CSE 127: Introduction to Security

Lecture 10: Intro to Networking

Nadia Heninger

UCSD

Winter 2021

Some material from Deian Stefan, Zakir Durumeric, David Wagner
The Internet

Original Idea:

- Network is dumb
- Simple, robust service
- Shift complexity to endpoints
- Acts like postal system (packet-based) rather than traditional phone system (circuit-based)
A protocol is an agreement on how to communicate.

Includes syntax and semantics.

- **Syntax**: How communication is specified and structured.
 - Format, order messages are sent and received.
A protocol is an agreement on how to communicate.

Includes syntax and semantics.

- **Syntax**: How communication is specified and structured.
 - Format, order messages are sent and received.

- **Semantics**: What a communication means
 - Actions taken when transmitting, receiving, or timer expires.

- **Example**: RFC 2616 (HTTP/1.1)
Protocols are layered

- Networks use a stack of layers
- Lower layers provide services to layers above
 - Don’t care what higher layers do
- Higher layers use services of layers below
 - Don’t care how lower layers implement services
- Layers define abstraction boundaries
 - At a given layer, all layers above and below are opaque
Open Systems Interconnection (OSI) Layers

- **Application**
 - End user layer
 - HTTP, FTP, Skype, SSH, SMTP, DNS

- **Presentation**
 - Syntax, byte order, compression, encryption
 - SSL, SSH, MPEG, JPEG

- **Session**
 - Connection establishment and maintenance
 - APIs, sockets

- **Transport**
 - End-to-end connections between processes
 - TCP, UDP

- **Network**
 - Addressing, routing between nodes
 - IP

- **Data Link**
 - Link management, frames
 - Ethernet, WiFi

- **Physical**
 - Physical wires
 - Photons, RF modulation
Packet encapsulation at each layer

- Protocol N_1 can use services of lower layer protocol N_2
- A packet P_1 of N_1 is encapsulated into a packet P_2 of N_2
- The payload of P_2 is P_1
- The control information of P_2 is derived from that of P_1
Packet encapsulation at each layer

- Protocol N_1 can use services of lower layer protocol N_2
- A packet P_1 of N_1 is encapsulated into a packet P_2 of N_2
- The payload of P_2 is P_1
- The control information of P_2 is derived from that of P_1
Basic Internet Architecture “Hourglass”

Narrow waist = interoperability

- Application layer
 - NTP
 - DNS
 - SMTP
 - HTTP
 - FTP

- Transport layer
 - UDP
 - TCP

- Network layer
 - IP
 - Cellular
 - WiFi
 - Ethernet

- Link layer
 - Radio
 - Copper
 - Fiber

- Physical layer
Link layer: Connecting hosts to local network

Most common link layer protocol: **Ethernet**

- Messages organized into **frames**
- Every node has a globally unique 6-byte MAC (Media Access Control) address
Link layer: Connecting hosts to local network

• Originally a broadcast protocol: every node on network received every packet
Link layer: Connecting hosts to local network

• Now switched: switch learns the physical port for each MAC address and sends packets to correct port if known
• WiFi similar to Ethernet, but nodes can move
IP: Internet Protocol

- Connectionless delivery model
- “Best effort” = no guarantees about delivery
- No attempt to recover from failure
- Packets might be lost, delivered out of order, delivered multiple times
- Packets might be fragmented
- Provides hierarchical addressing scheme
IP: Internet Protocol

- IPv4
 - 32-bit host addresses
 - Written as 4 bytes in decimal,
 - e.g. 192.168.1.1

- IPv6
 - 128-bit host addresses
 - Written as 16 bytes in hex
 - :: implies zero bytes
 - e.g. 2620:0:e00:b::53 = 2620:0:e00:b:0:0:0:53
<table>
<thead>
<tr>
<th>Version</th>
<th>IHL</th>
<th>Type of Service</th>
<th>Total Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to Live</td>
<td>Protocol</td>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td>Padding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Internet Datagram Header

Note that each tick mark represents one bit position.
ARP: Address Resolution Protocol

• Problem: How does a host learn what MAC addresses to send packets to?
• ARP lets hosts build table mapping IP addresses to MAC addresses.
ARP: Address Resolution Protocol

- Problem: How does a host learn what MAC addresses to send packets to?
- ARP lets hosts build table mapping IP addresses to MAC addresses.
- ARP request: source MAC, dest MAC, “Who has IP address N?”
- ARP reply: source MAC, dest MAC, “IP address N is at MAC address M.”
Routing: BGP (Border Gateway Protocol)

- Internet organized into ASes (Autonomous Systems) with peer, provider, or customer relationships between them.
- Rough tree shape, with a small number of backbone ASes in a clique at the root.
Routing: BGP (Border Gateway Protocol)

- Internet organized into ASes (Autonomous Systems) with peer, provider, or customer relationships between them
- Rough tree shape, with a small number of backbone ASes in a clique at the root
- BGP allows routers to exchange information about their routing tables
- Routers maintain global table of routes
- Each router announces what it can route to its neighbors
- Routes propagate through network
TCP (Transmission Control Protocol)

- Want abstraction of a stream of bytes delivered reliably and in-order between applications on different hosts

- TCP provides:
 - Reliable in-order byte stream
 - Connection-oriented protocol
 - Explicit setup/teardown
 - End hosts (processes) have multiple concurrent long-lived dialogs
 - Congestion control: adapt to network path capacity, receiver’s ability to receive packets
TCP Header Format

Note that one tick mark represents one bit position.
Ports

- Each application is identified by a port number.
- TCP connection established between port A on host address M to port B on host address N. Ports are 16 bits, 1–65535.
- Some destination ports are used for particular applications by convention:
 - 80 HTTP (web)
 - 443 HTTPS (web)
 - 25 SMTP (mail)
 - 67 DHCP (host configuration)
 - 22 SSH (secure shell)
 - 23 telnet
TCP Sequence Numbers

- Bytes in application data stream numbered with 32-bit sequence number
- Data sent in segments: sequences of contiguous bytes sent in a single IP datagram
- Sequence number indicates where data belongs in byte sequence
- Sequence number in packet header is the sequence number of the first byte in the payload
TCP Sequence Numbers and Acknowledgement

- Two logical data streams in a TCP connection: one in each direction
- Receiver acknowledges received data: acknowledgement number is sequence number of next expected byte of stream in opposite direction
- ACK flag set to acknowledge data
- Sender retransmits lost data
- Congestion control: sender adapts retransmission according to timeouts
TCP 3-Way Handshake

Starting a TCP connection
TCP 3-Way Handshake
Starting a TCP connection

Client

State changes to SYN-SENT
SYN-ACK
seq: 200
ack: 101

State changes to ESTABLISHED

Server

SYN
seq: 100

State changes to SYN-RECEIVED

ACK
seq: 101
ack: 201

State changes to ESTABLISHED
FIN/RST: Closing TCP connections

- FIN initiates a clean close of a TCP connection, waits for ACK from receiver
FIN/RST: Closing TCP connections

- FIN initiates a clean close of a TCP connection, waits for ACK from receiver
- If a host receives a TCP packet with RST flag, it tears down the connection
- Designed to handle spurious TCP packets from previous connections
UDP (User Datagram Protocol)

- UDP offers no service quality guarantee
- Essentially a transport layer protocol that is a wrapper around IP
- Adds ports to let applications demultiplex traffic
- Useful for applications that only need best-effort guarantee
- e.g. DNS, NTP
User Datagram Protocol

```
+--------+--------+--------+--------+
| Source | Destination |
| Port | Port |
| Length | Checksum |
+--------+--------+--------+--------+
```

User Datagram Header Format
DNS (Domain Name Service)

- Handle mapping between host names (e.g. ucsd.edu) and IP addresses (e.g. 132.239.180.101)
- DNS is a delegatable, hierarchical name space
$ dig cseweb.ucsd.edu

; <<>> DiG 9.10.6 <<>> cseweb.ucsd.edu
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 3727
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
cseweb.ucsd.edu. IN A

;; ANSWER SECTION:
cseweb.ucsd.edu. 3140 IN CNAME roweb.eng.ucsd.edu.
roweb.eng.ucsd.edu. 2855 IN A 132.239.8.30

;; Query time: 57 msec
;; SERVER: 192.168.1.254#53(192.168.1.254)
;; WHEN: Sun Nov 03 20:49:08 PST 2019
;; MSG SIZE rcvd: 84
DNS Details

- 13 main DNS root servers
- DNS responses are cached for quicker responses
- DNS authorities queried progressively according to domain name hierarchy
$ dig cseweb.ucsd.edu +trace

; <<>> DiG 9.10.6 <<>> cseweb.ucsd.edu +trace
;; global options: +cmd
. 105604 IN NS d.root-servers.net.
. 105604 IN NS h.root-servers.net.
. 105604 IN NS c.root-servers.net.
. 105604 IN NS j.root-servers.net.
. 105604 IN NS l.root-servers.net.
. 105604 IN NS i.root-servers.net.
. 105604 IN RRSIG NS 8 0 518400 20191115050000 20191102040000 22545 . Z14B+vD/MKz0X1UBwu04kzwQNajhg1Af1K7j5Jvd9N2

; Received 525 bytes from 192.168.1.254#53(192.168.1.254) in 44 ms

edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.

eedu. 172800 IN NS c.edu-servers.net.
edu. 172800 IN NS e.edu-servers.net.
edu. 172800 IN NS d.edu-servers.net.
edu. 86400 IN DS 28065 8 2 4172496CDE85534E51129040355BD04B1FCFEBAE996DFDDE652006F6 F8B2CE76
edu. 86400 IN RRSIG DS 8 1 86400 20191116170000 201911103160000 22545 . Bso09WI4UphacN5rL0B4f3bCzVPptbmTCKHwcMgb6e

; Received 1174 bytes from 192.58.128.30#53(j.root-servers.net) in 20 ms

cseweb.ucsd.edu. 172800 IN NS ns-auth2.ucsd.edu.
cseweb.ucsd.edu. 172800 IN NS ns-auth3.ucsd.edu.
cseweb.ucsd.edu. 3600 IN CNAME roweb.eng.ucsd.edu.
roweb.eng.ucsd.edu. 3600 IN A 132.239.8.30

; Received 84 bytes from 132.239.252.186#53(ns-auth3.ucsd.edu) in 14 ms
Using the internet: A worked example

You connect your laptop to a cafe wifi network and type ucsd.edu into your browser’s URL bar. What happens?
Using the internet: A worked example

You connect your laptop to a cafe wifi network and type ucsd.edu into your browser’s URL bar. What happens?

You are waiting masked and outdoors for a takeout order from a cafe, and while you’re waiting you perch against the wall at a socially distant distance from everyone else, pull your laptop out, connect to the cafe’s wifi network and type ucsd.edu into the browser’s URL bar.
Using the internet: A worked example

1. Your laptop uses DHCP (Dynamic Host Configuration Protocol) to bootstrap itself on the local network.
Using the internet: A worked example

1. Your laptop uses DHCP (Dynamic Host Configuration Protocol) to bootstrap itself on the local network.
 - New host has no IP address, doesn’t know who to ask
Using the internet: A worked example

1. Your laptop uses DHCP (Dynamic Host Configuration Protocol) to bootstrap itself on the local network.
 - New host has no IP address, doesn’t know who to ask
 - Broadcasts DHCPDISCOVER to 255.255.255.255 with its MAC address
 - DHCP server responds with config: lease on host IP address, gateway IP address, DNS server information
Using the internet: A worked example

2. Your laptop makes an ARP request to learn the MAC address of the local router.

 • Every connection outside the local network will be encapsulated in a link-layer frame with the local router’s MAC address as the destination.
2. Your laptop makes an ARP request to learn the MAC address of the local router.

- Every connection outside the local network will be encapsulated in a link-layer frame with the local router’s MAC address as the destination.
- Your laptop encapsulates each IP packet in a WiFi Ethernet frame addressed to the local router.
- The local router decapsulates these Ethernet frames and re-encodes them to forward them on its fiber connection to its upstream ISP, or to another part of the network.
- Each hop re-encodes the link layer for its own network.
Using the internet: A worked example

3. Your laptop does a DNS lookup on ucsd.edu.
 - It learned the IP address of a local DNS server from DHCP, or had a server (like 9.9.9.9) already hard-coded.
Using the internet: A worked example

3. Your laptop does a DNS lookup on ucsd.edu.
 • It learned the IP address of a local DNS server from DHCP, or had a server (like 9.9.9.9) already hard-coded.
 • Each request is a DNS query encapsulated in one or more UDP packets encapsulated in one or more IP packets.
Using the internet: A worked example

3. Your laptop does a DNS lookup on ucsd.edu.

- It learned the IP address of a local DNS server from DHCP, or had a server (like 9.9.9.9) already hard-coded.
- Each request is a DNS query encapsulated in one or more UDP packets encapsulated in one or more IP packets.
- Each response tells the laptop what authority to query, until it learns the final IP address (75.2.44.127) for ucsd.edu
Using the internet: A worked example

3. Your laptop does a DNS lookup on ucsd.edu.

- It learned the IP address of a local DNS server from DHCP, or had a server (like 9.9.9.9) already hard-coded.
- Each request is a DNS query encapsulated in one or more UDP packets encapsulated in one or more IP packets.
- Each response tells the laptop what authority to query, until it learns the final IP address (75.2.44.127) for ucsd.edu
- This address is cached, along with the authorities for the hierarchy in the hostname.
4. Your laptop opens a TCP connection to 75.2.44.127.

- Each packet of the TCP triple handshake is encoded in an IP packet that is encoded as Ethernet frames that are decoded and re-encoded as they pass through the network.
Using the internet: A worked example

4. Your laptop opens a TCP connection to 75.2.44.127.
 - Each packet of the TCP triple handshake is encoded in an IP packet that is encoded as Ethernet frames that are decoded and re-encoded as they pass through the network.
 - The local router has a routing table that contains IP prefixes that it matches against the IP address that tells it what address to forward the packets to.
Using the internet: A worked example

4. Your laptop opens a TCP connection to 75.2.44.127.
 - Each packet of the TCP triple handshake is encoded in an IP packet that is encoded as Ethernet frames that are decoded and re-encoded as they pass through the network.
 - The local router has a routing table that contains IP prefixes that it matches against the IP address that tells it what address to forward the packets to.
Using the internet: A worked example

4. Your laptop opens a TCP connection to 75.2.44.127.
 - Each packet of the TCP triple handshake is encoded in an IP packet that is encoded as Ethernet frames that are decoded and re-encoded as they pass through the network.
 - The local router has a routing table that contains IP prefixes that it matches against the IP address that tells it what address to forward the packets to.
 - From cafe network (ATT), go through sbcglobal.net → att.net → level3.net → cenic.net → ucsd.edu.
Using the internet: A worked example

5. Your laptop sends a HTTP GET request inside the TCP connection.

6. Based on the HTTP response, the laptop performs a new DNS lookup, TCP handshake, and HTTP GET requests for every resource in the HTML as it renders.