Problem 1 (26 points)

a. The following are statements about events A, B, C with probabilities $P(A)$, $P(B)$, $P(C)$ that are all nonzero and strictly less than 1. The events are arbitrary, unless otherwise specified.

True False

✓ □ $P(A \oplus B) = P(A|B^c)P(B^c) + P(A^c|B)P(B)$
✓ □ if $P(A) = P(B)$, then $P(A|B) = P(B|A)$
✓ □ if $P(A) + P(B) - P(A \cup B) = P(A)P(B)$, then A and B are independent
□ ✓ if $P(ABC) = P(A)P(B)P(C)$, then A, B, C are independent events

b. The three events A, B, C are independent. It is known that $P(A) = 0.5$, $P(B) = 0.4$, and $P(ABC) = 0.1$. Determine the probabilities of the eight events ABC, ABC^c, AB^cC, AB^cC^c, A^cBC, A^cB^cC, A^cB^cC, A^cB^cC in the Karnaugh map below.

Answer: Since the three events are independent, we have $0.1 = P(ABC) = P(A)P(B)P(C)$. From this, we find that $P(C) = 0.1/(0.5 \cdot 0.4) = 0.5$. We can now use the independence of the three events again to compute $P(A^*B^*C^*)$ as $P(A^*)P(B^*)P(C^*)$ where, for an event E, the notation E^* is used to denote either E or E^c. This produces the following probabilities:
c. In the following statements, \(X \) is a generic continuous random variable. The functions \(F_X(u) \) and \(F_Y(u) \) are the cumulative distribution functions (CDFs) of \(X \) and \(Y \), respectively.

True **False**
- \(P\left(X^2 - 2X + 1 < 0\right) = 0 \)
- \(\square \) if \(Y = |X| \), then \(F_Y(u) = F_X(u) + F_X(-u) \) for all real \(u > 0 \)

Problem 2 (20 points)

A box contains 2 black balls and 6 white balls. First, a ball is drawn at random from the box, its color is observed, and the ball is returned to the box along with 4 additional balls of the other color (if the ball drawn was black, then 4 white balls are added to the box; if the ball was white, then 4 black balls are added to the box). After this is done, a second ball is drawn at random from the box.

a. What is the probability that the second ball drawn is black?

Answer: Let \(A \) denote the event that the *first* ball drawn was black. Since there are 2 black balls and 6 white balls in the box, it is clear that \(P(A) = 2/(2+6) = 1/4 \) and \(P(A^c) = 3/4 \). Let \(B \) be the event that the *second* ball drawn is black. By the theorem of total probability, we have:

\[
P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)
\]

If \(A \) occurred then, when the second ball is drawn, there are 2 black balls and \(6 + 4 = 10 \) white balls in the box. Hence \(P(B|A) = 2/(2+10) = 1/6 \). If \(A \) did not occur then, when the second ball is drawn, there are \(2 + 4 = 6 \) black balls and 6 white balls. Hence \(P(B|A^c) = 1/2 \). Putting all of this together, we compute

\[
P(B) = P(B|A)P(A) + P(B|A^c)P(A^c) = \frac{1}{6} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{3}{4} = \frac{5}{12}
\]

Probability that the second ball drawn is black = \(\frac{5}{12} \)

b. What is the probability that the first ball was black, given that the second ball drawn is black?

Answer: By the Bayes rule, we have

\[
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
\]

In part (a), we have computed \(P(B|A) = 1/6 \), \(P(A) = 1/4 \), and \(P(B) = 5/12 \). Hence

\[
P(A|B) = \frac{(1/6) \cdot (1/4)}{5/12} = \frac{1}{10}
\]

Probability that the first ball was black, given that the second ball is black = \(\frac{1}{10} \)
Problem 3 (30 points)

An experiment consists of tossing a biased coin three times. The probability that the coin turns heads is \(p \) and the probability that it turns tails is \(q = 1 - p \). Express your answers in terms of \(p \) and \(q \).

a. Let \(X \) be the number of heads observed on the three tosses. Compute the probability mass function of \(X \) and the cumulative distribution function (CDF) of \(X \).

Answer: Using the theory of independent trials, we find that

\[
P(X = k) = \binom{3}{k} p^k q^{3-k} \quad \text{for } k = 0, 1, 2, 3
\]

and \(P(X = k) = 0 \) otherwise. This gives the following probability mass function:

\[
p_X(u) = \begin{cases}
q^3 & u = 0 \\
3pq^2 & u = 1 \\
3p^2q & u = 2 \\
p^3 & u = 3 \\
0 & \text{otherwise}
\end{cases}
\]

The CDF of \(X \) can be now computed as follows: \(F_X(u) = \sum_{k=-\infty}^{[u]} p_X(k) \). Hence

\[
F_X(u) = \begin{cases}
0 & u < 0 \\
q^3 & 0 \leq u < 1 \\
q^3 + 3pq^2 & 1 \leq u < 2 \\
1 - p^3 & 2 \leq u < 3 \\
1 & u \geq 3
\end{cases}
\]

b. Let \(Y \) be the number of consecutive heads observed on the three tosses. For example, if the outcomes are \(HHT \) or \(THH \) then \(Y = 1 \), while if the outcomes are \(HHT \) or \(THH \) then \(Y = 2 \). Compute the probability mass function of \(Y \).

Answer: Let us consider the eight possible outcomes of the experiment, their probability, and the corresponding values of \(X \) and \(Y \). The information can be organized in tabular form:

\[
\begin{align*}
HHH: & \quad p^3 \quad X = 3, Y = 3 \\
HHT: & \quad p^2q \quad X = 2, Y = 2 \\
HTH: & \quad p^2q \quad X = 2, Y = 1 \\
HTT: & \quad pq^2 \quad X = 2, Y = 1 \\
THH: & \quad p^2q \quad X = 2, Y = 2 \\
THT: & \quad pq^2 \quad X = 2, Y = 1 \\
TTH: & \quad pq^2 \quad X = 1, Y = 1 \\
TTT: & \quad q^3 \quad X = 0, Y = 0
\end{align*}
\]

From this, we immediately obtain the probability mass function of \(Y \), as follows:

\[
p_Y(u) = \begin{cases}
q^3 & u = 0 \\
3pq^2 + p^2q & u = 1 \\
2p^2q & u = 2 \\
p^3 & u = 3 \\
0 & \text{otherwise}
\end{cases}
\]
c. Now suppose that the experiment is repeated until the condition $X > Y$ is observed. What is the probability that it takes exactly k repetitions of the experiment to observe this condition for the first time?

Answer: It can be seen from (1) that there is only one outcome for which $X > Y$, namely HTH. The probability of this outcome is p^2q. In general, the probability that a basic event A occurs for the first time on the k-th trial is given by

$$(1 - P(A))^{k-1}P(A)$$

as was shown in class. In this case, the event of interest is that the outcome HTH occurs, which happens with probability $P(A) = p^2q$. Thus the answer is $p^2q(1 - p^2q)^{k-1}$.

- **Probability that the experiment will be repeated exactly k times**

$$p^2q(1 - p^2q)^{k-1}$$

Problem 4 (24 points)

The daily demand for gas (counted in thousands of gallons) at a gas station is a continuous random variable X, whose probability density function is given by

$$f_X(u) = \begin{cases} \alpha(1-u)^4 & \text{if } 0 \leq u \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

a. Determine the value of α.

Answer: To compute α, we use one of the fundamental properties of probability density functions, namely

$$1 = \int_{-\infty}^{\infty} f_X(u) \, du = \int_{0}^{1} \alpha(1-u)^4 \, du = \alpha \left. \frac{1}{5}(1-u)^5 \right|_{0}^{1} = \frac{\alpha}{5}$$

From this, it follows that $\alpha = 5$.

- **$\alpha = 5$**

b. The station manager would like to install a central tank that will hold all of the station’s gas, and will be filled-up every morning. Determine the minimum required capacity c of the tank (in thousands of gallons) such that the probability that the station runs out of gas by the end of the day — namely $P(X > c)$ — is at most 10^{-5}.

Answer: We need to find the minimum value of c which satisfies $P(X > c) \leq 10^{-5}$. First, let us compute $P(X > c)$ by integrating the probability density function, as follows:

$$P(X > c) = \int_{c}^{\infty} f_X(u) \, du = 5 \int_{c}^{1} (1-u)^4 \, du = 5 \left(\frac{1}{5}(1-u)^5 \right|_{c}^{1} \right) = (1-c)^5$$

Now

$$(1-c)^5 \leq 10^{-5} \iff 1-c \leq 10^{-1} \iff c \geq 0.9$$

Thus the minimum value of c which satisfies $P(X > c) \leq 10^{-5}$ is $c = 0.9$.

- **$c = 0.9$**