Lecture 27: Final Review

Project 2b due TONIGHT
Exam Overview

- Focus on topics since the midterm
 - But everything is fair game…

- Roughly the same style & length as midterm
 - It won’t take the whole time

- Exam will be available for 24 hours
 - Join us on Zoom at 11:30am next Friday
 - You will have three hours to complete it once you start
 - I’ll be there to answer any questions
TCP/IP Protocol Stack

- Application Layer
 - HTTP
- Transport Layer
 - TCP
- Network Layer
 - IP
 - router
- Link Layer
 - Ethernet interface
 - SONET interface

CSE 123 – Lecture 27: Final Review
Encapsulation via Headers

- Typical Web packet

![Diagram of encapsulation via headers]

- Notice that layers add overhead
 - Space (headers), effective bandwidth
 - Time (processing headers, “peeling the onion”), latency
NA(p)T Example

1: host 10.0.0.4 sends packet to 132.239.8.45:80

2: NAT router changes packet source addr from 10.0.0.1:3345 to 138.76.29.7:5001, updates table

3: Reply arrives dest. address: 138.76.29.7:5001

4: NAT router changes packet dest addr from 138.76.29.7:5001 to 10.0.0.4:3345

NAT translation table

<table>
<thead>
<tr>
<th>WAN side addr</th>
<th>LAN side addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>138.76.29.7:5001</td>
<td>10.0.0.4:3345</td>
</tr>
</tbody>
</table>

CSE 123 – Lecture 27: Final Review
Routing Challenges

- How to choose best path?
 - Defining “best” can be slippery

- How to scale to millions of users?
 - Minimize control messages and routing table size

- How to adapt to failures or changes?
 - Node and link failures, plus message loss
Forwarding Options

- **Source routing**
 - Complete path listed in packet

- **Virtual circuits**
 - Set up path out-of-band and store path identifier in routers
 - Local path identifier in packet

- **Destination-based forwarding**
 - Router looks up address in forwarding table
 - Forwarding table contains (address, next-hop) tuples
Link-state Routing

- Two phases
 - Reliable flooding
 » Tell all routers what you know about your local topology
 - Path calculation (Dijkstra’s algorithm)
 » Each router computes best path over complete network

- Motivation
 - Global information allows optimal route computation
 - Straightforward to implement and verify
Dijkstra’s Shortest Path Tree

- So you have all of these LSPs. Now what?
- Graph algorithm for single-source shortest path tree (find best route to all nodes)

```
S ← {}
Q ← <remaining nodes keyed by distance>
While Q != {}
    u ← extract-min(Q)  \( u = \text{node with lowest cost} \)
    S ← S plus \{u\} ← u is done
    Within Q:
        for each node v adjacent to u
            “relax” the cost of v \( \text{is it cheaper to go through } u? \)
```
Bellman-Ford Algorithm

- Define distances at each node \(X \)
 - \(c(x,v) = \text{cost for direct link from } X \text{ to } V \)
 - \(d_x(y) = \text{cost of least-cost path from } X \text{ to } Y \)

- Update distances based on neighbors
 - \(d_x(y) = \min \{c(x,v) + d_v(y)\} \text{ over all neighbors } V \)

\[
d_u(z) = \min\{c(u,v) + d_v(z), c(u,w) + d_w(z)\}
\]
Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused by:
- Local link cost change
- Distance vector update message from neighbor

Distributed:
- Each node notifies neighbors when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or message from neighbor)

recompute estimates

if distance to any destination has changed, notify neighbors
Problem: Counting to Infinity

CSE 123 – Lecture 27: Final Review
Mitigation Strategies

- **Hold downs**
 - As metric increases, delay propagating information
 - Limitation: Delays convergence

- **Loop avoidance**
 - Full path information in route advertisement
 - Explicit queries for loops

- **Split horizon**
 - Never advertise a destination through its next hop
 - A doesn’t advertise C to B
 - Poison reverse: Send negative information when advertising a destination through its next hop
 - A advertises C to B with a metric of \(\infty \)
 - Limitation: Only works for “loop”s of size 2
Autonomous Systems

- Internet is divided into **Autonomous Systems**
 - Distinct regions of administrative control
 - Routers/links managed by a single “institution”
 - Service provider, company, university, …

- Hierarchy of Autonomous Systems
 - Large, “tier-1” provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university

- Interaction between Autonomous Systems
 - Internal topology is not shared between ASes
 - … but, neighboring ASes interact to coordinate routing
Border routers summarize and advertise their routes to external neighbors and vice-versa.
- Border routers apply policy.

Internal routers can use notion of default routes.

Core is default-free; routers must have a route to all networks in the world.

But what routing protocol?
Path-vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per destination
 - Path vector: send the entire path for each destination

```
path (2,1)
```

```
d: path (2,1)
```

```
d: path (1)
```

CSE 123 – Lecture 27: Final Review
A Simple BGP Route

- Destination prefix (e.g., 128.112.0.0/16)
- Route attributes, including
 - AS path (e.g., “7018 88”)
 - Next-hop IP address (e.g., 12.127.0.121)
Business Relationships

- Neighboring ASes have business contracts
 - How much traffic to carry
 - Which destinations to reach
 - How much money to pay

- Common business relationships
 - Customer-provider
 - E.g., UCSD is a customer of Sprint
 - E.g., MIT is a customer of Level3
 - Peer-peer
 - E.g., UUNET is a peer of Sprint
 - E.g., Harvard is a peer of Harvard Business School
Functional architecture

Control Plane
- Complex
- Per-control action
- May be slow

Data plane
- Simple
- Per-packet
- Must be fast
Interconnect architecture

- Input & output connected via switch fabric

- Kinds of switch fabric
 - Shared Memory
 - Bus
 - Crossbar

- How to deal with transient contention?
 - Buffering
IQ + Virtual Output Queuing

- Input interfaces buffer packets in per-output virtual queues

- Pro
 - Solves blocking problem

- Con
 - More resources per port
 - Complex arbiter at switch
 - Still limited by input/output contention (scheduler)
Key Router Challenges

- **Buffer management**: which packet to drop when?
 - We only have finite-length queues
- **Scheduling**: which packet to transmit next?
RED Operation

Max thresh

Min thresh

Average Queue Length

P(drop)

1.0

max_p

min_{th}

max_{th}

Avg queue length

CSE 123 – Lecture 27: Final Review
Token Bucket Basics

- **Parameters**
 - r – average rate, i.e., rate at which tokens fill the bucket
 - b – bucket depth (limits size of burst)
 - R – maximum link capacity or peak rate (optional parameter)
- A bit can be transmitted only when a token is available

![Diagram showing token bucket basics]

- r bps
- b bits
- $\leq R$ bps
- **Maximum # of bits sent**
- $b \cdot R / (R-r)$
- slope r
- slope R
- time

CSE 123 – Lecture 27: Final Review
Congestion Collapse

- Rough definition: “When an increase in network load produces a decrease in useful work”

- Why does it happen?
 - Senders send faster than bottleneck link speed
 - Packets queue until dropped
 - In response to packets being dropped, senders retransmit
 - All hosts repeat in steady state…
Proactive vs. Reactive

- **Congestion avoidance**: try to stay to the left of the knee
- **Congestion control**: try to stay to the left of the cliff
Basic TCP Algorithm

- Window-based congestion control
 - Unified congestion control and flow control mechanism
 - \textit{rwin}: advertised flow control window from receiver
 - \textit{cwnd}: congestion control window
 » Estimate of how much outstanding data network can deliver in a round-trip time
 - Sender can only send $\min(rwin, cwnd)$ at any time

- Idea: decrease cwnd when congestion is encountered; increase cwnd otherwise
 - Question: how much to adjust?
Slow Start Example

Sender

cwnd=1

1

Ack 2

cwnd=2

2

3

Ack 3

Ack 4

cwnd=4

4

5

Ack 5

Ack 6

Ack 7

Ack 8

cwnd=8

Receiver

round-trip times

cwnd
Basic Mechanisms

Slow Start + Congestion Avoidance

Round-trip times

cwnd

Timeout

Congestion avoidance

Ssthresh

Slow start
Fair Queuing

- Maintain a queue for each flow
 - What is a flow?

- Implements max-min fairness: each flow receives
 \(\min(r_i, f) \), where
 - \(r_i \) – flow arrival rate
 - \(f \) – link fair rate (see next slide)

- Weighted Fair Queuing (WFQ) – associate a weight with each flow to divvy bandwidth up non-equally
Phy/(MAC)Link layer

- **Signal encoding**
 - Encode binary data from source node into signals that physical links carry
 - Signal is decoded back into binary data at receiving node
 - Work performed by network adapter at sender and receiver

- **Media access**
 - Arbitrate which nodes can send frames at any point in time
 - Not always necessary; e.g. point-to-point duplex links
Signals and Channels

- A signal is some form of energy (light, voltage, etc)
 -Varies with time (on/off, high/low, etc.)
 -Can be continuous or discrete

- A channel is a physical medium that conveys energy
 -Any real channel will distort the input signal as it does so
 -How it distorts the signal depends on the signal
Carrier Signals

- **Baseband** modulation: send the “bare” signal
 - E.g. +5 Volts for 1, -5 Volts for 0
 - All signals fall in the same frequency range

- **Broadband** modulation
 - Use the signal to modulate a high frequency signal (*carrier*).
 - Can be viewed as the product of the two signals
Forms of Digital Modulation

- Amplitude Shift Keying (ASK)
- Frequency Shift Keying (FSK)
- Phase Shift Keying (PSK)
Shannon’s Law

- Shannon considered noisy channels and derived

\[C = B \log (1 + S/N) \]

- Gives us an upper bound on any channel’s performance regardless of signaling scheme

- Old school modems approached this limit
 - B = 3000Hz, S/N = 30dB = 1000
 - C = 3000 \times \log(1001) \approx 30\text{kbps}
 - 28.8Kbps – anyone remember dialup?
Clock Recovery

- Using a training sequence to get receiver lined up
 - Send a few, known initial training bits
 - Adds inefficiency: only m data bits out of n transmitted

- Need to combat clock drift as signal proceeds
 - Use transitions to keep clocks synched up

- Question is, how often do we do this?
 - Quick and dirty every time: asynchronous coding
 - Spend a lot of effort to get it right, but amortize over lots of data: synchronous coding
Manchester Encoding (10Mbps Ethernet)

- **Signal to Data**
 - XOR NRZ data with senders clock signal
 - High to low transition $\Rightarrow 1$
 - Low to high transition $\Rightarrow 0$

- **Comments**
 - Solves clock recovery problem
 - Only 50% efficient (½ bit per transition)
 - Still need preamble (typically 0101010101… trailing 11 in Ethernet)

CSE 123 – Lecture 27: Final Review
Partitioning Visualization

FDMA

TDMA

CDMA

Courtesy Takashi Inoue
Aloha

- Designed in 1970 to support wireless data connectivity
 - Between Hawaiian Islands—rough!

- Goal: distributed access control (no central arbitrator)
 - Over a shared broadcast channel

- Aloha protocol in a nutshell:
 - When you have data send it
 - If data doesn’t get through (receiver sends acknowledgement) then retransmit after a random delay
 - Why not a fixed delay?
Q: What is max fraction slots successful?
A: Suppose n stations have packets to send
 - Each transmits in slot with probability p
 - Prob[successful transmission], S, is:

$$S = p (1-p)^{(n-1)}$$

- any of n nodes:

$$S = \text{Prob[one transmits]} = np(1-p)^{(n-1)}$$

(optimal p as $n \to \infty = 1/n$)

$$= 1/e = .37$$

At best: channel used for useful transmissions 37% of time!
CSMA/CD

- How can A know that a collision has taken place?
 - Worst case:
 - Latency between nodes A & B is \(d \)
 - A sends a message at time \(t \) and B sends a message at \(t + d - \epsilon \) just before receiving A's message
 - B knows there is a collision, but not A... A must keep transmitting until it can tell if a collision occurred
 - How long? \(2 * d \)

- IEEE 802.3 Ethernet specifies max value of \(2d \) to be 51.2us
 - This relates to maximum distance of 2500m between hosts
 - At 10Mbps it takes 0.1us to transmit one bit so 512 bits take 51.2us to send
 - So, Ethernet frames must be at least 64B (512 bits) long
 - Padding is used if data is too small

- Send jamming signal to insure all hosts see collision
 - 48 bit signal
CSMA/CA

- Cannot detect collision w/half-duplex radios
 - So collisions are (much) more expensive than in CSMA/CD

- Wireless MAC protocols often use collision avoidance techniques, in conjunction with a (physical or virtual) carrier sense mechanism

- Collision avoidance
 - Nodes negotiate to reserve the channel before sending data
 - Still potential for collisions during negotiation, but they are cheaper
When A wants to send a packet to B, A first sends a Request-to-Send (RTS) to B.

On receiving RTS, B responds by sending Clear-to-Send (CTS), provided that A is able to receive the packet.

When C overhears a CTS, it keeps quiet for the duration of the transfer.

- Transfer duration is included in both RTS and CTS.
Parting thoughts…

- Good luck finishing up Project 2b
- Please complete your CAPE survey online
- Final exam Zoom: FRIDAY 11:30-2:30 PM
- Good luck and have a great (and safe) Spring Break!