CSE 127: Introduction to Security

Nadia Heninger

UCSD

Winter 2021 Lecture 1

Some slides from J. Alex Halderman
Legal Notice

This lecture will be recorded and made available to registered students on Canvas.
• Instructor: Nadia Heninger nadiah@cs.ucsd.edu
 • Office Hours: Tuesday 3:30pm until there are no more questions

• TA: Patrick Liu ptliu@ucsd.edu
 • Office Hours: Wed 3-4pm

• TA: Keegan Ryan kryan@eng.ucsd.edu
 • Office Hours: Fri 1-2pm

• TA: George Sullivan gsulliva@eng.ucsd.edu
 • Office Hours: Thu 11am-12pm

• TA: Kevin Yu shy147@ucsd.edu
 • Office Hours: Monday 6-7pm
Many amazing folks at UCSD working on security

Russell Impagliazzo Daniele Micciancio Mihir Bellare Nadia Heninger Deian Stefan Aaron Schulman Alex Snoeren Stefan Savage Geoff Voelker

Theory Crypto Systems Applied
My work: Cryptographic systems security
Crypto shocker: four of every 1,000 public keys provide no security (updated)
Almost 27,000 certificates used to protect webmail, e-commerce, and other ...

by Dan Goodin - Feb 15 2012, 7:00am EST

Keys that share one prime factor are vulnerable to cracking by anyone. Keys that share both prime factors can be broken by the other holder.
Researchers reveal a method the NSA may use to spy on Web traffic

By Sean Sposito | October 21, 2015 | Updated: October 21, 2015 5:05pm
RISK ASSESSMENT —

NSA could put undetectable “trapdoors” in millions of crypto keys

Technique allows attackers to passively decrypt Diffie-Hellman protected data.

DAN GOODIN - 10/11/2016, 7:30 AM
Mathematical cryptanalysis

\[p = \text{random_prime}(2^{512}); \quad q = \text{random_prime}(2^{512}) \]
\[N = p \times q \]

\[a = p - (p \% 2^{86}) \]

\[\text{sage: hex}(a) \]
\['a9759e8c9fba8c0ec3e637d1e26e7b88b\text{febf03ac199d119076e3294d16ffcaef629e2937a03592895b29b0c708e798304330240bc000000000000000000000000'} \]

\[X = 2^{86} \]
\[M = \text{matrix}([[X^2, 2 \times X \times a, a^2], [0, X, a], [0, 0, N]]) \]
\[B = M.\text{LLL}() \]

\[f = B[0][0] \times X^2 / X^2 + B[0][1] \times x / X + B[0][2] \]

\[\text{sage: f.factor()}[0] \]
\[(x - 277533850001659986437770909, 1) \]

\[\text{sage: a + 277533850001659986437770909 == p} \]
Topics Covered

• The Security Mindset
 • Principles and threat modeling

• Systems/Software Security
 • Classic attacks and defenses on memory safety, isolation

• Web Security
 • Web architecture, web attacks, web defenses

• Network Security
 • Network protocols, network attacks, network defenses

• Cryptography
 • Symmetric and public-key cryptography, TLS, PKI

• Privacy, Anonymity, Ethics, Legal Issues
Course Goals

- Critical thinking
 - How to think like an attacker
 - How to reason about threats and risks
 - How to balance security costs and benefits
Course Goals

• Critical thinking
 • How to think like an attacker
 • How to reason about threats and risks
 • How to balance security costs and benefits

• Technical skills
 • How to protect yourself
 • How to manage and defend systems
 • How to design and implement secure systems
Course Goals

- Critical thinking
 - How to think like an attacker
 - How to reason about threats and risks
 - How to balance security costs and benefits

- Technical skills
 - How to protect yourself
 - How to manage and defend systems
 - How to design and implement secure systems

- Learn to be a security-conscious citizen
Course Goals

• Critical thinking
 • How to think like an attacker
 • How to reason about threats and risks
 • How to balance security costs and benefits

• Technical skills
 • How to protect yourself
 • How to manage and defend systems
 • How to design and implement secure systems

• Learn to be a security-conscious citizen

• Learn to be a leet h4x0r
Course Goals

- Critical thinking
 - How to think like an attacker
 - How to reason about threats and risks
 - How to balance security costs and benefits

- Technical skills
 - How to protect yourself
 - How to manage and defend systems
 - How to design and implement secure systems

- Learn to be a security-conscious citizen

- Learn to be a leet h4x0r, but an ethical one!
Course Mechanics

60% Six projects
 • Do your own programming and writeup
 • General discussion with classmates is encouraged

25% Final
 • Thu, Mar 18 00:00-23:59
 • No collaboration
 • Open notes, open Piazza

≤ 10 % Scribe notes
 • Work in groups
 • Our goal: use notes in future classes!

5% Participation
 • Ask/answer questions, make comments, generate discussion!
Course Mechanics

60% Six projects
 • Do your own programming and writeup
 • General discussion with classmates is encouraged

25% Final
 • Thu, Mar 18 00:00-23:59
 • No collaboration
 • Open notes, open Piazza

≤ 10% Scribe notes
 • Work in groups
 • Our goal: use notes in future classes!
Course Mechanics

60% Six projects
 • Do your own programming and writeup
 • General discussion with classmates is encouraged

25% Final
 • Thu, Mar 18 00:00-23:59
 • No collaboration
 • Open notes, open Piazza

≤ 10% Scribe notes
 • Work in groups
 • Our goal: use notes in future classes!
Course Mechanics

60% Six projects
 • Do your own programming and writeup
 • General discussion with classmates is encouraged

25% Final
 • Thu, Mar 18 00:00-23:59
 • No collaboration
 • Open notes, open Piazza

≤ 10% Scribe notes
 • Work in groups
 • Our goal: use notes in future classes!

5% Participation
 • Ask/answer questions, make comments, generate discussion!
Course Policies

Early policy:
- Can turn in assignments 3 days early to get 10% of your grade extra credit
- No late days
Course Policies

Early policy:
- Can turn in assignments 3 days early to get 10% of your grade extra credit
- No late days

Regrade policy:
- Regrades should be the exception not the norm
- Incorrect regrade request \Rightarrow negative points

Academic integrity:
- UC San Diego policy: https://academicintegrity.ucsd.edu
- We have to report suspected cases, don’t make it weird
- If you are not sure if something is cheating, ask
Course Policies

Early policy:
- Can turn in assignments 3 days early to get 10% of your grade extra credit
- No late days

Regrade policy:
- Regrades should be the exception not the norm
- Incorrect regrade request \Rightarrow negative points

Academic integrity:
- UC San Diego policy:
 https://academicintegrity.ucsd.edu
- We have to report suspected cases, don’t make it weird
- If you are not sure if something is cheating, ask
Talk to us, it’s a weird time

THIS IS FINE.
Course Resources

• No official textbook. Optional books:
 • *Security Engineering* by Ross Anderson
 • *Hacking: The Art of Exploitation* by Jon Erikson
Course Resources

- No official textbook. Optional books:
 - *Security Engineering* by Ross Anderson
 - *Hacking: The Art of Exploitation* by Jon Erikson

- Assignments and readings on course site:

 https://cseweb.ucsd.edu/classes/wi21/cse127-a/
Course Resources

• No official textbook. Optional books:
 • Security Engineering by Ross Anderson
 • Hacking: The Art of Exploitation by Jon Erikson

• Assignments and readings on course site:
 https://cseweb.ucsd.edu/classes/wi21/cse127-a/

• Questions? Post to Piazza.
 https://piazza.com/ucsd/winter2021/cse127
Course Resources

• No official textbook. Optional books:
 • *Security Engineering* by Ross Anderson
 • *Hacking: The Art of Exploitation* by Jon Erikson

• Assignments and readings on course site:
 https://cseweb.ucsd.edu/classes/wi21/cse127-a/

• Questions? Post to Piazza.
 https://piazza.com/ucsd/winter2021/cse127

• Lectures, section, office hours:
 • Zoom links in Canvas
 • Lecture and discussion recordings posted to Canvas
Ethics

We will be discussing and implementing real-world attacks.

Using some of these techniques in the real world may be unethical, a violation of university policies, or a violation of federal law.

This includes the course assignment infrastructure (e.g. grading system).
Ethics

We will be discussing and implementing real-world attacks.

Using some of these techniques in the real world may be unethical, a violation of university policies, or a violation of federal law.

This includes the course assignment infrastructure (e.g. grading system).

Be an ethical hacker

- Ethics requires you to refrain from doing harm
- Always respect human, privacy, property rights
- There are many legitimate hacking capture-the-flags
Whoever intentionally accesses a computer without authorization or exceeds authorized access, and thereby obtains information from any protected computer...
Whoever intentionally accesses a computer without authorization or exceeds authorized access, and thereby obtains information from any protected computer...

The punishment for an offense...

- a fine under this title or imprisonment for not more than one year, or both...,

- a fine under this title or imprisonment for not more than 5 years, or both... if—
 (i) the offense was committed for purposes of commercial advantage or private financial gain;
 (ii) the offense was committed in furtherance of any criminal or tortious act...; or
 (iii) the value of the information obtained exceeds $5,000
CFAA Cases

- In 2011, FBI prosecuted weev for exposing data of 114K AT&T iPad users
 - Criminal CFAA charge
 - Found guilty and sent to prison; appeals court overturned ruling in 2014 on venue grounds

- In 2011, Sony sued George Hotz for jailbreaking PlayStation 3
 - Civil CFAA and DMCA complaints
 - Settled out of court

- In 2011, FBI prosecuted Aaron Swartz for downloading academic articles on MIT network from JSTOR
 - Indicted for wire fraud and CFAA
 - Prosecution continued until his death in 2013

- Current Supreme Court case: Van Buren vs. United States
 - Police officer misused license plate database
 - Supreme court ruling will determine scope of “exceeds authorized access” in CFAA
CFAA Cases

- In 2011, FBI prosecuted weev for exposing data of 114K AT&T iPad users
 - Criminal CFAA charge
 - Found guilty and sent to prison; appeals court overturned ruling in 2014 on venue grounds

- In 2011, Sony sued George Hotz for jailbreaking PlayStation 3
 - Civil CFAA and DMCA complaints
 - Settled out of court

- In 2011, FBI prosecuted Aaron Swartz for downloading academic articles on MIT network from JSTOR
 - Indicted for wire fraud and CFAA
 - Prosecution continued until his death in 2013

- Current Supreme Court case: Van Buren vs. United States
 - Police officer misused license plate database
 - Supreme court ruling will determine scope of “exceeds authorized access” in CFAA
CFAA Cases

- In 2011, FBI prosecuted weev for exposing data of 114K AT&T iPad users
 - Criminal CFAA charge
 - Found guilty and sent to prison; appeals court overturned ruling in 2014 on venue grounds

- In 2011, Sony sued George Hotz for jailbreaking PlayStation 3
 - Civil CFAA and DMCA complaints
 - Settled out of court

- In 2011, FBI prosecuted Aaron Swartz for downloading academic articles on MIT network from JSTOR
 - Indicted for wire fraud and CFAA
 - Prosecution continued until his death in 2013

Current Supreme Court case: Van Buren vs. United States
- Police officer misused license plate database
- Supreme court ruling will determine scope of "exceeds authorized access" in CFAA
CFAA Cases

- In 2011, FBI prosecuted weev for exposing data of 114K AT&T iPad users
 - Criminal CFAA charge
 - Found guilty and sent to prison; appeals court overturned ruling in 2014 on venue grounds

- In 2011, Sony sued George Hotz for jailbreaking PlayStation 3
 - Civil CFAA and DMCA complaints
 - Settled out of court

- In 2011, FBI prosecuted Aaron Swartz for downloading academic articles on MIT network from JSTOR
 - Indicted for wire fraud and CFAA
 - Prosecution continued until his death in 2013

- Current Supreme Court case: Van Buren vs. United States
 - Police officer misused license plate database
 - Supreme court ruling will determine scope of “exceeds authorized access” in CFAA
What is security?
Robustness vs. Security

“Computer security studies how systems behave in the presence of an adversary. *Actively tries to cause the system to misbehave.*
Robustness vs. Security

“Computer security studies how systems behave in the presence of an adversary.”

*Actively tries to cause the system to misbehave.
The Security Mindset

• Thinking like an attacker
 • Understand techniques for circumventing security
 • Look for ways security can break, not why it won’t
The Security Mindset

• Thinking like an attacker
 • Understand techniques for circumventing security
 • Look for ways security can break, not why it won’t

• Thinking like a defender
 • Know what you’re defending, and against whom.
 • Weigh benefits vs. costs: No system is ever completely secure.
 • Rational paranoia
Thinking like an Attacker

• Look for weakest links

• Identify assumptions that security depends on
 Are they false?
Thinking like an Attacker

- Look for weakest links
- Identify assumptions that security depends on
 Are they false?
- Think outside the box
Thinking like an Attacker

• Look for weakest links

• Identify assumptions that security depends on
 Are they false?

• Think outside the box
 Not constrained by system designer’s worldview!
Thinking like an Attacker

- Look for weakest links

- Identify assumptions that security depends on
 Are they false?

- Think outside the box
 Not constrained by system designer’s worldview!

Start practicing: When you interact with a system, think about what it means to be secure, and how it might be exploited.
Exercise

How would you break into the CSE building?
Exercise

How would you identify who was at a protest?
Exercise

How would you steal my email password?
Exercise

What security systems do you interact with?
Exercise

How would you steal an election?
Thinking like a Defender

• Security policy
 • What are we trying to protect?
 • What properties are we trying to enforce?

• Threat model
 • Who are the attackers? Capabilities? Motivation?
 • What kind of attack are we trying to prevent?

• Risk assessment
 • What are the weaknesses of the system?
 • What will successful attacks cost us?
 • How likely?

• Countermeasures
 • Costs vs. benefits?
 • Technical vs. nontechnical?
Security Policies

• What *assets* are we trying to protect?

• What properties are we trying to enforce?
 • Confidentiality
 • Integrity
 • Availability
 • Privacy
 • Authenticity
Threat Models

• Who are our adversaries?
 • Motives?
 • Capabilities?

• What kinds of attacks do we need to prevent? (Think like the attacker!)

• Limits: What kinds of attacks we should ignore?
Example of Threat Modeling

<table>
<thead>
<tr>
<th>Threat</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex-girlfriend/boyfriend breaking into your email account and publicly releasing your correspondence with the My Little Pony fan club</td>
<td>Strong passwords</td>
</tr>
<tr>
<td>Organized criminals breaking into your email account and sending spam using your identity</td>
<td>Strong passwords + common sense (don’t click on unsolicited herbal Viagra ads that result in keyloggers and sorrow)</td>
</tr>
<tr>
<td>The Mossad doing Mossad things with your email account</td>
<td>Magical amulets? Fake your own death, move into a submarine? YOU’RE STILL GONNA BE MOSSAD’ED UPON</td>
</tr>
</tbody>
</table>

Figure 1: Threat models

James Mickens “This World of Ours”
Someone has your password

Hi John,

Someone just used your password to try to sign in to your Google Account john.podesta@gmail.com.

Details:
Saturday, 19 March, 8:34:30 UTC
IP Address: 134.249.139.239
Location: Ukraine

Google stopped this sign-in attempt. You should change your password immediately.

CHANGE PASSWORD

Best,
The Gmail Team
Who is John Podesta?
Assessing Risk

Remember: *Controlled paranoia*

- What would security breaches cost us?
 - Direct costs: Money, property, safety, …
 - Indirect costs: Reputation, future business, well being, …

- How likely are these costs?
 - Probability of attacks?
 - Probability of success?
Countermeasures

• Technical countermeasures

• Nontechnical countermeasures
 Law, policy (government, institutional), procedures, training, auditing, incentives, etc.
How do we protect classified satellites?
Security Costs

• No security mechanism is free
 • Direct costs:
 Design, implementation, enforcement, false positives
 • Indirect costs:
 Lost productivity, added complexity

• Challenge is to rationally weigh costs vs. risk
 • Human psychology makes reasoning about high cost/low probability events hard
Exercise

Should you lock your door?

- Assets?
- Adversaries?
- Risk assessment?
- Countermeasures?
- Costs/benefits?
Exercise

Should you use automatic software updates?

• Assets?
• Adversaries?
• Risk assessment?
• Countermeasures?
• Costs/benefits?
Exercise

Should we protect the CSE bear?

• Assets?
• Adversaries?
• Risk assessment?
• Countermeasures?
• Costs/benefits?
Secure Design

• Common mistake:
 Convince yourself that the system is secure

• Better approach:
 Identify *weaknesses* of design, focus on correcting them
 Formally prove that design is secure (soon)

• Secure design is a **process**
 Must be practiced continuously
 Retrofitting security is super hard
Where to focus defenses

- **Trusted components**
 Parts that must function correctly for the system to be secure.

- **Attack surface**
 Parts of the system exposed to the attacker

Security Principles

- Simplicity, open design, and maintainability
- Privilege separation and least privilege
- Defense-in-depth and diversity
- Complete mediation and fail-safe
Exercise

Preventing cheating on an online exam?
Preventing you from stealing my password?
Assignment 1 out tomorrow.

Next lecture: Buffer overflows!