc(σ(X)) ⇒
σ.summary of [σ(X)] 6= Summary . Since the theorem
prover knows that new T returns a location, it determines
that isLoc(σ(X)) holds, and then the remaining obligation
is σ.summary of [σ(X)] 6= Summary . To prove this, the
theorem prover makes use of the user-defined extension to
the dynamic semantics. Indeed, if we let σ be the program
state right after executing the allocation, then the dynamic
semantics extension tells us that σ.summary of [σ(X)] =
currNode . In conjunction with Summary 6= currNode , this
implies σ.summary of [σ(X)] 6= Summary , which is what
needed to be shown.

The above rule for stmt(X := new T ) only works for al-
location site summaries. Of all the pointer analysis rules,
it is the only one that depends on the heap summarization
strategy. In order to modify it for other kinds of heap sum-
maries, the antecedent of the rule should compare Summary
with the third column of table 1, rather than with currNode .

Finally, we now show the rule of our pointer analysis that
requires the most complicated reasoning from the theorem
prover:

decl X:Var , Y :Var , AL2:AbsLoc
if stmt(X := ∗Y ) ∧

∀AL1 : AbsLoc . mayPointTo(Y,AL1)@in ⇒
mustNotPointTo(AL1,AL2)@in

then mustNotPointTo(X,AL2)@out

In the above rule, we again define mayPointTo as before:
mayPointTo(AL1,AL2) , ¬mustNotPointTo(AL1,AL2).
The rule as a whole says that X does not point to AL2

after X := ∗Y if for all abstract locations AL1 that Y may
point to, we have that AL1 does not point to AL2.

4. INFINITE ANALYSIS DOMAINS
The domains of dataflow fact parameters in Cobalt

were finite for a particular intermediate language pro-
gram. For example, the Const and Expr domains did

not represent all possible constants and expressions, but
rather only those constants and expressions that ap-
peared in the intermediate-language program being ana-
lyzed. Rhodium improves on Cobalt by introducing infinite
domains. The Expr and Const domains in Rhodium now re-
fer to the infinite unrestricted versions whereas ExprInProg
and ConstInProg refer to the finite versions restricted to
constants and expressions in the source program.3

The addition of infinite domains increases the expressive-
ness of Rhodium. For example, being able to refer to expres-
sions that are not in the analyzed program is crucial for ex-
pressing the arithmetic invariant analysis equalsTimes from
section 2.4. Rhodium can also perform range analysis where
the end points of the range are not restricted to constants in
the program. Finally, Rhodium can express a better version
of constant propagation because it can construct and then
propagate constants that are not in the source code.

However, with this extra flexibility comes a challenge:
whereas Cobalt analyses were trivially guaranteed to ter-
minate, because all domains were finite, Rhodium analyses
may now run forever.

There are two ways in which a Rhodium analysis might
run forever. The first one is that a particular rule might not
terminate. The second is that the fixed-point computation
might not terminate. We deal with each one of these in the
next two subsections.

4.1 Termination of a single rule
In order to guarantee that execution of each rule termi-

nates, we must guarantee that the rule has only a finite
number of instantiations (i.e., substitutions for its free vari-
ables), and that each instantiation can be evaluated in finite
time. For the latter, we restrict the logic of each rule’s an-
tecedent to the decidable subset of first-order logic in which
quantifiers only range over finite domains.4

For the former, we wish to ensure a “finite-in-finite-out”
property: if a rule is invoked on a node where all incoming
edges have finite sets of facts, then the rule will have only a
finite number of instantiations and will generate only a finite
set of facts on outgoing edges. Unfortunately, unrestricted
propagation rules do not have that property: it is possible
for a sound rule to propagate infinitely many dataflow facts,
even when the input facts are finite. For example, consider
the following sound range-analysis rule:

3When we say finite here, we mean finite once a given
intermediate-language program has been singled out.
4Here again, the domain must be finite for a particular pro-
gram, not necessarily for all programs.



define edge fact inRange(X : Var , lo : Const , hi : Const)
with meaning lo ≤ σ(X) ∧ σ(X) ≤ hi

if stmt(X := C) ∧ C1 ≤ C ∧ C2 ≥ C
then inRange(X,C1, C2)@out

There are infinitely many instantiations of C1 and C2 that
will make this rule fire, even if the input contains no dataflow
facts.

In order to guarantee that such a situation does not oc-
cur, we make use of a notion from database community
called safety [33], adapting it to the context of Rhodium.
A Rhodium propagation rule is said to be finite-safe if ev-
ery free variable of infinite domain in the consequent is
finite-safe. A variable is finite-safe if it appears (after ex-
panding virtual facts and folding away all negations) in the
antecedent either in a dataflow fact, or on one side of an
equality where the other side contains only finite-safe vari-
ables; finite-safe variables thus are constrained to have a
finite number of instantiations if the input fact set is finite.
The range-analysis rule above is not finite-safe, since neither
C1 nor C2 is finite-safe.

Even if all rules are finite-safe, a rule can still be invoked
on an infinite input set: ⊥. This case can happen at the
start of analysis, since all edges (aside from the entry edge)
are initialized with ⊥. Since it is sound to propagate ⊥ as
the result of any rule invoked with ⊥ on its input, we treat
⊥ specially and directly propagate ⊥ to the output without
invoking the rule explicitly.

Thus, if all rules are finite-safe, either they will be invoked
on ⊥ and immediately propagate ⊥, or they will be invoked
on a finite set of input facts and propagate another finite set
of output facts in finite time.

4.2 Termination of the fixed-point computa-
tion

As discussed in section 2.1, the flow function F is guaran-
teed to be monotonic, and so the dataflow values computed
by iterative analysis form an ascending chain. To guarantee
termination, all that is left is to ensure that all ascending
chains in the lattice have finite length.

In order to do this, we recall from section 4.1 that we al-
ready imposed the finite-safe requirement, which led to all
propagated sets being either finite or ⊥. We can therefore
shrink our lattice to only include these finite sets and ⊥.
The original underlying lattice was the power-set lattice, in
which the ordering was the superset relation. The shrunken
lattice uses this same ordering, which means that all ascend-
ing chains in the shrunken lattice must have a finite length,
since the longest chain of decreasing-sized finite sets is finite.
Notice that the lattice does not have a finite height, because
there can still be infinite descending chains.

Our technique for guaranteeing termination is effective
even in the face of dataflow facts with infinite-domain pa-
rameters. For example, the equalsTimes dataflow fact has
all three of its parameters ranging over infinite domains,
and yet we are still able to guarantee that the analysis ter-
minates. In this case, the shrunken lattice is infinitely wide
and infinitely tall, but its ascending chains are nonetheless
guaranteed to be finite.

4.3 Custom merges
The range-analysis propagation rule in section 4.1 was

sound but not finite-safe: it could produce an infinite (and
non-⊥) set of output inRange facts. However, the meaning

of one of the propagated inRange facts, inRange(X,C,C),
implies all the others’ meanings. So an alternative sound
and finite-safe propagation rule could be the following:

if stmt(X := C)
then inRange(X,C,C)@out

Unfortunately, this propagation rule interacts poorly with
the powerset lattice’s join function, intersection. If we
use intersection to join the fact set {inRange(x, 1, 1)} with
{inRange(x, 2, 2)}, we get {}. We would prefer instead to
get the fact set {inRange(x, 1, 2)}: this fact set is sound (and
precise) since its meaning is exactly the disjunction of the
meanings of the two merging fact sets.

Rhodium avoids this information-loss problem while re-
taining finite-safe propagation rules by allowing program-
mers to define their own merges. Rather than provide spe-
cial syntax for defining merge functions, we simply intro-
duce a merge statement for which users can write ordinary
Rhodium propagation rules:

decl X:Var , C1:Int , C2:Int , C3:Int , C4:Int
if stmt(merge) ∧

inRange(X,C1, C2)@in[0] ∧
inRange(X,C3, C4)@in[1]

then inRange(X,min(C1, C3),max(C2, C4))@out

This example introduce edge indices: in[i] refers to the ith

CFG input edge. The previously used in was just syntactic
sugar for in[0]. Similarly, out can also be indexed to re-
fer to the true and false successor edges of a branch node.
When a rule refers to multiple input or output edges, there
is one proof obligation sent to the theorem prover for each
input-output-edge pair. The general version of (prop-ok)
that handles an arbitrary number of input and output edges
is given in the accompanying technical report [20]. In the
above case, there would be two proof obligations, one for
input edge 0 and one for input edge 1. For input edge 0, we
would ask the theorem prover to show that if the meaning
of inRange(X,C1, C2) holds of some program state σ, and
σ on edge 0 steps to σ′ through the merge node, then the
meaning of inRange(X,min(C1, C3),max(C2, C4)) holds of
σ′. A similar proof obligation would be generated for input
edge 1.

From a formal point of view, the lattice of the
implicitly defined dataflow analysis A must be modi-
fied in order to take into account custom merge func-
tions. Consider the example above, where the merge of
S = {inRange(x, 1, 1)} and T = {inRange(x, 2, 2)} gives
merge(S, T ) = {inRange(x, 1, 2)}. In the powerset lattice of
all dataflow facts, the expressions S, T and merge(S, T ) are
unrelated. To prove the soundness of the custom merge, we
instead need a lattice in which S t T v merge(S, T ) holds,
meaning that the user’s merge function returns an approxi-
mation of the best possible merge (which is t).

To address this problem, when a user-defined merge func-
tion is specified, we make use of the more general lattice of
predicates: (D,t,u,v,>,⊥) = (Pred ,∨,∧,⇒, true , false).
This lattice subsumes the powerset lattice since a set of
dataflow facts can be interpreted as a predicate by taking
the conjunction of the meanings of all the dataflow facts in
the set. The view shown to the programmer is still that
sets of dataflow facts are being stored on edges, but from
a formal point of view, we interpret these sets as predi-
cates. In the example above, S becomes 1 ≤ x ≤ 1, T



becomes 2 ≤ x ≤ 2, and merge(S, T ) becomes 1 ≤ x ≤ 2.
Therefore S t T = (1 ≤ x ≤ 1) ∨ (2 ≤ x ≤ 2), and since
(1 ≤ x ≤ 1) ∨ (2 ≤ x ≤ 2) ⇒ 1 ≤ x ≤ 2, we now
have S t T v merge(S, T ) as desired. More generally, if
a merge rule passes property (prop-ok), we are guaranteed
that if S and T are the two incoming predicates to the merge
node, then the outgoing predicate merge(S, T ) will satisfy
S ∨ T ⇒ merge(S, T ), or S t T v merge(S, T ) in the lattice
of predicates.

Unfortunately, the lattice of predicates, even when
shrunken to the meanings of only finite sets of facts plus
⊥, does not have the finite-ascending-chain property. Con-
sider for example the inRange fact, and the infinite sequence
S0, S1, S2, . . ., where Si = {inRange(x, 0, i)}. Each one of
the sets Si is finite and therefore belongs to the shrunken
lattice; furthermore the sequence is an ascending chain, be-
cause each Si implies Si+1. Consequently, termination of
the fixed-point computation is not guaranteed of analyses
using custom merges, and indeed the kind of range analysis
discussed here does not terminate.5

To allow the optimization writer to achieve termination
in such cases, as well as allowing the optimization writer to
make terminating analyses converge faster, Rhodium pro-
vides widening operators [8]. A Rhodium widening opera-
tor is a function, written in the underlying language of the
compiler, that takes a node, an incoming dataflow fact set,
and an “unwidened” outgoing dataflow fact set, and pro-
duces the widened outgoing fact set. After the Rhodium
evaluation engine runs the propagation rules on a node n,
given an input set din to produce an “unwidened” output
set dout , the widening operator is run on n, din , and dout

to produce the widened output set dwide . Finally, we com-
pute merge(dout , dwide) (using either the default merge or a
custom merge if one is specified) as the final outgoing set
to propagate. From the soundness of F we know that the
fact dout is sound, and since merge(dout , dwide) is more con-
servative than dout , merge(dout , dwide) must also be sound,
which means that the value dwide returned by the widening
operator does not affect soundness – it only makes the result
more conservative, thus helping the iterative analysis reach
a fixed point faster.

5. FLOW-INSENSITIVE ANALYSES
An additional benefit that falls out from Rhodium’s new

flow-function model is that Rhodium can easily support
provably sound flow-insensitive analyses. In particular, we
can interpret propagation rules in a flow-insensitive man-
ner. Instead of keeping a separate set of dataflow facts at
each edge, we keep a single set I for the whole procedure.
Iterative analysis proceeds as usual, except that each time
a flow function is run, it takes I as input, and its result is
merged into I. In this way one can produce a sound flow-
insensitive analysis from a sound flow-sensitive version. We
have shown once by hand that if all the propagation rules
are sound, then the result of running the analysis in flow-
insensitive mode is also sound. A proof can be found in the
accompanying technical report [20].

6. INTERPROCEDURAL ANALYSES
Yet another benefit of using flow functions is that we can

adapt a previous flow-function-based framework [7] from the

5Or, if using bounded-sized integers, it takes a long time.

Vortex compiler [11] in order to automatically build prov-
ably sound interprocedural analyses in Rhodium. The pre-
vious Vortex framework has been used to write realistic in-
terprocedural analyses, such as various kinds of class anal-
ysis [13], constant propagation, side-effect analysis, escape
analysis, and various synchronization-related analyses [2].
The contribution of the new Rhodium framework is a rigor-
ous formal description combined with a proof of soundness.
These are stand-alone contributions whose applications are
broader than just the Rhodium system.

Our approach revolves around a framework for creating
a provably sound interprocedural analysis from a sound
intraprocedural version. The framework is parameter-
ized by a context-sensitivity strategy that describes what
context a function should be analyzed in at a particu-
lar call site. The context-sensitivity strategy is embod-
ied in a function selectCalleeContext . Given a call site n,
the context c ∈ Context in which the caller is being an-
alyzed, and the dataflow information d at the call site,
selectCalleeContext (n, c, d) returns the context for analyz-
ing the callee at this call site.

We have instantiated our framework with two commonly
used context-sensitivity strategies: the transfer function
strategy (also known as Sharir and Pnueli’s functional
approach [27]), and Shivers’s k-CFA algorithm [28] (also
known as the k-deep call-strings strategy of Sharir and
Pnueli [27]). Table 2 shows the definition of Context and
selectCalleeContext for these two strategies. The context-
insensitive strategy can be achieved using 0-CFA.

Our key insight is that these instantiations of the frame-
work can be proven sound by hand once and for all, in-
dependent of any user-defined analysis. As a result, any
interprocedural analysis generated by one of these instanti-
ations is guaranteed to be sound provided the intraproce-
dural version is. To build a provably sound interprocedural
analysis, the programmer writes the intraprocedural version
in Rhodium, making sure that it passes all the soundness
checks, and then picks one of the predefined context sensitiv-
ity strategies. Our framework then automatically generates
an interprocedural version of the analysis that is guaranteed
to be sound.

The Rhodium framework operates by creating an inter-
procedural flow function Fi from an intraprocedural version
F . Due to space limitations, we only give an informal de-
scription of Fi here – a formal description of the framework,
accompanied by proofs of soundness, can be found in the
accompanying technical report [20].

Instead of propagating facts d ∈ D, the interprocedu-
ral analysis propagates partial maps cd ∈ Context ⇀ D
which map a calling context c to the dataflow information
d that holds in that context. For nodes that are not func-
tion calls or returns, Fi simply evaluates F pointwise on
each range d element. For a call node n, for each (c 7→ d)
pair flowing into the call, Fi merges (pointwise) the pair
(selectCalleeContext (n, c, d) 7→ d) into the map on the en-
try edge of the callee’s CFG, which will cause the callee to
be further analyzed if the edge information changes. For a
return node, for each (c′ 7→ d′) pair flowing into the return,
for each call site n and inflowing pair (c 7→ d) such that
c′ = selectCalleeContext (n, c, d), the pair (c 7→ d′) is merged
into the map on n’s successor edge. The accompanying tech-
nical report [20] describes how dataflow facts are translated
from callers to callees and vice versa.

Analogously to widening operators as discussed in sec-



Strategy Context selectCalleeContext

Transfer function D selectCalleeContext (n, c, d) = d

k-CFA list [string ] selectCalleeContext (n, c, d) = last(concat(c, [fnOf (n)]), k)

where: concat (l1, l2) concatenates lists l1 and l2
fnOf (n) returns the name of the enclosing function containing n
last(l, k) returns the sublist containing the last k elements of l
(or l if l contains fewer than k elements)

Table 2: Definition of Context and selectCalleeContext for two common context-sensitivity strategies.

tion 4.3, we could enrich Rhodium by allowing optimization
writers to specify a context widening operator to control the
amount of context-sensitivity. For example, after k different
contexts have been selected for a function, all future con-
texts could be widened to >, bounding the number of times
the function is analyzed.

7. EXECUTION ENGINE
Rhodium analyses and transformations are meant to be

directly executable; they do not have to be reimplemented
in a different language to be run. Using Whirlwind’s frame-
work for composable optimizations [18], we have imple-
mented a forward intraprocedural execution engine for the
core of the Rhodium language. Rhodium optimizations
in Whirlwind peacefully co-exist with Cobalt optimizations
and with hand-written optimizations. By supporting such
incremental adoption, it is possible to provide benefits to
compiler-writers even if the whole optimizer is not written
in Rhodium.

The Rhodium execution engine stores at each edge in the
CFG an element of D (each element of D is a set of facts),
and propagates facts across statements by interpreting the
Rhodium rules. The engine’s flow function Fexec : Node ×
D → D operates as follows (where R is the set of forward
propagation rules that the engine is executing):

Fexec(n, d) = ∪r∈R apply rule(r, n, d)

apply rule(if ψ then f(
−→
t )@out , n, d) =

let Θ = sat(ψ,n, d, []) in ∪θ∈Θ {f(θ(
−→
t ))}

The flow function applies each rule separately and returns
the union of the individual results. The apply rule func-
tion computes all the facts propagated by a given rule. To
do this, apply rule first uses the sat function to compute
all the satisfying substitutions that make the antecedent ψ
hold. For each returned substitution θ, apply rule adds the

propagated fact, f(θ(
−→
t )), to the result set.

The sat : Pred × Node × D × Subst → 2Subst function
(where we denote by Pred the set of all Rhodium predi-
cates, and by Subst the set of all substitutions) finds sat-
isfying substitutions: given a predicate ψ, a node n, a set
of facts d, and a substitution θ, sat(ψ, n, d, θ) returns the
set of all substitutions θ′ that have the following properties:
(1) θ′ makes ψ hold at node n when d flows into n, or more
formally, JψK(n, d, θ′) holds (2) θ′ is an extension of θ and
(3) the additional mappings in θ′ are only for free variables
of ψ. The original call to sat passes the empty substitution
[] for θ, and in this case sat(ψ,n, d, []) computes the set of
all substitutions over the free free variables of ψ that make
ψ hold at node n. Here are some representative cases from
the implementation of sat :

sat (true, n, d, θ) = {θ}

sat (false, n, d, θ) = ∅

sat (ψ1 ∨ ψ2, n, d, θ) = sat (ψ1, n, d, θ) ∪ sat(ψ2, n, d, θ)

sat (ψ1 ∧ ψ2, n, d, θ) = let Θ = sat(ψ1, n, d, θ)
in ∪θ′∈Θ sat(ψ2, n, d, θ

′)

sat (t1 = t2, n, d, θ) = unify(n, t1, t2, θ)

sat (f (
−→
t )@in, n, d, θ) = ∪f(−→s )∈d unify terms(n,

−→
t ,−→s , θ)

sat (∃x.ψ, n, d, θ) = sat (ψ,n, d, θ \ x)[x 7→ θ(x)]

In the above definition, we use θ \ x to denote θ with any
mapping of x removed. We also use Θ[x 7→ θ(x)] to denote
∪θ′∈Θ{θ

′[x 7→ θ(x)]}, where θ′[x 7→ θ(x)] stands for the
substitution θ′ updated so that it maps x in the same way
that θ does: if θ maps x to a value, then θ′[x 7→ θ(x)] maps
x to the same value, and if θ does not have a mapping for
x, then neither does θ′[x 7→ θ(x)].

The sat function above makes use of a unification routine:
the call unify(n, t1, t2, θ) attempts to unify θ(t1) and θ(t2).
If the unification fails, then the empty set is returned. If
the unification succeeds with substitution θ′, then θ′ is aug-
mented with all the mappings from θ to produce θ′′, and
the singleton set {θ′′} is returned. The unify terms function
works like unify, except that it unifies a sequence of terms
−→
t with another sequence −→s . The unification procedure also
tries to evaluate terms such as applyBinaryOp(∗, C2, C3)
from figure 2. If such a term can be evaluated, unify re-
places the term with what it evaluates to, and then proceeds
as usual. If such a term cannot be evaluated (because for
example either C2 or C3 is not bound yet), then unification
fails.

Universal quantifiers are handled by expanding them into
conjunctions over the domain of the quantifier. This expan-
sion is possible because the domain of quantified variables is
finite for any particular intermediate-language program. For
existential quantifiers, the sat function locally skolemizes the
quantified variable, and then proceeds with the body of the
quantifier. Any mapping of the quantified variable intro-
duced for satisfying the body of the quantifier is discarded
in the resulting substitutions.

8. CURRENT AND FUTURE WORK
We have so far focused our attention primarily on forward

analyses and transformations in Rhodium. We have im-
plemented a fully automated checker and execution engine
for Rhodium forward analyses and transformations, and we
have finished the hand proofs for the forward case.

We are now extending our work to backward optimiza-
tions. We already have a proof strategy for backward
Rhodium analyses and transformations, but have not yet
implemented the checker nor completed the hand proofs.



We have written in Rhodium the two backward optimiza-
tions we had in Cobalt (dead assignment elimination and
code hoisting), and simulated our proof strategy by hand
on these optimizations. The proof obligations for these two
optimizations in Rhodium end up being exactly the same
as the proof obligations for their Cobalt counterparts. We
are currently working on generating these proof obligations
mechanically, and we are also in the process of finishing the
hand proofs for the backward case.

In future work, we would like to extend our execution
engine to handle the full language design, including back-
ward analyses and transformations, interprocedural and
flow-insensitive analyses, profitability heuristics and user-
defined widenings.

We also plan to explore more efficient implementation
strategies for our execution engine, such as generating spe-
cialized code to run each optimization [30]. For example,
consider a rule whose antecedent is a conjunction where one
of the conjuncts is stmt (X := &Z). We statically know that
this rule will only fire on statements of the form X := &Z,
but because our current engine does not make use of this
information, the rule is repeatedly considered on statements
of the “wrong” form. By partially evaluating the rules with
respect to each statement kind, we can produce a specialized
set of rules that will be smaller than the whole set (because
some rules will not apply) and in which each rule will be
simpler (because the antecedent can be simplified based on
the statement kind). The generated flow function would
dispatch on the form of the statement being analyzed, and
would directly jump to specialized code that runs the sim-
plified rules.

Furthermore, we would also like to investigate more ef-
ficient representations of the dataflow information. For
example, storing the does-not-point-to relation using ex-
plicit pairs can incur a significant memory overhead. We
would like to investigate ways of automatically converting
to more space-efficient representations, for instance the in-
verted may-point-to relation, or a bit-vector representation
of the relation. Also, motivated by recent advances in the
use of BDDs to represent pointer information [5, 34], we
would like to explore ways of inferring when it would be
beneficial to use BDDs for encoding our sets of facts.

Finally, we want to continue on our path of pushing more
and more of the burden of compiler-writing onto the com-
puter. By automating more and more of the tedious, diffi-
cult and error-prone parts of compiler-writing, we can allow
the human to concentrate on the creative and interesting
parts. One such direction is to automatically infer propaga-
tion rules given only the facts and their meanings. Another
direction would be to generate the facts, meanings and prop-
agation rules for supporting a given CFG rewrite rule.

9. RELATED WORK
The idea of analyzing optimizations written in a domain-

specific language was introduced by Whitfield and Soffa with
the Gospel language [35]. The differences between our work
and the Gospel work stem from the difference in focus: we
explore soundness whereas Whitfield and Soffa explore op-
timization dependencies.

Many other frameworks and languages have been pro-
posed for specifying dataflow analyses and transformations,
including Sharlit [32], System-Z [36], languages based on reg-
ular path queries [29], and temporal logic [30, 17]. None of

these approaches, however, addresses automated soundness
checking of the specified transformations.

A significant amount of work has been done on manually
proving dataflow analyses and transformations correct, in-
cluding abstract interpretation [8, 9, 10], the work on the
VLISP compiler [14], Kleene algebra with tests [16], manual
proofs of correctness for optimizations expressed in temporal
logic [30, 17], and manual proofs of correctness based on par-
tial equivalence relations [4]. Analyses and transformations
have also been proven correct mechanically, but not auto-
matically: the soundness proof is performed with an inter-
active theorem prover that requires guidance from the user.
For example, Young [37] has proven a code generator cor-
rect using the Boyer-Moore theorem prover enhanced with
an interactive interface [15]. As another example, Cachera
et. al. [6] show how to specify static analyses and prove them
correct in constructive logic using the Coq proof assistant.
Via the Curry-Howard isomorphism, an implementation of
the static analysis algorithm can then be extracted from the
proof of correctness. Aboul-Hosn and Kozen present KAT-
ML [1], an interactive theorem prover for Kleene Algebra
with Tests, which can be used to interactively prove prop-
erties of programs. In all these cases, however, the proof
requires help from the user. In contrast, Rhodium’s proof
strategy is fully automated.

Instead of proving that the compiler is always correct,
translation validation [25, 23] and credible compilation [26]
both attack the problem of checking the correctness of a
given compilation run. Therefore, a bug in an optimiza-
tion only appears when the compiler is run on a program
that triggers the bug. Our work allows optimizations to be
proven correct before the compiler is even run once. How-
ever, to do so we require optimizations to be written in a
special-purpose language. Our approach also requires the
Rhodium execution engine to be part of the trusted com-
puting base, while translation validation and credible com-
pilation do not require trust in any part of the optimizer.

Proof-carrying code [22], certified compilation [24], typed
intermediate languages [31], and typed assembly lan-
guages [21] have all been used to prove properties of pro-
grams generated by a compiler. However, the kinds of prop-
erties that these approaches have typically guaranteed are
type safety and memory safety. In our work, we prove the
stronger property of semantic equivalence between the orig-
inal and resulting programs.

10. CONCLUSION
We presented a new language called Rhodium for express-

ing dataflow analyses and transformations that is signifi-
cantly more expressive than previous work while retaining
automated soundness checking. The key to Rhodium’s ex-
pressiveness lies in its use of local propagation rules, which
can be used by programmers to implement flow functions
that are checked automatically for soundness, and from
which can be derived flow-insensitive, flow-sensitive, and in-
terprocedural analyses.
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