Question 1 (Nondeterministic complexity of inner product). Let IP be the inner-product function over n-bit strings: $IP(x, y) = \langle x, y \rangle \mod 2$ where $x, y \in \{0, 1\}^n$.

(a) Prove that the co-nondeterministic communication complexity of IP, $N^0(IP) = \Theta(n)$.

(b) Prove that the nondeterministic communication complexity of IP, $N^1(IP) = \Theta(n)$.

Question 2 (Cover complexity vs communication complexity: A separation). We will work through an example showing that the theorem we saw in class, that $D(f) = O(N^0(f)N^1(f))$, cannot be significantly improved.

Let $n = m^2$ and interpret inputs $x, y \in \{0, 1\}^n$ as $m \times m$ binary matrices. Define a boolean function $f(x, y)$ as follows: $f(x, y) = 1$ if there exists $i \in [m]$ such that the i-th row of x and the i-th row of y are the same.

(a) Prove that the nondeterministic communication complexity of f, $N^1(f) = O(m)$.

(b) Prove that the co-nondeterministic communication complexity of f, $N^0(f) = O(m \log m)$.

(c) Prove that the deterministic communication complexity of f, $D(f) = \Omega(m^2)$.

Question 3 (Constant nondeterministic vs deterministic). Let $f(x, y)$ be a n-bit boolean function.

(a) Assume that $N^0(f) = O(1)$. Prove that $D(f) = O(1)$.

(b) In general, prove that $D(f) = F(N^0(f))$ for some function F. What is the best function you can attain? can you give an example showing it is tight?
Question 4 (Rank+one sided cover implies a deterministic protocol). Let \(f : X \times Y \to \{0,1\} \), and let \(M_f \) be its corresponding communication matrix. Let \(r = \text{rank}(M_f) \) denote its rank over the reals. The goal is to prove that

\[
D(f) = O(N^0(f) \cdot \log r).
\]

(similarly, one can prove that \(D(f) = O(N^1(f) \cdot \log r) \)).

The following steps might be useful. Below, for a matrix \(M \) we denote \(|M|\) the number of elements in \(M \). We shorthand \(c = N^0(f) \).

(a) Let \(M \) be a sub-matrix of \(M_f \). Prove that \(M \) contains a monochromatic rectangle \(R \) of size \(|R| \geq \varepsilon|M|\) for \(\varepsilon = 2^{-O(c)} \).

(b) Write \(M \) as

\[
M = \begin{pmatrix}
R & A \\
B & C
\end{pmatrix}
\]

Prove that \(\text{rank}(A) + \text{rank}(B) \leq \text{rank}(M) + 1 \).

(c) Conclude that \(M \) can be partitioned either by rows, or by columns, into two matrices \(M_1, M_2 \) such that

(a) \(\text{rank}(M_1) \leq \text{rank}(M)/2 + O(1) \).

(b) \(|M_2| \leq (1 - \varepsilon)|M| \).

(d) Design a protocol tree computing \(f \) with \(r^{O(c)} \) leaves.

(e) Complete the proof.

(f) Does it matter if we compute the rank over the reals or over any other field?

Question 5. Alice and Bob inputs are subspaces \(A, B \subset \mathbb{F}_2^n \). Define \(f(A, B) = 1 \) if \(A, B \) are orthogonal (namely \(\langle a, b \rangle = 0 \) for all \(a \in A, b \in B \)). Note that the inputs can be described using \(n^2 \) bits.

(a) Prove that the co-nondeterministic communication complexity of \(f \) is \(\Theta(n) \).

(b) Prove that the nondeterministic communication complexity of \(f \) is \(\Theta(n^2) \).