1. It is better to be player B. Here is the strategy for player B that guarantees that his probability of winning will always be greater than that of player A.

- If player A chooses spinner ⃝a, then player B chooses spinner ⃝c.
- If player A chooses spinner ⃝b, then player B chooses spinner ⃝a.
- If player A chooses spinner ⃝c, then player B chooses spinner ⃝b.

Let us show that the probability of winning for player A is less than 1/2 in all the three cases. The probability that spinner ⃝a defeats spinner ⃝c is

\[P(a = 9) + P(a = 5, c = 2) = \frac{1}{3} + \left(\frac{1}{3}\right)^2 = \frac{4}{9} < \frac{1}{2} \]

The probability that spinner ⃝b defeats spinner ⃝a is

\[P(a = 1) + P(a = 5, b = 8) = \frac{1}{3} + \left(\frac{1}{3}\right)^2 = \frac{4}{9} < \frac{1}{2} \]

The probability that spinner ⃝c defeats spinner ⃝b is

\[P(b = 3, c = 7) + P(b = 4, c = 7) + P(b = 3, c = 6) + P(b = 4, c = 6) = 4 \cdot \left(\frac{1}{3}\right)^2 = \frac{4}{9} < \frac{1}{2} \]

Thus player B has probability 5/9 of winning in all three cases. What makes this possible is that the situation is non-transitive: with probability 5/9, ⃝a beats ⃝b, ⃝b beats ⃝c, and ⃝c beats ⃝a. Thus given any spinner, there is always one spinner that is worse and another that is better.

2. (a) If A is an event independent of itself, then \(P(A \cap A) = P(A)P(A) \) by the definition of stochastic independence. But clearly \(A \cap A = A \), so \(P(A \cap A) = P(A) \). Now let us denote \(P(A) \) by \(x \). From the two observations above, we find that \(x = x^2 \), which is equivalent to \(x^2 - x = x(x - 1) = 0 \). The only roots of this equation are \(x = 0 \) and \(x = 1 \).
(b) First, write \(P(A \cup B) = P(A) + P(B) - P(AB) \). If \(A \) and \(B \) are independent events, then \(P(AB) = P(A)P(B) \) and so

\[
P(A \cup B) = P(A) + P(B) - P(A)P(B) = 0.3 + 0.4 - (0.3)(0.4) = 0.58
\]

If \(A \) and \(B \) are disjoint events, then \(P(AB) = 0 \). Hence \(P(A \cup B) = P(A) + P(B) = 0.7 \). If \(P(A) \) were 0.6 and \(P(B) \) were 0.8 then the events could be independent, but they could not be disjoint. Assuming the events \(A \) and \(B \) are disjoint, we conclude that \(P(AB) = 0 \) and therefore \(P(A \cup B) = P(A) + P(B) = 0.6 + 0.8 = 1.4 \). But this is a contradiction, since the probability of an event cannot be greater than 1.

3. Let \(W \) and \(F \) be the events that component 1 works and that the system functions, respectively. Then, using the Bayes inversion rule, we find that

\[
P(W|F) = \frac{P(F|W)P(W)}{P(F)} = \frac{1 \cdot \frac{1}{2}}{1 - P(F^c)} = \frac{\frac{1}{2}}{1 - (\frac{1}{2})^n} = \frac{2^{n-1}}{2^n - 1}
\]

4. The statement is false, and here is a counter-example. Consider the sample space consisting of two independent tosses of a fair coin, namely \(\Omega = \{HH, TT, HT, TH\} \). Define the events

\[
A = \{HH, HT\}, \quad B = \{TT, HT\}, \quad \text{and} \quad E = \{HH, TT, HT\}
\]

Then

\[
P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/4}{2/4} = \frac{1}{2} = P(A)
\]

so events \(A \) and \(B \) are independent. Since \(E = A \cup B \), we have \(A \cap E = A \) and \(B \cap E = B \). Hence \(P(A|E) = P(A)/P(E) = 2/3 \) and \(P(B|E) = P(B)/P(E) = 2/3 \). Yet \(A \cap B = \{HT\} \) and \(AB \cap E = \{HT\} \). Therefore

\[
P(AB|E) = \frac{P(\{HT\})}{P(E)} = \frac{1}{3} \neq \frac{4}{9} = P(A|E) \cdot P(B|E)
\]

Thus events \(A \), \(B \) are independent, but they are not conditionally independent given the event \(E \).

5. It can be easily seen by symmetry that \(P(A) = P(B) = P(C) = 1/2 \). Moreover, observe that \(A \cap B = A \cap C = B \cap C = \{HH\} \). Therefore \(P(AB) = P(AC) = P(BC) = 1/4 \), and the three events are pairwise independent. However

\[
P(ABC) = P(\{HH\}) = \frac{1}{4} \neq P(A)P(B)P(C) = \frac{1}{8}
\]
6. (a) Let A denote the event that a single roll of dice results in a win (for either player). Thus $P(A) = p$ and $P(A^c) = 1 - p = q$. Then Alice wins in the following sequences of outcomes: $A \cdot \cdot \cdot , A^c A^c A \cdot \cdot \cdot , A^c A^c A^c A A \cdot \cdot \cdot$, and so on. It follows that the probability that Alice wins is given by

$$P(Alice) = p + q^2p + q^4p + \cdots = p \sum_{i=0}^{\infty} (q^2)^i = \frac{p}{1 - q^2} = \frac{1}{2 - p}$$

Now $P(Bob) = 1 - P(Alice) = (1 - p)/(2 - p)$. Another way to solve this problem is to observe that Bob wins in the following sequences of outcomes: $A^c A \cdot \cdot \cdot , A^c A^c A^c A^c A \cdot \cdot \cdot$, and so on. Thus $P(Bob) = qP(Alice) = 1 - P(Alice)$. Solving this for $P(Alice)$ immediately produces $P(Alice) = 1/(1 + q) = 1/(2 - p)$.

(b) The second method of solution above is much more convenient in this case. Let E_i be the event that player P_i wins the game. Observe that $P(E_i) = q^{i-1}P(E_1)$ for all $i = 1, 2, \ldots k$. Since some player must win, we have

$$1 = \sum_{i=1}^{k} P(E_i) = \left(1 + q + q^2 + \cdots + q^{k-1}\right) P(E_1) = \frac{1 - q^k}{1 - q} P(E_1)$$

This immediately produces $P(E_1) = (1 - q)/(1 - q^k)$ and $P(E_i) = q^{i-1}(1 - q)/(1 - q^k)$ for all $i = 1, 2, \ldots, k$. In terms of p, this is $P(E_i) = p/(1 - p)^{i-1}/(1 - (1-p)^k)$.

(c) Here, let A denote the event that Alice wins on her roll and let B denote the event that Bob wins on his roll. Thus $P(A) = p_1$ and $P(B) = p_2$. Further, let $q_1 = 1 - p_1 = P(A^c)$ and $q_2 = 1 - p_2 = P(B^c)$. Then Alice wins in the following sequences of outcomes: $A \cdot \cdot \cdot , A^c B^c A \cdot \cdot \cdot , A^c B^c A^c A^c A \cdot \cdot \cdot$, and so on. Hence the probability that Alice wins is given by

$$P(Alice) = p_1 + q_1q_2p_1 + q_1q_2q_1q_2p + \cdots = p_1 \sum_{i=0}^{\infty} (q_1q_2)^i = \frac{p_1}{1 - q_1q_2}$$

The probability that Bob wins is given by $P(Bob) = 1 - P(Alice)$. Altogether, we find that $P(Alice) = p_1/(p_1 + p_2 - p_1p_2)$ and $P(Bob) = p_2(1 - p_1)/(p_1 + p_2 - p_1p_2)$.

7. For $i = 1, 2$, let A_i denote the event that none of the N trials result in the outcome i. The event we are after is that outcome 1 occurs at least once and outcome 2 occurs at least once, which can be expressed as $A_1^c \cap A_2^c = (A_1 \cup A_2)^c$. Now

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) = (1 - p_1)^N + (1 - p_2)^N - p_0^N$$

where we have used the fact that the event $A_1 \cap A_2$ corresponds to the single sequence of outcomes $0 \cdots 0$. It follows that the desired probability is

$$P(A_1^c \cap A_2^c) = 1 - P(A_1 \cup A_2) = 1 - (1 - p_1)^N - (1 - p_2)^N + p_0^N$$