Let v_1, \ldots, v_k be k vectors in \mathbb{R}^d. Recall that the subspace spanned by v_1, \ldots, v_k is defined as the set of all vectors $\sum_{i=1}^{k} c_i v_i$ where c_i's are any scalars. The cone spanned by v_1, \ldots, v_k is defined as the set of all vectors $\sum_{i=1}^{k} c_i v_i$ where the c_i's are positive scalars.

Suppose we are given training data with binary ± 1 labels, and we are using the Perceptron algorithm to train a classifier $\text{sign}(w^T x + b)$ on training data $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$.

State whether following statements are true or false, and justify your answer in each case.

(1) (4 points) Does w lie in the subspace spanned by $x^{(1)}, \ldots, x^{(n)}$?

(2) (3 points) Does w lie in the cone spanned by $x^{(1)}, \ldots, x^{(n)}$?

(3) (3 points) Does w lie in the cone spanned by $y^{(1)} x^{(1)}, \ldots, y^{(n)} x^{(n)}$?