Particle systems, collision detection, and ray tracing

Computer Graphics
CSE 167
Lecture 17
CSE 167: Computer graphics

- Particle systems
- Collision detection
- Ray tracing
Particle systems

• Used for
 – Fire/sparks
 – Rain/snow
 – Water spray
 – Explosions
 – Galaxies

Based on slides courtesy of Jurgen Schulze
Particle systems

• A particle system is collection of individual elements (particles)
 – Controls a set of particles which act autonomously but share some common attributes
• A particle emitter is a source of new particles
 – 3D point
 – Polygon mesh (particles’ initial velocity vector is normal to surface)
• Particle attributes
 – Position
 – Velocity vector (speed and direction)
 – Color (and opacity)
 – Lifetime
 – Size
 – Shape
 – Weight
Dynamic updates

• Particles change position and/or attributes over time
• Initial particle attributes often created with random numbers

• Frame update
 – Parameters (simulation of particles, can include collisions with geometry)
 • Forces (gravity, wind, etc.) act on a particle
 • Acceleration changes velocity
 • Velocity changes position
 – Rendering
 • GL_POINTS
 • GL_POINT_SPRITE
 • Point shader

Source: http://www.particlesystems.org/
Point rendering, vertex shader

uniform mat4 u_MVPMatrix;
uniform vec3 u_cameraPos;

// Constants (tweakable):
const float minPointScale = 0.1;
const float maxPointScale = 0.7;
const float maxDistance = 100.0;

void main()
{
 // Calculate point scale based on distance from the viewer
 // to compensate for the fact that gl_PointSize is the point
 // size in rasterized points / pixels.
 float cameraDist = distance(a_position_size.xyz, u_cameraPos);
 float pointScale = 1.0 - (cameraDist / maxDistance);
 pointScale = max(pointScale, minPointScale);
 pointScale = min(pointScale, maxPointScale);

 // Set GL globals and forward the color:
 gl_Position = u_MVPMatrix * vec4(a_position_size.xyz, 1.0);
 gl_PointSize = a_position_size.w * pointScale;
 v_color = a_color;
}
Particle systems

• Demo in WebGL

https://nullprogram.com/webgl-particles/
References

• Tutorial with source code by Bartlomiej Filipek, 2014
 https://www.codeproject.com/Articles/795065/Flexible-particle-system-OpenGL-Renderer

• Articles with source code

• Founding scientific paper:
Collison detection
Collision detection

• Goals
 – Physically correct simulation of collision of objects
 • Not covered in this course
 – Determine if two objects intersect

• Slow calculation because of exponential growth $O(n^2)$
 – Number of collision tests $n(n - 1) / 2$
Intersection test

• Purpose
 – Keep moving objects on the ground
 – Keep moving objects from going through walls, each other, etc.

• Goal
 – Believable system, does not have to be physically correct

• Priority
 – Computationally inexpensive

• Typical approach
 – Spatial partitioning
 – Object simplified for collision detection by one or a few
 • Points
 • Spheres
 • Axis aligned bounding box (AABB)
 – Pairwise checks between points/spheres/AABBs and static geometry
Sweep and prune algorithm

• Sorts bounding boxes
• Not intuitively obvious how to sort bounding boxes in 3D
• Dimensionality reduction approach
 – Project each 3D bounding box (cuboid) onto the X, Y, and Z axes
 – Find overlaps in 1D
 • A pair of bounding boxes overlaps if and only if their intervals overlap in all three dimensions
 – Construct 3 lists, one for each dimension
 – Each list contains start/end point of intervals corresponding to that dimension
 – By sorting these lists, we can determine which intervals overlap
 – Reduce sorting time by keeping sorted lists from previous frame, changing only the interval endpoints
Collision map (CM)

- 2D map with information about where objects can go and what happens when they go there
- Colors indicate different types of locations
- Map can be computed from 3D model (or hand drawn)
- Granularity defines how much area (in object space) one CM pixel represents
Ray tracing
Projection

• To render an image of a scene, we project the 3D scene to the 2D image plane
• Most common projection type is perspective projection

Based on slides courtesy of Steve Marschner
Two approaches to rendering

for each object in the scene {
 for each pixel in the image {
 if (object affects pixel) {
 do something
 }
 }
}

object order
 or
rasterization

for each pixel in the image {
 for each object in the scene {
 if (object affects pixel) {
 do something
 }
 }
}

image order
 or
ray tracing
Ray tracing idea

- Start with a pixel—what belongs at that pixel?
- Set of points that project to a point in the image: a ray
Ray tracing idea

viewer (eye) → viewing ray → visible point → objects in scene

light source → illumination
Ray tracing algorithm

for each pixel {
 compute viewing ray
 intersect ray with scene
 compute illumination at visible point
 put result into image
}
Generating eye rays, orthographic projection

- Ray origin (varying): pixel position on viewing window
- Ray direction (constant): view direction
Generating eye rays, perspective projection

- Ray origin (constant): viewpoint
- Ray direction (varying): toward pixel position on viewing window
Software interface for cameras

• Key operation: generate ray for image position

```java
class Camera {
    ...
    Ray generateRay(int col, int row);
}
```

• Modularity problem: camera should not have to worry about image resolution
 – Better solution: normalized coordinates

```java
class Camera {
    ...
    Ray generateRay(float u, float v);    // args go from 0, 0 to 1, 1
}
```
Specifying views in Ray 1

<camera type="PerspectiveCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <projDistance>6</projDistance>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
</camera>

<camera type="PerspectiveCamera">
 <viewPoint>10 4.2 6</viewPoint>
 <viewDir>-5 -2.1 -3</viewDir>
 <viewUp>0 1 0</viewUp>
 <projDistance>3</projDistance>
 <viewWidth>4</viewWidth>
 <viewHeight>2.25</viewHeight>
</camera>
Pixel-to-image mapping

• Mapping to normalized coordinates

\[
\begin{align*}
 u &= (i + 0.5)/n_x \\
 v &= (j + 0.5)/n_y
\end{align*}
\]
Ray intersection
Ray: a half line

- Standard representation: point \(\mathbf{p} \) and direction \(\mathbf{d} \)
 \[r(t) = \mathbf{p} + t\mathbf{d} \]
 - This is a parametric equation for the line
 - Lets us directly generate the points on the line
 - If we restrict to \(t > 0 \) then we have a ray
 - Note replacing \(\mathbf{d} \) with \(\alpha \mathbf{d} \) does not change ray (\(\alpha > 0 \))
Ray-sphere intersection: algebraic

• Condition 1: point is on ray
 \[r(t) = p + td \]

• Condition 2: point is on sphere
 – Assume unit sphere
 \[\|x\| = 1 \iff \|x\|^2 = 1 \]
 \[f(x) = x \cdot x - 1 = 0 \]

• Substitute:
 \[(p + td) \cdot (p + td) - 1 = 0 \]
 – This is a quadratic equation in \(t \)
Ray-sphere intersection: algebraic

• Solution for t by quadratic formula

$$
t = \frac{-d \cdot p \pm \sqrt{(d \cdot p)^2 - (d \cdot d)(p \cdot p - 1)}}{d \cdot d}
$$

$$
t = -d \cdot p \pm \sqrt{(d \cdot p)^2 - p \cdot p + 1}
$$

– Simpler form holds when d is a unit vector but we will not assume this in practice

– Unit vector form is used to make the geometric interpretation (next slide)
Ray-sphere intersection: geometric

\[t_m = -p \cdot d \]
\[l_m^2 = p \cdot p - (p \cdot d)^2 \]
\[\Delta t = \sqrt{1 - l_m^2} \]
\[= \sqrt{(p \cdot d)^2 - p \cdot p + 1} \]
\[t_{0,1} = t_m \pm \Delta t = -p \cdot d \pm \sqrt{(p \cdot d)^2 - p \cdot p + 1} \]
Ray-triangle intersection

• Condition 1: point is on ray
 \[r(t) = p + td \]

• Condition 2: point is on plane
 \[(x - a) \cdot n = 0\]

• Condition 3: point is on the inside of all three edges

• First solve 1 and 2 (ray–plane intersection)
 – Substitute and solve for \(t \)
 \[(p + td - a) \cdot n = 0\]
 \[t = \frac{(a - p) \cdot n}{d \cdot n}\]
Ray-triangle intersection

- In plane, triangle is the intersection of 3 half spaces
Deciding about insideness

• Need to check whether hit point is inside 3 edges
 – Easiest to do in 2D coordinates on the plane
• Will also need to know where we are in the triangle
 – For textures, shading, etc.
• Efficient solution
 – Transform to coordinates aligned to the triangle
Barycentric coordinates

- A coordinate system for triangles
 - Algebraic viewpoint
 \[\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} \]
 \[\alpha + \beta + \gamma = 1 \]
 - Geometric viewpoint (areas)
- Triangle interior test:
 \[\alpha > 0; \quad \beta > 0; \quad \gamma > 0 \]

[Shirley 2000]
Barycentric coordinates

• A coordinate system for triangles
 – Geometric viewpoint (distances)
 – Linear viewpoint (basis of edges)

\[\alpha = 1 - \beta - \gamma \]
\[p = a + \beta(b - a) + \gamma(c - a) \]
Barycentric coordinates

- Linear viewpoint (basis for the plane)

- In this view, the triangle interior test is

\[\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1 \]
Barycentric ray-triangle intersection

• Every point on the plane can be written in the form:
 \[p = a + \beta(b - a) + \gamma(c - a) \]
 for some numbers \(\beta \) and \(\gamma \)

• If the point is also on the ray then it is
 \[p + td \]
 for some number \(t \)

• Set them equal: 3 linear equations in 3 variables
 \[p + td = a + \beta(b - a) + \gamma(c - a) \]
 then solve them to get \(t \), \(\beta \), and \(\gamma \)
Barycentric ray-triangle intersection

\[p + td = a + \beta(b - a) + \gamma(c - a) \]
\[\beta(a - b) + \gamma(a - c) + td = a - p \]

\[
\begin{bmatrix}
 a - b & a - c & d
\end{bmatrix}
\begin{bmatrix}
 \beta \\
 \gamma \\
 t
\end{bmatrix} = \begin{bmatrix}
 a - p
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x_a - x_b & x_a - x_c & x_d \\
 y_a - y_b & y_a - y_c & y_d \\
 z_a - z_b & z_a - z_c & z_d
\end{bmatrix}
\begin{bmatrix}
 \beta \\
 \gamma \\
 t
\end{bmatrix} = \begin{bmatrix}
 x_a - x_p \\
 y_a - y_p \\
 z_a - z_p
\end{bmatrix}
\]

Cramer’s rule is a good fast way to solve this system
Ray intersection in software

- All surfaces need to be able to intersect rays with themselves

```java
class Surface {
    ...
    abstract boolean intersect(IntersectionRecord result, Ray r);
}
```

```java
class IntersectionRecord {
    float t;
    Vector3 hitLocation;
    Vector3 normal;
    ...
}
```
Image so far

- With eye ray generation and sphere intersection

```java
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
    for 0 <= ix < nx {
        ray = camera.getRay(ix, iy);
        hitSurface, t = s.intersect(ray, 0, +inf)
        if hitSurface is not null
            image.set(ix, iy, white);
    }
```
Ray intersection in software

• Scenes usually have many objects
• Need to find the first intersection along the ray
 – That is, the one with the smallest positive t value
• Loop over objects
 – Ignore those that do not intersect
 – Keep track of the closest seen so far
 – Convenient to give rays an ending t value for this purpose (then they are really segments)
Intersection against many shapes

- The basic idea

```java
intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
        hitSurface, t = surface.intersect(ray, tMin, tBest);
        if hitSurface is not null {
            tBest = t;
            firstSurface = hitSurface;
        }
    }
    return hitSurface, tBest;
}
```

- This is linear in the number of shapes but there are sublinear methods (acceleration structures)
Summary of CSE 167

• Geometric transformations
• Coordinate frames
• Projection and viewing
• Rasterization
• Surface shading: materials and lights
• Graphics pipeline
• Triangle meshes
• Texture mapping
• Scene graph
• Curves

• Culling
• Environment mapping
• Toon shading
• Surface patches
• Procedural modeling
• Shadow mapping
• Shadow volumes
• Deferred rendering
• Particle systems
• Collision detection
• Ray tracing