Video Frame Prediction

Kishore P. Venkatswammy Reddy
Kaiwen Wu
Outline

- Problem Statement
- Datasets
- Brief literature survey
- Architectures
 - CDNA [3]
 - SV2P [4]
 - FutureGAN [1]
- Future plans
- References
Problem Statement

Given a frame or a sequence of frames (video) predict the next frame or next sequence of frames

Consequences

- Transferable to other tasks
 - Video understanding - classification, annotation, compression
- Better planning agents
 - Threat anticipation agents
 - Autonomous vehicles/robots
Datasets

- Moving MNIST
- KTH
- UCF101
- CityScape
Current approaches

● Inherently difficulty of the problem

● Approaches
 ○ Motion models - capture the motion using optical flows/img differences
 ○ Stochastic models - address uncertainty in predicting future frames
 ○ Generative models - sharper frames, at the cost of difficult, long training
Explicit representation learning

- Disentangling instance-level foreground from background
 - Dynamic filter (Brabandere et al., 2016)
 - DNA/CDNA/STP (Finn et al., 2016)
 - SfM-Net (Vijayanarasimhan et al., 2017)

- Assumption on foreground and background
 - Foreground objects: the moving pattern is homogeneous within an object
 - Background: either static, or otherwise due to camera motion
How they work

Why separation of masks:
- Regularization
- Interpretability
- Attention
How they work

<table>
<thead>
<tr>
<th>Method</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDNA</td>
<td>Stacked Conv-LSTM as encoder-decoder
5x5 convolution as transformations</td>
</tr>
<tr>
<td>STP</td>
<td>Stacked Conv-LSTM as encoder-decoder
Spatial transformer as transformations</td>
</tr>
<tr>
<td>SfM-Net</td>
<td>U-Net as encoder-decoder
SE3 rigid transformation</td>
</tr>
</tbody>
</table>

There are also other works that make different combinations of modules mentioned above.
CDNA & Moving MNIST experiments

Teacher forcing
Trained for 2 epochs over 16000 videos, each of 20 frames long
Evaluation criterion: DSSIM
Apparently teacher forcing doesn’t encourage time-variant transformation

nmask=1
nmask=2
nmask=3
nmask=4
nmask=5

loss=1.0
loss=0.7
Interpretability issue

- Object masks segmentation is limited by the size of CDNA kernel -- only local properties are focused, and it’s far from ideal case.
- No more good background segmentation when there are at least two object masks.
- Since Moving MNIST has black background, whatever conv kernel can be applied on it and nothing will get wrong. This could explain why it confuses foreground and background.
SV2P

It’s an improvement over CDNA net, that aims to sharpen the long-term prediction by introducing latent random variables to code, such that the learnt latent distribution contains guidance on how to predict.
FutureGAN

- Architecture modelled after PGGAN [2]
 - PGGAN - Progressively Growing GAN
 - Overcomes problems of GAN training and mode collapse

- Details
 - Generator network - Encoder and Decoder
 - Generates the future frames
 - Used for predictions
 - Discriminator network - Decoder
 - Discriminates real from fake
FutureGAN - Generator

Progressive Growing during Training
FutureGAN - Discriminator

Conv Layer:
Conv:3d
Weight Scaling
LeReLU (0.2)

MinibatchSTD
Layer:
Minibatch-STD-
Feature-Map

Output FC Layer:
Linear
Weight Scaling

Progressive Growing during Training
Results

The left animations are the original video, the right are the corresponding predictions of network.
Future Plans

● 1 week plan
 ○ Improve interpretability of CDNA
 ○ Exploring the latent distribution of SV2P
 ○ Motion-Content Networks with hard attention

● 2 / 3 week plan
 ○ Construct and experiment with simplified PGGAN architectures
MCNet

(a) Base MCnet

(b) MCnet with Multi-scale Motion-Content Residuals
References

Questions ?
Experiments

- Train the network at 128x128 resolution directly
 - Confirmed our suspicions!
- Noisy test data
 - Resilient to small amount of input noise