Accelerating Viola-Jones Face Detection to FPGA-Level using GPUs

Daniel Hefenbrock, Jason Oberg, Nhat Tan Nguyen Thanh, Ryan Kastner, Scott B. Baden
Department of Computer Science and Engineering
University of California, San Diego
La Jolla, California, USA
{dhefenbr, jkoberg, nnguyent, kastner, baden}@ucsd.edu

Abstract—Face detection is an important aspect for biomet-
rics, video surveillance and human computer interaction. We
present a multi-GPU implementation of the Viola-Jones face
detection algorithm that meets the performance of the fastest
known FPGA implementation. The GPU design offers far lower
development costs, but the FPGA implementation consumes
less power. We discuss the performance programming required
to realize our design, and describe future research directions.

Keywords-Graphical Processing Unit; Face Detection; Field
Programmable Gate Array; Acceleration.

I. INTRODUCTION

Object detection is prevalent in many applications such
as security systems and bioinformatics. Whether detecting a
face, mouse or stem cell, near real-time detection is essential
for many applications. However, typical software solutions
provide limited frame rates of 1.78 [4] even with optimized
OpenCV [1] code that utilizes multiple processing cores.
Hardware designs are able to heavily outperform software
ones by taking advantage of an application specific design.

An application specific integrated circuit (ASIC) design
would without doubt achieve the highest performance. How-
ever, a custom design is expensive since even a minor change
requires that the device be re-fabricated and face detection
algorithms require tuning for the expected type of image
before they can be put into production. Reconfigurable
devices, such as field programmable gate arrays (FPGAs),
are more cost effective, since the designer may reconfigure
the device in software yet still realize performance that
approaches that of an ASIC. For example, the design by
Cho et al. realized a rate of 16 frames per second (FPS)
for VGA (640 x 480) images [2]. However, even an FPGA
design requires a significant engineering effort, due to the
complexity of correctly synthesizing a register transfer level
(RTL) design that meets area and timing constraints. This is
true even if a high level design language tool is used [3].

In this paper, we present a more cost effective solution
based on graphical processing units (GPUs). Our GPU
design comes to within 5% of the frame rate of the fastest
known FPGA solution but at a significantly reduced design
cost. To the best of our knowledge, this is the fastest
implementation of the Viola-Jones algorithm on a GPU. A
GPU design has the advantage in that it avoids the need to

meet RTL constraints, thus, the design task entails software
development only. Though GPU programming does require
specialized knowledge, we deem such knowledge to be far
less intrusive than that required to manage area and timing
constraints.

The major contributions of this paper are:

« A implementation of the Viola-Jones Face Detection
algorithm on GPUs.

o A detailed discussion of the GPU programming design
used to achieve high performance on VGA (640 x 480)
images.

o A comparison of GPU cost, implementation, and per-
formance with that of the best known FPGA implemen-
tation.

The remainder of this paper is as follows. In Section II
we describe prior work in accelerating facial and object
recognition. In Section III we describe the Viola-Jones Face
Detection algorithm. We provide details of our GPU design
in Section IV. In Section VI we compare the algorithm’s
implementation on GPUs and FPGAs. Section VII concludes
the paper.

II. RELATED WORK

Much work has been done in attempts to accelerate
object detection. Software solutions that use optimized
OpenCV implementations can obtain 1.78 FPS on VGA
image sizes [4]. An alternative is to use a hardware approach
that accelerates the calculation of the algorithm using an
application specific design. Theocharides et al. [5] present
an ASIC architecture that heavily exploits parallelism of
the AdaBoost face recognition technique by parallelizing
accesses of image data. They show a computation rate
of 52 FPS but their image sizes are unknown. Wei et
al. [6] presents a FPGA architecture that simulates only
a small section of the entire algorithm. It can achieve
rates up to 15 FPS for small images (120 x 120). Nair
et al. [7] developed a people detection embedded system
using a softcore processor from Xilinx called Microblaze
and achieved about 2.5 FPS for image sizes of 216 x 288.
Gao et al. [8] proposed a FPGA design focused on feature
classifier calculation. In this system, the host did the post
displaying and necessary pre-processing; the entire design

was not implemented on a FPGA. They reported image
sizes of 256 x 192 with a rate of 98 FPS. Cho et al.
[9] proposed an architecture that performed all aspects of
the algorithm on the FPGA, using special frame grabbers
and buffers to accelerate the calculations. This hardware
design, even with the serial portions of the implementation,
is substantially faster than conventional processor imple-
mentations, operating at 6.55 FPS for VGA images, versus
0.31 FPS for single core implementations [9]. This particular
implementation computed 3 features in parallel. Most recent
highly parallelized versions can achieve up to 16.08 FPS [2]
by calculating up to 8 feature classifiers in parallel. Table I
compares all the designs.

[Design/Author | Image Size | FPS |

[5] Unknown | 52.00
[6] | 120 x 120 | 15.00
[71 | 216 x 288 2.50
[8] | 256 x 192 | 98.00
[9] | 640 x 480 6.55
[2] | 640 x 480 | 16.08
[4] | 627 x 441 4.30

Table I
PREVIOUS ACCELERATED VERSIONS OF VIOLA-JONE’S ALGORITHM

A difficulty in comparing the designs in Table I is that not
all the designs work with VGA images. Since the processing
rate roughly scales linearly with number of image pixels,
many of the rates would in fact be far lower if they could
be applied to VGA images. For example, Cho et al. [2] note
that their design runs at 61.02 FPS for QVGA (320 x 240)
image sizes. In this paper, we consider VGA image sizes,
and take 16 FPS as the benchmark rate, as it is the highest
achieved frame rate known to us for the Viola-Jones face
detection algorithm [2]. Previous GPU implementations are
unable to achieve comparable performance to this FPGA
design with the fastest known solution to the best of our
knowledge running the algorithm at 2.8 FPS for a single
NVIDIA GTX 285 GPU and 4.3 FPS for 2 NVIDIA GTX
295 GPUs on VGA size images [4].

This paper will show a GPU design that achieves the
performance of the FPGA design mentioned in [2] and will
provide a detailed comparison of the two designs in Sec-
tion VI. Before details of our GPU design can be discussed,
it is important to understand the Viola-Jones algorithm. The
next section describes how the algorithm typically operates
on serial software platforms.

III. FACE DETECTION ALGORITHM

We use Viola-Jones Face Detection algorithm in this
paper [10]. At a high level, the algorithm scans an image
with a window looking for features of a human face. If
enough of these features are found, then this particular
window of the image is said to be a face. In order to
account for different size faces, the window is scaled and the

process is repeated. Each window scale progresses through
the algorithm independently of the other scales. To reduce
the number of features each window needs to check, each
window is passed through stages. Early stages have less
features to check and are easier to pass whereas later stages
have more features and are more rigorous. At each stage,
the calculations of features for that stage are accumulated
and, if this accumulated value does not pass the threshold,
the stage is failed and this window is considered not a face.
This allows windows that look nothing like a face to not be
overly scrutinized.

To more thoroughly understand the algorithm, some
specifics need to be defined including features, a special
representation of the image known as the Integral Image,
and a stage cascade.

A. Features

Feature classifiers are used to detect particular features of
a face. Windows are continuously scanned for features, with
the number of features depending on the particular stage the
window is in. The features are represented as rectangles and
the particular classifiers we use are composed of 2 and 3
rectangle features. Figure 1 shows an example of such a
feature classifier.

To compute the value of a feature, we first compute the
sum of all pixels contained in each of the rectangles making
up the feature. Once calculated, each sum is multiplied
by the corresponding rectangle’s weight and the result is
accumulated for all the rectangles in the feature. If the
accumulated value meets a threshold constraint, then the
feature has been found in the window under consideration.
The weights and sizes of the rectangles for each feature are
obtained from OpenCV training data; the interested reader
should consult references [10] and [1].

Figure 1. Example of a simple feature: a person’s forehead is lighter than
their eyes. This is an example of a 2 rectangle feature.

B. Integral Image

To avoid computing rectangle sums redundantly, we com-
pute the Integral Image(Il) as a pre-processing step. The In-
tegral Image at location (z, y) contains the sum of the pixels
above and to the left of (z,y). More formally, Eq. 1 shows
how the Integral Image is defined, where /I represents the
Integral Image and Image is the original Image.

I1(z,y) = Image(z,y) + II(z — 1,y)

+II(z,y—1)—II(z —1,y—1) &

II(x — 1,y — 1) is subtracted off since it is included
redundantly in the sum I1(z—1,y) and II(x,y—1). Figure 2
shows this pictorially.

112 1213
111 |:> 2]ale
111 3|69

Figure 2. A 3 X 3 image and its corresponding Integral Image.

Using the Integral Image, features can be calculated in
constant time since we can compute the sum of the pixels
in the constituent rectangles in constant time. Figure 3 shows
how this process takes place.

L1 L2

L3 L4

Figure 3.
Image.

Method of calculating the value of a feature using the Integral

Specifically, if the sum of the pixels in rectangle D is
required, we perform the following calculation using the
Integral Images at the four corners:

Sump = II(L4) — II1(L3) — IT(L2) + I1(L1)

We add back L1 because II(LL1) has been subtracted off
twice; L3 and L2 both contain the region covered by L1.
Although the features can be calculated in constant time,
excessive work would be done if a particular window region
looks nothing like a face. The algorithm uses over 2000
features and it would be inefficient to calculate all of these
features unnecessarily. To avoid this problem the algorithm
uses a stage cascade to divide up the number of features and
eliminate windows quickly when it has been determined that
they do not contain a face.

C. Stage Cascade

The stage cascade keeps windows that look nothing like
a face from being analyzed unnecessarily. It immediately
labels a window as “not a face” when the window fails
a particular stage. The implementation we use contains
22 stages with early stages containing fewer features and
later stages containing more detailed features. In general,
earlier stages are passed more frequently with later stages
being more rigorous. Thus, the amount of work in each
particular stage varies greatly. This process can be more
easily understood from Figure 4.

Window Pass Pass| Pass Pass Face

— 3 Stage0 T Stage 1 T Stage 2 T "'T Stage21 [—>

Fail Fail Fail Fail

Figure 4. Windows enter the algorithm at stage 0 and propagate through
the stages. Early stages are passed easier and later stages are more selective.

In Figure 4, it can be seen that a window enters the stage
cascade at stage 0. If all the features of this particular stage
are found in the window, the stage is said to be passed and
the window is propagated to the next stage and the window
is again scanned for features of this next stage. If the window
passes all stages, then it is said to be a face and the next
window is then processed in the same manner.

Careful consideration needs to be taken when accelerating
this algorithm on a GPU. The following section discusses
the details of our GPU implementation and its design
considerations.

IV. GPU IMPLEMENTATION

In this section, we describe our GPU-based implementa-
tion of the Viola-Jones face detection algorithm. First we
provide a brief overview of the GPU hardware architec-
ture and programming model. Then we discuss different
approaches on parallelizing the algorithm and explain our
solution. We present results in the following section.

Multiprocessor 1
| Streaming Processor 1 |

Multiprocessor n
| Streaming Processor 1 |

| Streaming Processor 2 | | Streaming Processor 2 |

| Streaming Processor k | | Streaming Processor k |

Shared Register Shared Register
Memory File Memory File

| (Global) Device Memory |

Figure 5. Simplified GPU hardware architecture.

A. GPU Overview and CUDA Programming Model

Our GPU testbed is NVIDIA’s Tesla processor, which we
programmed with CUDA, an extension to the C program-
ming language [11]. Figure 5 shows a simplified view of the
Tesla architecture. A CUDA program executes sequences of
kernels, functions that run under the Single Instruction, Mul-
tiple Threads (SIMT) model. These kernels run a virtualized
set of scalar threads which are hierarchically organized into
two-dimensional thread blocks. The programming model
conceptually partitions these thread blocks into a grid which
can be seen in Figure 6.

The hardware provides a set of multiprocessors and it
dynamically assigns each thread block to a single multi-
processor. A thread block is further broken down into a
collection of multiple warps, each a group of 32 threads
that execute in SIMD fashion, that is, the same instruction

at the same time. The threads in a thread block share a local
store (16KB) known as shared memory as well as a 16KB
register file. Threads may access a global device memory,
which is un-cached and has a high access latency, on the
order of 20 times higher than that of shared memory or
registers. Device memory has high bandwidth, about 120
GB/sec if it is 4GB in size. (Access to host memory is at a
far lower bandwidth.) There are also cached stores known as
texture and constant memory. To automatically mask device
memory latency, the processor schedules threads in units of a
half warp—16 threads. A warp is scheduled when runnable.

Thread Block

16 x 16 Threads

Thread Block Grid

M x N Thread Blocks

Figure 6. The grid consisting of thread blocks.

Each multiprocessor comprises 8§ single precision stream-
ing scalar cores, a pipelined multiply-adder (MAD), 2 tran-
scendental special function units (SFU), 1 double precision
pipelined MAD, shared memory, and the register file.

The GPU hardware dictates some principles that must be
adhered to in order to fully leverage its resources. First, it is
important to minimize accesses to device memory, by using
registers and shared memory to store frequently accessed
data. (We note that each kernel runs to completion and data
may be transferred between kernels through global memory
only.) Second, the transfers to and from global memory must
be overlapped with computation. This is achieved by max-
imizing thread occupancy, that is, the number of threads in
a thread block that are assigned to the same multiprocessor.
With sufficient occupancy, the processor effectively pipelines
global memory accesses thereby masking their cost. The
scarcity of shared memory and registers constrains this goal,
and the exact amount of realizable virtualization depends
on the specific storage requirements of the kernel. Third,
memory accesses to Global and Shared memory must avoid
bank conflicts using coalesced accesses. Fourth, branching
should be reduced to a minimum within kernels since threads
taking different branches cannot be executed in parallel by a
SIMT processor. This is a consequence of the constraint that
all threads within a warp must execute the same instruction.

B. Approaches to Parallelize Viola-Jones Face Detection

The Viola-Jones Face Detection algorithm as described
in Section III can be parallelized in a number of different
ways. We examine three distinct approaches to parallelizing
the algorithm and discuss how well each approach suits the

requirements of the GPU hardware. Figure 7 depicts all three
approaches conceptually.

Figure 7. Approaches to parallelization: 1) Features within a window

in parallel. 2) Different scales calculated in parallel. 3) Multiple windows
calculated in parallel.

1) Parallelize Feature Calculation: In this approach each
thread calculates all features of all stages for a particular
window simultaneously. This approach forces threads to per-
form calculations that may be unnecessary. Threads working
on windows that would otherwise fail in earlier stages will
perform calculations for later stages unnecessarily.

2) Parallelize Scales: Parallelizing different window scal-
ing factors is another approach, and allows threads to work
on different size windows at the same time. However, the
sparsity of the pixels on larger scaling factors is substantial
in comparison to smaller scaling factors, resulting in fewer
windows for larger scaling factors. This approach would
assign much more work to the smaller scaling factors
than the larger scaling factors resulting in an unbalanced
distribution of work.

3) Parallelize Windows: The final solution is to run the
algorithm on multiple windows of the image simultaneously.
This approach effectively divides the computation space but
still does not solve the load balancing problem. Specifically,
threads that are analyzing a window that does not contain
a face will fail quickly, whereas windows that find a face
perform much more calculations. Even though load balanc-
ing is an issue with this approach, it is the basis of our
implementation. First, it allows individual threads to work
on single windows. Second, it admits optimization because it
decomposes the image. Third, it provides options for hybrid
methods in combination with one of the other approaches.
The next section outlines the specifics of our implementation
in much more detail.

C. Implementation in CUDA

We have developed a CUDA implementation based on
the third approach discussed in the previous section. We
then optimized this basic implementation in various ways in
order to further improve the performance.

1) Basic Implementation—Parallel Windows: The ba-
sic implementation divides the image into rectangular
blocks; each block is conceptually governed by one
CUDA thread block. Each thread in a thread block works
on exactly one window. We evaluated different thread block
sizes and found 16 x 16 threads to be the optimal thread
block size. For a VGA image and the initial scale factor,
the initial thread block grid size is, therefore, 40 x 30

because 640 and 480 divided by 16 results in 40 and 30
respectively. As windows scale up, so does the distance
between them. Therefore, fewer and fewer thread blocks are
needed, resulting in a smaller grid of thread blocks as the
scale factor grows. Table II shows scale factors and resulting
grid sizes.

[Kernel launch [Scale factor [Grid size | Number of blocks

1 1.00 | 40 x 30 1200
2 1.20 | 40 x 30 1200
3 144 | 40 x 30 1200
4 1.73 | 40 x 30 1200
5 2.07 | 20x 15 300
6 249 | 20 x 15 300
7 298 | 20 x 15 300
8 3.59 13 x 10 130
9 4.30 10x7 70
10 5.16 8% 6 48
11 7.43 5x4 20
12 7.45 5 x4 20
13 8.91 5x3 15
14 10.70 4x3 12
15 12.84 3x2 6
16 15.41 2 X2 4
17 18.49 2x1 2
18 22.19 1x1 1
Table 11

SCALING FACTORS AND RESULTING GRID SIZES.

Since the grid size decreases, we have to re-launch the
CUDA kernel for each scale factor, every time adjusting the
thread block grid size. One downside of our parallelization
strategy becomes apparent: the total number of thread blocks
drops from an initial 1200 to final value of 1, reducing the
parallelism available to hide memory latency. For example,
as of scale 10, there are more multiprocessors available
on the GPU than there are thread blocks which greatly
under-utilizes the GPU. However, our results indicate that
later stages consume only a very small fraction of the total
runtime which somewhat mitigates this problem.

The basic implementation uses one thread per window
iterating through all stages and all features of each stage
until either (a) it aborts because a stage threshold is not met,
or (b) it successfully passes the last stage which means that
it found a face. In the latter case, the thread needs to write
the coordinates and extent (scale) of the detected face to a
pre-allocated “result array” in global device memory. The
result array gets copied back to the host memory once all
kernel launches have finished. We need to maintain a shared
counter in the global device memory indicating the position
in the result array to which the next detected face has been
written by some thread, which also increments the counter
in global memory. However, an increment in global memory
introduces a race condition among different threads. Thus,
we use the atomicAdd primitive provided by CUDA to
increment the counter atomically [11].

The implementation presented so far is straight forward
and does not fully harness the capabilities of the GPU. All

data — Integral Image and features — resides in slow global
memory and needs to be loaded from it every time, resulting
in suboptimal performance. One way to better utilize the
GPU is to move frequently accessed data into multiproces-
sor’s shared memory. We considered loading parts of the
Integral Image into the shared memory but discarded this
idea because of several problems arose. While the parts of
the Integral Image accessed by threads of a thread block are
initially small, they quickly outgrow the size of 16KB when
scaling up. Also, threads access the Integral Image only at
the corner coordinates of each feature which leads to a sparse
access pattern exhibiting poor locality. The fact that threads
of a thread block work on neighboring windows does not
help either because the distance between windows grows by
the scale factor as well. In the next section, we explain how
we optimized the basic implementation by loading features
into shared memory instead.

2) Features in Shared Memory: Features get accessed by
threads in a sequential way and all threads in a thread block
access the same features in the same order. Also, the size
of a feature is 24 Bytes which adds up to almost 3KB of
feature data for the last stage or more than 50KB in total.
While only very few threads will actually reach later stages,
features of early stages alone generate large amounts of data
to be loaded from global memory.

We extended our implementation to load all features of
a stage into shared memory before starting to work on the
stage. This greatly improves feature access times through
re-use because once loaded into shared memory, all 256
(16 x 16) threads in the thread block can subsequently access
the feature without having to go to global memory. Fur-
thermore, all threads executed in parallel can load features
simultaneously, using the broadcast capability of the thread
block’s shared memory banks [11].

As many as possible threads in a thread block participate
in loading the features of a stage. All features in a stage are
stored in a contiguous thread block of global memory. Since
multiple contiguous 32 or 64 word memory writes to shared
memory can be coalesced into a single write, we transfer
features in a word-by-word fashion into shared memory. As
depicted in Figure 8, each thread loads roughly %
words of the total feature data. This way, a good part of the
latency can be hidden in loading a feature.

Feature 1 Feature 2

|Wn|‘”n| | | |‘”ls|‘”zn|‘“’n| | | | |

|Wn|‘”n| | | |Wls|‘”zn|‘“’22| | | | |

Global memory ...

Shared memory

Figure 8. Threads ¢1 ...ty loading features from global to shared memory.

3) Parallelizing Features: With one thread working on
each window, the running time of a thread block is deter-
mined by the running time of the thread whose window

passes the most stages in that thread block. As shown in
Figure 9, this can lead to very poor load balancing within a
thread block. One way to deal with this is to have several
threads work on windows that require more computational
work. However, the amount of work for a window, i.e. the
number of features and stages to be evaluated, is not known
initially and reassigning threads within windows greatly
reduces performance because of increased branching and
synchronization.

We were able to somewhat improve the load imbalance by
doubling the static number of threads per window assigned
to a stage from one to two. Specifically, one thread working
on all features at a even position within the stage while
the other works on the odd features. The rationale is that
even though this increase in the number of threads does not
actually improve the load balance within a thread block it
increases the total number of non-idle threads by a factor of
two. This improves performance because only 16 threads
can run at a time. Both threads of a window have to
synchronize at the end of each stage in order to accumulate
the total stage sum. We have implemented this by placing
the stage sum into shared memory and having both threads
call atomicAdd, followed by a barrier, before determining
whether or not the stage is passed. We found that this
optimization made only a small difference in performance.
However, we expect a much larger improvement if there are
many faces in the scene, which is the subject of future work.

We were only able to double the number of threads per
window as further increases force us to decrease the thread
block size in order to avoid running out of registers and
shared memory.

ottt tg .

Stages, time

Figure 9. Running time of an imbalanced thread block.

4) Using Multiple GPUs: The Viola-Jones algorithm uses
multiple window scales to detect different sized faces. As
mentioned in Section IV-B, it is not beneficial to use threads
to work on different window scales due to poor locality.
The face detector can nevertheless work independently on
each window scale. We therefore statically assign different
window scales to different GPUs with the aim of getting
closer to ideal (linear) speedup.

On machines that have access to one GPU only, we dis-
tributed data across multiple processing nodes each running
an separate process. We accomplished this with the Message
Passing Interface, MPI [12]. Each MPI process executes the

GPU Kernel and then sends the result to the root node. It gets
assigned various window scales. We take into account that
larger window scales require less work than smaller ones by
decomposing the scales unevenly. That is, some GPUs have
to deal with more window scales than others.

V. GPU RESULTS

In this section, we present and analyze the performance of
our GPU implementations. We report performance as frames
per second(FPS). We verified correctness by comparing
the detected faces with the results of a serial reference
implementation written in C. All tests and measurements
were run on a collection of nine (9) VGA black-and-white
images containing between 1 and 20 faces. Note that each
face usually gets detected several times by the algorithm due
to overlap of search windows and different scaling factors.

We tested and measured all implementations — including
the serial reference version — on the Intel 64Bit Tesla Linux
Cluster “Lincoln” [13] located at the National Center for
Supercomputing Applications (NCSA).

Figure 11 compares the performance of the serial CPU im-
plementation and our CUDA implementation for single- and
4-GPU configurations. The single GPU results are split into
the basic implementation (see Section IV-C1), the improved
version using shared memory for features (Section IV-C2),
and the further improved version working in parallel on
features (Section IV-C3). The results also include the time
required for computing the Integral Image and transferring it
to the GPU. However, this time only accounts for less than
1% of the total runtime.

The results show that even the basic CUDA implementa-
tion running on one GPU outperforms the serial reference
implementation by almost an order of magnitude. Further,
using the GPU’s shared memory enables an additional
improvement, raising performance to nearly 4 FPS. Adding
more threads to work on stages in parallel does not result
in better performance; however, it does not decrease perfor-
mance either. We believe that our implementation gets close
to the maximal performance of a static solution. That is, a
solution that does not dynamically adapt to load imbalances.

We also note that our optimized CUDA implementation
achieves a perfect (linear) speedup on 4 GPUs. That is, the
4-GPU configuration is 4 times faster than the single-GPU
configuration, running at 15.2 FPS. This is within 5% of the
best known FPGA implementation [2]. However, we caution
that scaling to higher numbers of GPUs may not exhibit such
high speedups.

As explained in Section IV-C, we re-launch our GPU
Kernel for each search window scale factor. We next in-
vestigate the time spent for different scale factors. It is
to be expected that smaller scales run longer since they
require more work, as shown in Table II. Figure 10 presents
the measured runtime for each scale; the results match our
expectations. It is worth noting though that the second half

of all scales takes about 10% of the total running time only.
This suggests that future optimizations should target small
scale factors.

We also analyzed our GPU implementation using
cudaprof, a profiling tool for CUDA programs [11]. The
measured GPU occupancy of our solution is about 50%,
leaving some room for improvement. A more dynamic
approach that better balances the work will likely raise
the occupancy and, therefore, increase the performance. We
intend to investigate this and other optimizations in future
work.

80 1400
Number of Blocks =+Time in ms

1200

[\ QN
o o

1000

w
o

800
600

Number of Blocks
N W b
o O o

Time in ms

400
200

[N
o

o

* * 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 10. Runtime distribution for scales 1...18.

VI. COMPARISON OF GPU vs FPGA

This section presents a comparison of highly optimized
versions of the Viola-Jones algorithm running on a GPU
and FPGA by evaluating them in terms of performance,
programming complexity, architectural design, price, and
power consumption.

A. Performance

Our highest performing GPU implementation, which uti-
lizes 4 GPUs, performs at 15.2 FPS which is near the
best FPGA performance of 16 FPS as shown in Figure 11.
However, this design utilizes 4 GPUs and we expect a
speedup if the FPGA design utilized 4 FPGAs as well. For
example, one could employ the Convey HC-1 [14], which
is a cluster of FPGAs.

B. Programming Complexity

Development of a FPGA design is a complex engineering
task requiring the designer to carefully consider timing and
area resources in order to obtain a reliable design. This
engineering effort can be substantial and take a significant
amount of time before a final solution can be obtained, far
more than a GPU design. Our GPU design, on the other
hand, uses an extension of the C-programming (CUDA).

To obtain optimal performance the designers [2] were
required to effectively utilize the space of the FPGA,
specifically, make effective use of BRAMs and slices by
using special image buffers. Conversely, to get optimal
performance on a GPU, spatial resources are not an issue but
rather effectively taking advantage of memory locality and

having enough threads to hide memory latency is essential.
These considerations are different from that of the FPGA,
but in our opinion are far less labor intensive. The flexibility
of a software design allows for far easier development and
debugging turn around.

C. Single Device Design

The FPGA design proposed by Cho et al. [2] is ap-
proached differently than our GPU implementation. As
mentioned, our GPU implementation has threads operating
on windows simultaneously rather than on features as in
the FPGA design. Calculating multiple features in parallel
would heavily under-utilize the threads on a GPU and would
be a poor design choice.

On the other hand, the FPGA design cannot calculate
multiple windows in parallel due to the lack of resources on
the Virtex 5 LX330 FPGA [2]. However, calculating several
feature classifiers in parallel is an adequate solution for the
FPGA because it allows for parallelism with the available
amount of resources, and as mentioned previously, this could
be treated with a multiple FPGA design to increase the level
of parallelism.

D. Hardware Price

It is difficult to quantify the actual price/performance
ratio of the respective devices because cost and performance
depend heavily on the specific device and the type of board
the chip is seated in. Typical Virtex-5 FPGA evaluation
boards vary from $995 to $3,995 [15] depending on the com-
plexity of the extra on-board peripherals. Typical quad-Tesla
desktop supercomputers cost roughly $5000 [16]. Lower end
GPUs, such as Geforce GTX 285, can be purchased for $300
to $500 depending on the board manufacturer [16] and can
be placed in a conventional desktop package. It can be seen
that for a comparable price, both high-end GPUs and FPGAs
can be obtained.

18 16
16 15.2

14

12

10

8

6

1 274 3.78 3.8

} Fom -
A

FPS

CPU GPU Shared Parallel 4-GPU FPGA
Serial Basic Featues Features
Figure 11. Performance of different implementations in FPS.
E. Power

Although a GPU is much easier to program than an FPGA,
the amount of power it consumes is substantially higher
than that of an FPGA. The FPGA design [2], which uses a
Virtex-5 LX330, consumes about 3.9 of power according
to Xilinx Power Estimator [17]. A NVIDIA Tesla C1060 and

C2050 GPU, on the other hand, both consume about 190/
at peak power [16] resulting in over 50 times as much power
consumption for a GPU over an FPGA on this workload. The
power consumption will vary heavily on the GPU, with a
single Geforce GT 220 operating at 58W peak power [16]
but with the sacrifice of the number of CUDA cores and
device memory. Thus to get comparable FPGA performance
by using 4 GPUs, significantly more power will need to be
consumed. The numbers shown are for only the devices and
it should be made clear that GPUs require the assistance of
a host machine or data center which will also consume a
significant amount of power. Depending on the application,
the GPU alternative could prove to be very beneficial if
power is not a huge concern. However, if low power is a
big concern, such as for an embedded device, it would be
more practical to use an FPGA.

VII. CONCLUSION

We have presented a GPU implementation of the Viola-
Jones face detection algorithm that achieves performance
comparable to that of the best known FPGA implementation.
We realized 15.2 FPS for an implementation running on
desktop server containing 4 Tesla GPUs. We have discussed
the trade-offs associated with choosing one device over
the other. In particular, GPUs offer far lower development
costs, while FPGAs consume far less power. Thus, the
selection of an appropriate design depends on the application
requirements.

We await the new Fermi platform which may enable us
to reach the real time frame rate. We also plan additional
performance enhancements, that would rely on processing
many faces simultaneously and dynamic thread scheduling.

ACKNOWLEDGMENT

This research was supported by an allocation of advanced
computing resources supported by the National Science
Foundation. The computations were performed in part on the
Lincoln system at the National Center for Supercomputing
Application. Additional computations on an NVidia Tesla
system located at UCSD were supported by NSF DMS/MRI
Award 0821816. Daniel Hefenbrock is a visiting student
from the Hasso-Plattner-Institute at the University of Pots-
dam, Germany. Nhat Tan Nguyen Thanh is a fellow of the
Vietnam Education Foundation. Scott Baden dedicates his
portion of the research to the memory of Paul A. Baden
(1938-20009).

REFERENCES

[1] Opencv. [Online]. Available: http://sourceforge.net/projects/
opencvlibrary/

[2] J. Cho, B. Benson, S. Mirzaei, and R. Kastner, “Parallelized
architecture of multiple classifiers for face detection,” in
ASAP °09: Proceedings of the 2009 20th IEEE International
Conference on Application-specific Systems, Architectures
and Processors. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 75-82.

[3] Catapult ¢ synthesis. Mentor Graphics. [Online].
Available: http://www.mentor.com/products/esl/high_level _
synthesis/catapult_synthesis

[4] J. P. Harvey, “Gpu acceleration of object classification algo-
rithms using nvidia cuda,” Master’s thesis, Rochester Institute
of Technology, Rochester, NY, Sept. 2009.

[5] T. Theocharides, N. Vijaykrishnan, and M. Irwin, “A parallel
architecture for hardware face detection,” in Emerging VLSI
Technologies and Architectures, 2006. IEEE Computer Soci-
ety Annual Symposium on, vol. 00, March 2006, pp. 2 pp.—

[6] Y. Wei, X. Bing, and C. Chareonsak, “Fpga implementation
of adaboost algorithm for detection of face biometrics,” in
Biomedical Circuits and Systems, 2004 IEEE International
Workshop on, Dec. 2004, pp. S1/6—-17-20.

[7] V. Nair, P.-O. Laprise, and J. J. Clark, “An fpga-based people
detection system,” EURASIP J. Appl. Signal Process., vol.
2005, pp. 1047-1061, 2005.

[8] C. Gao and S.-L. Lu, “Novel fpga based haar classifier
face detection algorithm acceleration,” in Field Programmable
Logic and Applications, 2008. FPL 2008. International Con-
ference on, Sept. 2008, pp. 373-378.

[9] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “Fgpa-based
face detection system using haar classifiers,” in FPGA '09:
Proceeding of the ACM/SIGDA international symposium on
Field programmable gate arrays. New York, NY, USA:
ACM, 2009, pp. 103-112.

[10] P. Viola and M. Jones, “Robust real-time face detection,”
Computer Vision, IEEE International Conference on, vol. 2,

p. 747, 2001.
[11] NVIDIA CUDA Programming Guide Version
2.3.1, NVIDIA, Aug. 2009. [Online]. Available:

http://developer.download.nvidia.com/compute/cuda/2_3/
toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf

[12] Message passing interface forum. [Online]. Available:

http://www.mpi-forum.org

[13] NCSA Intel 64 Tesla Linux Cluster Lincoln Technical
Summary, NCSA, University of Illinois. [Online].
Available: http://www.ncsa.illinois.edu/UserInfo/Resources/
Hardware/Intel64 TeslaCluster/TechSummary

[14] Convey computer. Available:

conveycomputers.com/

[Online]. http://www.

[15] Xilinx products. Xilinx. [Online]. Available: http://www.
xilinx.com/products/

[16] Nvidia products. NVIDIA. [Online]. Available: http://www.
nvidia.com/page/products.html

[17] Xpower estimator. Xilinx. [Online]. Available: http://www.
xilinx.com/products/design_resources/power_central/

