1 Problem Description

\(n \) units of resource are to be allocated to \(n \) Projects. If \(j \) units of the resource are allocated to project \(i \), the resulting profit is \(N(i,j) \). The problem is to allocate the resource to the \(n \) projects in such a way as to maximize total profit. We assume in this case that \(N(i,j_1) \leq N(i,j_2) \) if \(j_1 < j_2 \), i.e., if we allocate more resources to a project, we do not get less profit (*) This seems to make sense. Anyway, it does not change the resulting algorithm very much.

2 Problem Solving

2.1 Characterization of the structure of an optimal solution

In order to allocate the resources, we have to make \(n-1 \) decisions: 1. “How many resources for project 1?” 2. “How many for project 2?” and so on. The \(n \)th project is assigned the remaining resources \((\rightarrow) \). Therefore the problem may be formulated as an \(n+1 \) stage graph problem as shown in figure 1 (for \(n = 3 \) and \(n = 4 \)). Each path from \((1,0) \) to \((4,4) \) represents a distribution of resources among the projects. Following a path to a point \((i,j) \) can be interpreted as: \(j \) resources are already allocated and \(i \) am allocating resources for project \(i \) next. Now we are able to reformulate the above problem as follows: Find a path from \((0,1) \) to \((4,4) \) such that the sum of the values \(N(i,j) \) assigned to the edges that we take is maximal.

2.2 Recursive definition of the value of an optimal solution

Looking at the sample \(n = 3 \) and \(n = 4 \) in figure 1, we can see that an optimal solution consists of one step from \((1,0) \) to \((2, j) \), and the optimal path from \((2, j) \) to \((4,4) \). That means, once we have arrived at \((2, j) \), we have the problem to allocate the remaining \(n - j \) resources to the remaining projects 2, 3.

This can be generalized: If we are at the point \((i,j) \), we have to allocate the remaining \(n - j \) resources to the remaining \(n - i + 1 \) projects \(i, i + 1, \ldots, n \) in an optimal way. Now it is easy to see that the principle of optimality applies to this problem: every solution contains solutions to subinstances of the problem. Let’s define \(P[i,j] \) to be the value of an optimal solution of the “\(\langle i,j \rangle \)” subinstance mentioned above, i.e., the maximal profit we can get from project \(i, i + 1, \ldots, n \) if we have \(n - j \) units of resource to allocate to them. Then it is

\[
P[i,j] = \max_{l \in \mathbb{Z}} \{ N[i,l] + P[i+1,l+j] \} \]
2.3 Computation of the value of the optimal solution “bottom-up”

The first question is: What is the base case? Looking at the recursion, one can see that we can compute the value of $P[i, j]$ from a known value $N[i, l]$ and $P[i + 1, l + j]$. Therefore, we have to compute the $i + 1$th column of the matrix P before we can compute the ith column. Thus, the base case is to compute $P[r, j]$, $j = 0, ..., n$. This is easy, because we can’t make decisions anymore at that stage (see the example in figure 1). Here is the algorithm that fills in the array P:

1. for $j := n$ downto 0
2. { $P[r, j] = N[r, n - j]$ } //fill in the base case
3. for $i = r - 1$ downto 2
4. { for $j = n$ downto 0 do
5. { $P[i, j] = \max_{l=0}^{l=n-j}\{N[i, l] + P[i + 1, l + j]\}$ }
6. $P[1, 0] = \max_{l=0}^{l=n-1}\{N[1, l] + P[2, l]\}$

Figure 1: Multistage Graph